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We develop a theory for relating quantum and classical time correlation functions in the context of
vibrational energy relaxation. The treatment is based on the assumption that both the quantum and
the classical systems are characterized by effective harmonic Hamiltonians with identical normal
modes; and the solute-solvent interaction is taken to be linear in the solute vibrational coordinate,
but nonlinear in the bath coordinates. We propose an approximate “quantum correction” which
allows the determination of the quantum energy relaxation rates from the classical force-force time
correlation functions in the limit of large solute’s vibrational frequency. We test the accuracy of this
approximate correction against exact numerical results for two forms of the solute-solvent
interaction (exponential and power Igwand find it to be accurate for a wide range of solute
vibrational frequencies and for different solvent thermodynamic states. A simple form of the
“quantum correction” is proposed for the models based on Lennard-Jones interactions. In all cases
it is found that the vibrational relaxation time in a fully quantum system is better approximated by
a fully classical theory(classical oscillator in classical batthan by a mixed quantum-classical
theory (quantum oscillator in classical bath © 1997 American Institute of Physics.
[S0021-960607)51540-9

I. INTRODUCTION uniquely defined. In general, however, it is not possible to
find (in a closed analytical forinthe exact relationship be-

‘Numerous processes in condensed phases involve disg{geen the two, and various approximate prescriptions have
pation of energy from vibrationally excited modes. A pro- heen proposed in the literature for obtaining the quantum

found understanding of this phenomenon is of major imporyaqyits from the classical onds8-88The first issue which
ta.mce.for developing a thepry of reaction dynam'|cs. AS SUChr'leeds to be addressed is related to the fact that the classical
ylbratlona.I energy [g(l)axatmﬂ\/ER) has been actively S,tUd' TCF is a real even function of time, while the one-sided
ied experimentally, * and the results have been rEEV'Q\"’Edquantum TCF is a complex function. The direct consequence

; -39
on severa_l occasioris. .. of this is that the classical power spectrum is symmetric,
Experimental data on VER have been analyzed Wlthwhile its quantum analogue satisfies the detailed balance
various theoretical approache®-8Most of thes&-8% are

based on the low-order perturbation theory, and involve pargond'tlon’ and is thus asymmetric. At the same time, one can

e T . . relate the quantum power spectrum to the Fourier transform
titioning the total Hamiltonian into three terms: the vibra- fth mmetrized quantum TCE. which shares the propert
tional Hamiltonian for the excited mode of the sol(¢giest, ot the symmetrized guantu ' ch shares the property

impurity), the Hamiltonian for all other degrees of freedom _?_Lpe'ng a real even fu.nct|c;]n Ofl t'm? V\IIIEPCtIr:]e glﬁsilcal TCF.
(solvent, host, bath and the interaction between these two Is suggests comparing the classica with the symme-

subsystems, which induces the transitions between the scztﬂzed quantum one in the t|m§a domgu_n, which has been done
ute’s vibrational states. Within this formalism, the state-to-" Ref. 85 for the one-dimensional rigid rotor. The two func-

state transition rates, are determined by the Fourier transfortiPns disagreed slightly at short times and very significantly

(at the vibrational frequency of the soliitef the time corre- At long times™ Nevertheless, if one simply replaces the sym-
lation function(TCF) of the force exerted by the solvent on metrized quantum TCF with the classical one, the resulting
the solute’s vibrational mode. When studying VER in low- POWer spectrum will at least satisfy the detailed balance con-
temperature solids, this TCF can be evaluated quantum mélition. Such an approach has been widely used in the context
chanically. At the same time, a full quantum treatment ofof Vibrational energy relaxatioft;***although it has been
dynamics in liquid hosts is not feasible, and a common aprecognized that simply obtaining Boltzmann equilibrium is
proach is to treat the translational degrees of freedom in lighot a sufficient justification for the above replacemféif:®

uids classically. However, for certain experimental condi- A different approach to relating quantum and classical
tions (e.g., vibrational relaxation of molecular oxygen in TCFs was introduced by Schofiéltiand involves modifying
liquid mixtures with argon in the temperature range 60—90the classical TCF in the time domain. Schoffélduggested

K3) a classical treatment of the solvent may be questionabl@pproximating the one-sided quantum mechanical TCF
In order to account for the quantum nature of the bath, onevaluated at time by the classical TCF evaluated at (
needs to relate the classical TCF to its quantum analogue-iB#/2). The resulting power spectrum satisfies detailed
Once the potential energy in the Hamiltonian is specified, thdalance, but does not satisfy any moment sum rules. For the
classical and quantum TCHand their power spectraare latter reason Egelst&ff proposed an alternative approxima-

