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We present a method for estimating the hopping rate for Zwanzig’'s model of self-diffusion in
liquids[R. Zwanzig, J. Chem. Phy89, 4507(1983]. To obtain this estimate, we introduce the cage
correlation function which measures the rate of change of atomic surroundings, and associate the
long-time decay of this function with the basin hopping rate for diffusion. Results from a set of
simulations on Lennard-Jones patrticles are presented. A simple analytic model for the diffusion
constant in supercooled and normal liquids that is based on estimates of the activation energy
obtained via the cage correlation function is derived. We discuss the breakdown of Zwanzig's
hopping mechanism for mass transport as well as the low temperature behavior of the self-diffusion
constant on rough potential energy surfaces. 1997 American Institute of Physics.
[S0021-960807)52241-0

I. INTRODUCTION For a period of time, the liquid’s configuration oscillates
harmonically in one of these cells. Occasionally, the liquid

The theory described