6050 J. Chem. Phys. 107 (16), 22 October 1997 0021-9606/97/107(16)/6050/12/$10.00 © 1997 American Institute of Physics



S. A. Egorov and B. J. Berne: Vibrational energy relaxation 6051

tion, where the argumerttof the classical TCF is replaced lows us to assess the accuracy of this approximate relation-
by [t(t—iB%/2)]Y2 When the Egelstaff transformation is ship.
applied to the normalized classical TCF, the resulting func- The purpose of this paper is to carry out the program
tion satisfies both the condition of detailed balance and theutlined above. In Section Il we consider a somewhat sim-
first few sum rule€® The accuracy of the Egelstaff approxi- plified model where the system-bath coupling is modeled
mation was tested in Ref. 85 for the one-dimensional rigidwith an exponential function of a scalar collective bath co-
rotor; it was found to agree well with the exact quantumordinate. In the asymptotic case of large solute’s vibrational
result at short times, but to disagree at longer tifidsater ~ energy gap, we derive an approximate relation between the
the Egelstaff transformation was modified in order to ac-power spectra of quantum and classical TCFs, which leads to
count for the change in the zero-time value of thenormal-  a relation between the energy relaxation rates for a classical
ized TCF in going from classical to quantum c&8eOf  solute in a classical bath and for a quantum solute in a quan-
course, one can equally well apply the aforementioned trangum bath. Assuming a particular model for the bath spectral
formations in the time domain to approximate the symme-density, we calculate these relaxation rates exactly and test
trized quantum TCF instead of the one-sided functfon. the accuracy of our approximate result. In Section Il we
To summarize, numerous prescriptions have been praderform similar calculations for a more realistic problem in-
posed for relating quantum and classical TCFs both in th&olving vibrational relaxation of a diatomic Lennard-Jones
time and in the frequency domains. However, due to apsolute in monatomic Lennard-Jones fluid. We again obtain
proximations involved in these treatments, two different pre-an approximate “correction factor{which is somewhat dif-
scriptions may lead to two different predictions of the quan-ferent from the one obtained for the exponential interagtion
tum power spectra, both of which satisfy the detailed balanc@&nd assess its accuracy by performing exact numerical cal-
requirement, but differ greatly from each other, especially inculations. In both case@xponential and Lennard-Jones in-
the high-frequency regioi?.88 Furthermore, it may well be teraction$ our approximation gives a very accurate estimate

the case that neither of these spectra agrees with the tr@ the ratio between quantum and classical energy relaxation
guantum result. rates. We also test various prescriptions for relating quantum

In view of that, it is of great importance to assess theand classical TCFs which have been proposed earlier in the
accuracy of various approximations by studying exacﬂy"tel’ature, and find that neither of these is robust enough to
solvable model&>°? In the context of vibrational energy re- handle different functional forms of the system-bath cou-
laxation, such a possibility is provided when the classicaPling. In Section IV we conclude.
and quantum solvents are described by effective harmonic
Hamiltonians with the same set of normal modes. If the
solute-bath coupling is taken to be linear both in the solut§, MODEL HAMILTONIAN:L LINEAR AND
and bath coordinates, one can obtain an exact relationshigxpONENTIAL COUPLING
between the force-force TCF for a classical bath and its o ] )
quantum counterpaft. However, due to the assumption of A. Model Hamiltonian: Linear coupling
bilinear coupling, the applicability of this result is limited to We consider the relaxation rate of a vibrationally excited
single-phonon relaxation processes. At the same time, it isolute in a solvent. As discussed in the Introduction, we as-
often the case that the excitation energy of the solute’s visume that the total Hamiltonian can be written as follows:
brational mode is much larger than the typical energy asso-
ciated with the solvent's thermal motion. In the absence of H=HqtHp+V. @

intra- and intermolecular vibration-vibratiofexcitonig en-  |n the aboveH, is the (harmonig Hamiltonian associated
ergy transfer, the nonradiative relaxation Process IS necessakith the solute’s vibrational Coordinatq' whose Conjugate

||y mUltiphonon, i.e., the solute’s vibrational energy is dissi- momentum |5p’ reduced mass iﬂ, and angu|ar frequency is
pated into many quanta of bath excitations. In order to allow,

for multiphonon processes, one can either treat the bilinear
system-bath coupling within high-order perturbation theory, :D_
or introduce a coupling which is more realistically nonlinear 9 2u

in the bath coordinates, while retaining the lowest-order Fer;l_h bath HamiltoniarH.. d ibes th vent lecul
mi’s golden rule formalism. It was recently showfthat the € balh Hamiltoniart, describes the solvent molecules

latter mechanism generally gives the dominant contributiorﬁelnd all the remainingapart fromq) degrees of freerm of
to the relaxation rate. For an arbitrary nonlinear system-bat € sglute. In what follows, we tak, t_o be harmoruc and
coupling, it is not possible to derive an exact relationshiperte Itas asum over ”OT".‘a' _modes with frequenaigsand
between the classical and quantum TCFs. However, for Sml_Boson creation and annihilation operatbﬁsand by

ficiently large solute vibrational energiélative to the bath

thermal energy scalean approximate relation between the Hb=2k ho(bib+1/2). €)
two can be obtained. In addition to that, for a given spectral

density of the effective harmonic batWwhich is the same for Finally, the interaction ternV, which couples the solute’s
classical and quantum systenasie can obtain exact numeri- vibrational mode to the bath, is taken to be lineaqinv=

cal results for both classical and quantum TCFs, which al—qyF, whereyF is the force exerted by the solvent on the

2 2 2
MmwoQ
> 2
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vibrational coordinate, the coupling constanthas units of tional coordinate and the solvent is nonlinear in the bath
force, andF is a dimensionless function of the bath normal coordinates, i.e., allow for multiphonon processes.
coordinates.

Using the golden rule lowest-order perturbation theory,
one can expre8S the solute vibrational energy relaxation
rate in terms of the Fourier transform of the symmetrized
guantum force-force time correlation functiéhCF) evalu- We model the solute-solvent interaction with an expo-
ated at the solute vibrational frequency nential function of the bath collective coordinaté:

=exp@). With the above form of the system-bath coupling,

B. Exponential coupling

1) _tanf(Bhwyl2) il o) @ the thermal averaging over the bath states in Bycan be
T, m_ Bhwyl2 " performed using standard boson algebra operator
. a identities?*%* and the integral in Eq(5) can be evaluated
with approximately using saddle point metfidtb yield
~ * 2
gém(wo)ZIByzf dt coq wqt) = - ’8_7 aqm 2m
0 £ qm( o) = ——exp(C1™(0)) V wowphcosh
1
w
x<§[5F<t),6F<0>]+> , ®) x(ﬁﬁwo/aexp(——°[In<2¢qm>—1]),
am (,()ph
where 6F(t)=F(t) —(F)qm.{- - - )qm=Trs[ - - - pp] denotes (9)
a trace over the quantum bath stateg,=e "/ _
Tr,[e #"5] is the equilibrium bath density matrix, ang ~ With
= 1/kBT g
The calculation of the quantum TCF is feasible for low- %m:)\ﬁ—w Sinh( Bl w,h/2), (10
temperature solids, but is extremely difficult in liquids. In the ph

latter case, a common approach is to obtain the TCF for and

corresponding classical system — either from molecular dy-

namics simulations or from analytical theories. One is then _ *

faced with a problem of relating the classical TCF to its Cqm(O)—ﬁJo do J(w)(2n(w)+1), (1)
guantum counterpart, and various prescriptions have been )

suggested for this procedure in the literatf8-For the ~ Wheren(w)=[exp:w/kT)—1]"* is the phonon thermal oc-
Hamiltonian described above, this problem has been consid{Pation number. In the above we have defined an “aver-
ered by Bader and Berfitfor the particular case of bilinear 29€” phonon frequency according to the relation
solute-solvent coupling, i.e., the force exerted by the solvent 1 (e "

on the solute vibrational coordinate was written as a linear wph:Xf do wl(w); x:f do J(w). (12
function of the bath dimensionless collective coordinate 0 0

: Taking the limit#—0 in Eq. (9) gives the following
F=Q= \/%Ek Ck(by+by), (6)  expression for the classical friction:

wherec, are real expansion coefficients. Provided the clas- ~, sz 2w
‘ g is(wo) = =5~ exXRCal(0) \[
p

sical and quantum systems are described by identical effec-
tive harmonic Hamiltonians, they are characterized by the

same spectral density Xexr{ _ ﬂ[ln(Zch,)—l]), (13)
(l)ph
Hw)=2 o= wy. @ with
From Egs.(4), (5), (6) and(7), one obtains _ Buwo (14
cl— ’
( 1) ‘MZJ< ) ) *
T/ qm H®0o @ and
The above result does not dependigrand therefore the C.(0)= Ede J(w) (15
energy relaxation rate for a quantum solute in a quantum a(0)= BJo e

bath is identical to the relaxation rate for a classical solute in

a classical solvent, as discussed in Ref. 89. This result is From Egs. (4), (9), (13 and the relation Ty %)
valid for the bilinear system-bath coupling, which corre- =Zé,(wo)/,u it follows that energy relaxation rafE:[l for a
sponds to single phonon relaxation processes. We next cogquantum solute in a quantum bath is no longer equal to its
sider the case when the coupling between the solute vibralassical counterpart; their ratio is given by
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(T )an _ expCan(0)) sintBiwol2)
(TiYe  exHCa(0)  Bhwgl2 a

Bﬁwph wglwpp
| 2SN Bhw,y2) :

Ry

(16) 3

C. Numerical results for the exponential coupling S

Certain approximationgmean value theorem, saddle ;—
point methodl have been involved in arriving at the E4.6). =
In order to assess their accuracy, we now assume a particul &

functional form for the spectral densit){w) and evaluate

=7

the quantum and classical energy relaxation rates exactl N .
(numerically. Although the main goal of the present work is 9 N
to relate classical and quantum TCF in liquids, we defer the N
discussion of the form fod(w) appropriate for liquid hosts A
until the next section where we consider vibrational relax-  -11 ‘ * : ' :

0 50 100 159 200 250 300

ation of a Lennard-Jones solute in a Lennard-Jones fluid. I
the present section, for the purpose of testing the result in Eq.
(16), we consider the following super-Ohmic spectral den-fi. 1. log(1/T¥) vs w* for the exponential solute-solvent interaction.
sity: The solid line(a) is the fully quantum result, the dashed liti® is the fully
classical result, and the dotted lie) is the classical result corrected ac-
J(w)=2\a?w® expl— aw?), (17 cording to the approximation from E¢L6). The dash-dotted lin&) is for

) . a quantum solute in a classical solvent.
which behaves as the Debye model coupled with the defor-

mation potential approximatioffor numerical convenience
we have replaced a sharp cut-off at the Debye frequency wittanh (B wy/2)/(Bh w/2). This factor is less than unity for
a smooth Gaussian cut-0ffThis form for J(w) would be  any frequencywy, which suggests that the fully classical
appropriate in studying vibrational relaxation by acoustictreatment gives consistently better results for the rates than
phonons in a crystalline host. the “mixed” one (although the former rates still need to be
Anticipating the study of LJ fluid in the next section, we corrected to get agreement with the quantum jates
define dimensionless time and frequency variables in terms It would be of some interest to analyze the nature of the
of the LJ parameters of Ar and the mass of Ar atdrh: three factors inR;. The first factor is independent of the
=t(ea /Maoa) 2 and o* = w(mpoi/en)? With the  energy gapw,, it depends only on the temperature and the
values® en /kg=119.8 K, 02, =3.405 A, andm,,=6.634  spectral density. FokgT>%wp,, Cqm(0)=~C¢(0) and the
X102 g, w* =1 corresponds te/27c = 2.46 cm L. first factor inR; is close to unity. The second factor coin-
In performing the calculations, we take’ =2.5x10 2. cides with the Schofield transformatfirnwhen the latter is
From Eq. (12), this gives the average phonon frequencycombined with the symmetrization of the quantum TCF. This
wpp/2mC = 65.4 cm 1. The temperature is taken to Be=75  factor has the strongest dependencewgnof all three; it
K, i.e., comparable to a characteristic phonon frequency. Wapproaches 1 only fdtgT>% w,. At the same time, a more
set the dimensionless normalization constarit equal to typical situation in high-order relaxation processes corre-
unity, and takey= e /oa andu=my, . sponds tdi w,,<kgT <% w, in which case the second factor
With the above parameters, we calculate the energy ren R, is much greater than unity. Finally, the third factor is
laxation rateTIl for a quantum solute in a quantum bath andalways less than 1, fdigT~% w,, it displays a weakalbeit
for a classical solute in a classical bath as a function of th@xponential decrease with the energy gap; fIT>%wpp, it
solute vibrational frequencwg; the corresponding results remains on the order of 1 for all physically realistic values of
are shown in Fig. 1. One sees that in the contrast to the case,.
of linear coupling, where the fully quantum and the fully It is also of interest to compare the results obtained with
classical results are identical, in the case of exponentiahe correction factoR; [cf. Eq. (16)] to other approxima-
solute-bath interaction, the fully classical treatment underestions suggested in the literature. For this purpose, we apply
timates the relaxation rate. Also shown in Fig. 1 is the “cor-the Schofield! the Egelstaff? and the “scaled” Egelstaff
rected” classical approximation given b)T[l)del with transformations to our classical results. The Schofield ap-
R; calculated from Eq(16). This “corrected” classical ap- proximation has been discussed above, it amounts to replac-
proximation follows the quantum result quite closely for aing R; with sinh(Bhwy2)/(Bfwe/2). The Egelstaff
wide range of the “energy gapsi,, thus confirming that procedur® can be obtained as a product of two
the approximations involved in arriving at E(L6) are rea- transformation§® One first replaces the argumenbf the
sonable. Finally, we plot in Fig. 1 the energy relaxation rateclassical TCF witH t?— (3%4/2)?]*? and then performs the
for a quantum solute in a classical bath calculated by multiSchofield transformation on the resulting function. The
plying the fully classical rate by the factor “scaled” Egelstaff transformatidfi is the same as the Egel-

@,
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the solvent atomsin a Lennard-Jones hoé&t solvent whose
molecules interact through the Lennard-Jones potenfi&
though we focus on the Lennard-Jones potential here, it is
important to note that the same procedure can be used for an
arbitrary continuous form of the solute-solvent interaction.
To simplify the analysis, we consider a single diatomic sol-
ute immersed in a monatomic solvent, and assume that the
diatomic interacts with the solvent particles with a spheri-
cally symmetric pair potential, and that its vibrational coor-
dinate also has spherical symmetry. Such a “breathing
sphere” model has been used to study vibrational relaxation
of diatomic molecules both in crystalliffe and liquid®
Lennard-Jones hosts. In crystalline hosts, the total micro-
scopic Hamiltonian for the system can be easily reduced to
the form of Eq.(1) by treating the crystalline lattice in the
harmonic approximation. In liquid hosts, on the other hand,
the Hamiltonian for the translational degrees of freedom of
X the solvent and the solute is anharmonic. Thus, for liquids
. , ‘ N one is usually confined to a classical treatment of the trans-
0 0 100 130 200 250 300 lational degrees of freedom in calculating of the TCF. The
@ results obtained in this way have to be corrected by account-

0
. ing for the quantum nature of the solvent.
FIG. 2. log((1/T7) vs w* for the exponential solute-solvent interaction. . ~, ~, . .
The solid line(a) is the fully quantum result, the dotted lin®) is the The relation betweergqm(wO) and {(wo) obtained in

classical result corrected according to the approximation fron(Hy. The ~ the previous section was based on the assumption that both
dashed line(c) is the Schofield approximation, the long-dashed kideis  quantum and classical systems are described by identical ef-
the Egelstaff approximation, and the dash-dotted lleis the “scaled”  factive harmonic Hamiltonians. Thus, to obtain a similar re-
Egelstaff approximation, as described in the text. . . .

lation for a Lennard-Jones fluid, one needs to map this sys-

tem onto an effective harmonic bath. We achieve this by
staff transformatiof? except for the rescaling of the introducing an effective quantum harmonic Hamiltonian for
classical TCF by the following factor: theI translat:;)nsl degrgt_as ofhfree_donr”n] of Ithe _sollutlg gndh_the
<5F2>cl/<5F(:8h/\/§)5|:(0)>c|- solvent, and by requiring that in the classical limit this

The results of applying these three procedures to th&tamiltonian reproduces_ the rt_asults for the LJ fluid obtained
classical VER rates are shown in Fig. 2 together with thd"0m the classical MD simulations. ,
quantum result; also plotted are the rates obtained with the Starting from a microscopic Hamiltonian for a single
approximate correctioR;. One sees that the Schofield trans- diatomic in @ monatomic fluid and assuming pairwise inter-
formation overestimates the quantum correction somewhatctions, we follow the procedure outlined in Ref. 80 to re-
(especially at the higher frequendigthe Egelstaff approxi- duce it to the following form:
mation gives the rates which are too low, and the “scaled” Q- Hq+tHp+V. (18)
Egelstaff procedure is generally as accurate as the approxi-
mate correction given by the fact®;. We defer the discus- The solute vibrational Hamiltoniahl, is given by Eq.(2).
sion of these results until the next section, where we perfornil, is the quantum-mechanical Hamiltonian for the transla-
a similar analysis for a force-force TCF with another func-tional degrees of freedom of the solute and all solvent par-
tional form of the force, namely, inverse power law type ticles (the bath
interaction.

We close this section by noting that similar calculations Hp=T+Uo, (19
have been performed for a wide range of temperatures angith
parametera . and o*; the “quantum correction” given by

T=75K

log,(1/T,")

2 2
R; was found to be consistently accurate for all values of _ Po Pi
T=—+> , (20)
parameters tested. 2mg 5 2mg
I1l. VIBRATIONAL RELAXATION FOR LENNARD- UOZZ ¢(ri)+2 ¢s(rij)- (21)
JONES COUPLING BETWEEN SOLUTE AND i i<
SOLVENT

T is the total translational kinetic energy of the solute and
In this section, we discuss the relation between the quarsolvent atoms; the solute has momentpgand masan,
tum and the classical TCF for the problem of vibrationalthe summation indices refer to solvent atoms, andithe
relaxation of a Lennard-Jones solufe solute molecule solvent atom has momentup and massn,. The potential
whose sites interact through the Lennard-Jones potential witenergy U, involves the solute-solvent pair potentialr),
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which is independent of, and the solvent-solvent pair po- As before, the coupling term has the fov= —qyF,

tential ¢4(r); r; is the distance between thth solvent atom  but in contrast to the previous Section, the tgtiimension-

and the center of mass of the diatomig, is the distance lesg force F exerted by the solvent on the solute vibrational

between theth andjth solvent atoms. coordinateq is explicitly written as a sum of forces from all
In the spirit of the lattice theories of liquith®’ we rep-  solvent atoms, thus avoiding the “collective coordinate” as-

resent the medium by a harmonic lattice, which amounts t@umption:

replacingH, by an effective harmonic Hamiltonian. As a

first approximation, we will assume that the diatomic’s mass

is sufficiently close to that of the solvent atoms, and that the

solute-solvent interaction is sufficiently similar to the F:E f(ry). (23

solvent-solvent interactions. Therefore, as far as the phonons i

are concerned, we takkey=mg and ¢(r) = ¢¢(r), and intro-

duce normal modes in the usual fashfon

We now writer; =|r‘+ u;o|, where the vectors is the equi-
; (22) librium position of theith host atom in the effective har-

monic lattice relative to the diatomic, angh=u;—u, is the
whereb,, and bL are the phonon annihilation and creation difference of the displacements of the two atoms from equi-
operators, the sum over wave vedtais restricted to the first librium due to the lattice vibrations. Expanding the function
Brillouin zone, the summation indelx runs over the three f(r;) in a Taylor series around; and following the proce-
acoustic phonon polarization branches, angis the phonon dure outlined in Ref. 79, one obtains the following result for
frequency. the symmetrized quantum force-force TCF:

1
Hb:% ﬁwkl<bllbkl+§

1 lo < - w (M2 K Cn(h*+Ci ([ c(oy]
qu(t)_<§[5F(t)15F(0)]+> qm_z 7 kzl I;O mE:O k|||m| 2
dk 21 dk 1 d2m
re.re VK| - . )
X(ri-ry) ark T ri2|r.f(r.) T Olrj2mr,f(r,) : (24)
=T r=rj
|
with f(r)y=dr P, (27)
* . In this case the derivatives in E@4) can be evaluated, and
Cqm(t)=ﬁf0 do J(@){(n(w)+1)exp —iwt) we find that
K,
. o 1 max S k’
+n(w)exp +iwt)}, (25) qu(t):(zz (CanD+ CEn( ) qm|(<| D))/
and Cy(0) given by Eq.(11). For the reasons that will k=1 ’
become clear below, we focus on the normalized quantum Kmax Sun(K.p)
TCF given by ( > cqm(O)kqu’), (28)
k=1 :
_ Ggm(t)
Ggm(t)= — . 26)  with

)

22 [ Caqm(0) ! T(p+2l+k) 2
( 2 )F(I+1)F(p—1)(p+2l—l)} » (29

In the case of Lennard-Jones potentials the squte—Sqm(k’p
solvent interaction is sufficiently short-ranged, and the sum-
mation over the solvent atoms in E@4) can be restricted to =
nearest neighbors only. In lattice theories of liquids one usu-
ally allows for a possibility of vacant lattice sites, and em-whereI'(n)=(n—1)!. Note that this result for the normal-
ploys some kind of a smearing procedure in order to smootized TCF does not depend on the parametér&he nearest
out the details of the arrangement of the solvent particlegieighbor separationand Z_(average number of nearest
around the solut®> We account for both these effects by neighbors. As discussed in Ref. 79, the upper limits on khe
introducing an “average” number of nearest neighb@s and| summations have been set kg, and | x, respec-
and by keeping only diagonal terms in the sum over thdively. In fact, if these were taken to be, both sums would
solvent atoms. We assuni@ee belowan inverse power law diverge no matter how smafl,,(0) is, which ultimately
for the force on the solute vibrational coordinate results from the singularity of(r) at the origin. In practice,

=0
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however, forC,,(0)<1 the summand decreases with in-
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andC,(0) given by Eq.(15). The classical friction is given

creasingk andl, and becomes essentially zero over a wideby

range ofk andl. At this point one can simply truncate the
sums, obtaining a well-defined result for the T@Rd avoid-
ing the unphysical divergenge

From Egs(5), (24) and(28), the quantum friction can be
written as

7t 00) = B7°Gn(0) J;dt co8 wgt)Gqn(t)

max

= 2, WiM(wo), (30
with
Sqm(K,p)
WEwo) = Y20 F s f dt cogwgt)[ Cam(t)*
+CE(DY]. (3D

As shown in Ref. 94, for a givefand sufficiently large wq
the dominant contribution t@(’]m(wo) comes from the term
W™ with k~wq/wp,, and to a good approximation is
given by

g2 San(K K.p)hk

W[(n(wolk_H 1)k_

gqm(wO) B

+n(w0/k_)k_]fwdt cog wot)
0

% k
X f dwJ(w)exp —iwt) (32
0

Tu(00)=BYGu(0) [ dtcosorGu, (@30

which is equivalent to the classical limit of E€B0). Hence,
to obtain the corresponding approximate result, we take the
classical limit directly in Eq(32) to get

k
) fdtcos(wot)
0

Zé,(wo):ﬁyzz il p)( K

Kk!(r°)2r\ Bwg

k

” —iwt
X fo dwl(w)e (37

In Egs.(32) and(37) k has the meaning of the integer num-
ber closest to the ratiowy/wy,. In fact, to a good
approximatior?? one can simply replack by this ratio. This
yields the following result for the rati®, of the quantum
and classical energy relaxation rates:

_(T1Yqm _ Syn(@o/@pn,p) sinh( B wo/2)
’ (TIl)CI SCI(wO/wphap) ,Bﬁwo/2
Bhwp wg/wpn
(m (39

Note that the second and the third factors in the above ex-
pression are identical with those in the formula Ry [Eq.
(16)]. However, the first factor is no longer independent of
the solute’s vibrational frequency; in fact, we find below
from the model calculations that it increases with. Thus,

our approximate result for the quantum correction in the case

We now consider a classical harmonic lattice characterof the power law solute-solvent interaction has a different

ized by the same spectral densitfw) as its quantum ana-

overall dependence on the “energy gap” as compared to the

logue introduced above. The corresponding normalized classase of the exponential interaction.

sical force-force TCF is given by

Gei(t) _ (SF(1)SF(0))cy
Gei(0) (8F?)

kmax
(2 e xSk p))/

(kE e ok p)),

G(t) =

(33

with

I max CC 0 |
sd(k,p):[lio( '2())

T(p+21+k) 2
“TI+ DT (p-D)(p+r2-1)|

(34

Cq(t)= BJ dw— cog wt), (35

In order to test the above result, we need to specify the
spectral density(w). As discussed earlier, we choose a phe-
nomenological form ford(w), and adjust its parameters to
obtain the best possible agreement betw@g(t) calculated
from Eq.(33) and the exact one obtained from the MD simu-
lations. In fact, since we are mostly interested in the high-
frequency Fourier components of the TCF, which determine
the relaxation rates for high-order processes, we will perform
the fit in the frequency domain, ie., we fiBg(wo)

= [pdt cos@ot)G_d(t). We take the following simple two-
parameter form fod(w):

aw2

J(w)=\aw exr{—T). (39
A similar (but slightly more complicatedform has been
used by Singwi® to fit the spectrum of the velocity time
autocorrelation function for Ar fluid.

The above form for the spectral density gives the follow-
ing result for the Fourier transform of the normalized classi-
cal force-force TCF:
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TABLE I. Solvent thermodynamic parameters and zero-time values of
TCFs.

p* T a* N G.(0) from sim.
050 1.41 030 1002 0.12x 1072 144+ 2
085 1.41 026 1002 0.13x 102 382+ 2
0.85 0.80 0.42x 1072 0.99x 1073 173+ 1
2 g
i Col( 0" 0 x
Db o i R g
G )= /E =
Cl(wO - 2 ‘ Ccl(o)k y
Zkia]i( k| SC|(klp)
(40)
with
)\ _5 | 1 1 1 1
Cu(0)=—=V2ma. (41 0 25 50 75 100 125 150

B

We now determine the parametexsand « by fitting

C|(a)0) given by Eq.(40) to the corresponding simulation FIG. 3. log(G¥(w*)) vs w*. The solid line(a) is the simulation result,

results. The classical force-force TCFs and their Founeramd the dashed ling) is obtamed from Eq(40) with the best-fit parameters
h lcul £ . |ati a* and M\ listed in Table I. The solvent density and temperature re

transforms have been calculated from MD simulations in_q 5 angr+=1.41.
Ref. 80 for the model of a “breathing sphere” LJ solute in
LJ fluid for a variety of thermodynamic conditions. The
solute-solvent and solvent-solvent LJ potentials were taken
to be the same =KkgT/e. Due to the anharmonic nature of the LJ potential,

1 6 the spectral density for an effective harmonic bath depends
g o H
H(r)=dy(r)=4e (_ _(_) (42) on the density and temperature of the solvent, and we per-
s r r form a separate fit for each thermodynamic point. The values
and the solute mass was set equal to the solvent mass: of the parameter& and\# obtained by fitting the simula-
=m,. Note that the same assumptions have been used fion results foch|(wo) are listed in Table I. To illustrate the
constructing the effective harmonic bath Hamiltonian in Eq.quality of the fit, we plot in Fig. 3 th&,(w,) obtained from
(22). the simulation and calculated from E@0) for the first ther-

The “breathing sphere” mod#! gives the following ex- modynamic point listed in Table I. The quality of the fit is
pression for the force on the solute vibrational coordinate: satisfactory except for the low-frequency region. Thus, the

o\ 12 (5|6 spectral density given by EQ39) is suitable for reproducing
0--132{7] (7

(43 the exact results for the TCFs in LJ fluid.
In addition toJ(w), the calculation of quantum and clas-

(we set the coupling constant equal toe/o). The high-  sical relaxation rates requires the knowledge of the zero-time

frequency Fourier components of the force-force TCF arevalues of the corresponding TCEsee Eqs(30) and (36)].

dominated by the ~*?term inf(r), which gives a power law For the harmonic lattice model, these are given by

force of the form of Eq.(27), where &= —240' and p

@,

. A o Zd2 ', (0)
=12. It is worth emphasizing that the MD simulations have g (0)= 2 qm _(k,p) (44)
been performed with the full form df(r) given by Eq.(43). a (reyzei=y K q

However, in constructing the effective harmonic Hamil- nd
tonian[i.e., in choosing the parameters fafw)], we are

only interested in reproducing the simulation results for Z P2 Kmax Co(0)%
G (wy), for which purpose it is sufficient to keep the sim-  Cei(0)= (ro)ngl ki Sa(kip). (45)

plified form of f(r) from Eq. (27).

We now proceed to construct the spectral density bylhe ibove expressions contain two unknown parameters:
fitting the simulation data. We consider three points on theand Z. At the same timeG(0) can be calculated directly
LJ phase diagram, for which the simulations have been peifrom the MD simulations; the corresponding values are listed
formed in Ref. 80. The corresponding sets of thermodynami@n Table I. In calculating the relaxation rates, we will use the
parameters are listed in Table I, with dimensionless densitgimulation results foG(0), andcalculateG4(0) accord-
and temperature defined according g =po® and T* ing to
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p'=0.5, T'=141

.

log,,(1/T, )
%

-3

0 25 50 75 100 125 150

FIG. 4. log((1/T7) vs o* for LJ solute in LJ solvent. The solid ling@) is
the fully quantum result, the dashed li® is the fully classical result, and

Vibrational energy relaxation

p'=0.85, T'=141
0.5 , ; ;

log,((1/T, )

-35 ; . . .
0 25 50 75 100 125 150

@

FIG. 5. Same as Fig. 4 but fer* =0.85 andT* =1.41.

the dotted ling(c) is the classical result corrected according to the approxi-

mation from Eq.(38). The dash-dotted linéd) is for a quantum solute in a
classical solvent. The solvent density and temperaturgare0.5 andT*
=1.41.

Cqm(0)¥
kmax qm
Ek:]_ k' Sqm(kyp)

Ca(0)F |
2= Sa(k,p)

qu(o):Gcl(O) (46)

thus avoiding the necessity to determirfeand Z.

gether with the fully quantum result and the classical result
corrected by the factoR,. In contrast to the case of the
exponential interaction, the Schofield approximation is
clearly the best of the three, and is nearly as good as the
presently proposed procedugiavolving R,). Both original

and “scaled” Egelstaff transformations give incorrect expo-
nents in thgapparently exponential dependence of the rates
on the energy ga,; in the energy range considered, the

For each thermodynamic point listed in Table I, we cal-

culate the fully quantum energy relaxation rates and the fully
classical ones. All the integrations and summations are pe 03
formed numerically, without involving any approximations
except for truncating the summations in order to avoid un-
physical divergences, as discussed above. In performing tt
calculations we takeu=my/4. The results are shown in
Figs. 4, 5, and 6. As in the case of the exponential interac
tion, the fully classical treatment underestimates the relax
ation rates. Also shown are the “corrected” classical results,
given by (T; 1)/ X R, with R, calculated from Eq(38); they
are in good agreement with the quantum rates. Finally, wt
plot the results of the “mixed” treatmerfquantum solute in
a classical bathwhich, as expected, deviate more from the
fully quantum rates than do the fully classical results.

As in the previous section, we now compare the result:
obtained with the correction factd®, to other transforma-
tions proposed in the literature, namely, the Schofitldhe

p'=0.85, T'=0.8

Egelstaff®? and the “scaled” Egelstaff procedures. The

general trends are the same for all three thermodynami
points, and for the purpose of presenting the results wi
choose the first point listed in Table I. In Fig. 7 we plot the

results of applying the three transformations listed above to-
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p'=0.5, T'=1.41 models based on LJ potentials. Strictly speaking, our result
for R, from Eq. (38) has been obtained for a “breathing
sphere” model of LJ diatomic. Its generalization to more
realistic systems will be the subject of future investigations.
At the same time, a microscopic theory of VER for a
“breathing sphere” LJ diatomic in LJ monatomic solvent
has been developed in Ref. 80; it was applied to analyze the
experimental dafd on VER of molecular iodine in liquid
xenon for a wide range of densities and temperatures. In
view of this, it would be appropriate to check how the theo-
retical results obtained in Ref. 80 are affected by incorporat-
ing the approximate “quantum correction.” In the spirit of
the above discussion, we use the simplified form of the cor-
rection factor(i.e., the one originally due to Schofig/d
which depends only on the solute vibrational frequency and
on the solvent temperature, and does not depend on the sol-
vent density. The theoretical results for VER rates,ahlXe
presented in Ref. 80 were obtained for a quantum solute in a
0 25 50 75 100 5 150 classical solventsee, however, Notes added in proof in Ref.
o, 80). Therefore, the correction factor which has to be applied
_ o is equal to cosl#fiwy/2). The vibrational frequency of mo-
FIG. 7. log(1/T}) vs w* for LJ solute in LJ solvent. The solid lin@) is lecular iodine iSw0/27TC= 214.6 cm 1,101 and at the tem-

el G el he ot I = e ceicl resul CSC peratureT=280 K (for which the density dependence of
Schofield approximation, the long-dashed |t is the Egelstaff approxi- VER rates was measurgthe correction factor is equal to
mation, and the dash-dotted lirte) is the “scaled” Egelstaff approxima- 1.16. At the lowest experimental temperatm'e:253 K) it
tion, as deicribed in the text. The solvent density and temperature*are is equal to 1.27, and at the highest tempera(tlit:e323 K) it
=0.5 andT”=1.41. is equal to 1.12. Thus, applying the quantum correction and
performing a new fit to the experimental data would result in
former underestimates, and the latter overestimates the qua@-slightly smaller value of the adjustable parameter, which
tum correction. accounts for the non-spherical nature of moleculakskee
From the above results one can draw the following con-Ref. 80. It would also lead to a slightly less steep tempera-
clusions. For the present problem of relating the quantunture dependence of the calculated rates. However, the
force-force TCF to its classical analogue, the correction facchanges will not be significant enough to noticeably affect
tor depends on the functional form of the solute-solvent inthe level of agreement with the experimental results, and will
teraction: The first factor in the expression Ry is different ~ not change any conclusions reached in Ref. 80.
from the first factor in the expression fét,. Both correc-
tions perform nearly equally well in their respective case
(although for the LJ interaction the agreement with the fulljv' CONCLUSION
guantum result is somewhat better than in the case of the In this paper we have considered the problem of relating
exponential interaction At the same time, the approximate quantum and classical time correlation functions in the con-
transformations previously proposed in the literature do notext of vibrational energy relaxation in condensed phases.
depend on the quantity for which the TCF is calculated, andrhe treatment was based on the assumption that both quan-
thus cannot perform equally well for two different types of tum and classical systems are characterized by effective har-
interactions. This is indeed observed: while for the exponenmonic Hamiltonians with identical set of normal modes. The
tial interaction the “scaled” Egelstaff approximation gives solute-solvent interaction was taken to be linear in the solute
the best results of the three procedures, for the LJ interactiovibrational coordinate, but nonlinear in the bath coordinates,
it happens to be the Schofield transformation which is thehereby allowing for high-order multiphonon relaxation pro-
best of the three. cesses. Thus, the present work extends the previous treat-
It is worth emphasizing that there is nothing profound inment of the same problem by Bader and Béthehich was
the fact that the Schofield approximation works so well forlimited to the bilinear system-bath coupling, i.e., single-
the LJ interaction, it is simply a consequence of fortuitousphonon processes. In that c&Sen exact relationship be-
cancellation of the first and the third factors in the expressioriween quantum and classical TCFs was obtained, and it was
for R,. However, since this correction has a particularly shown that the VER rates for a classical solute in a classical
simple form (it depends only on the temperature and thesolvent and for a quantum solute in a quantum solvent are
solute’s vibrational frequency, but does not depend on thédentical.
spectral density of the bathand performs well over a wide The situation is considerably different in the case of non-
range of the solvent’s densities and temperatures, it would bnear system-bath coupling. First, it is only possible to ob-
reasonable to use this simple transformation in treating th&ain an approximate relationship between quantum and clas-

log,,(1/T,))
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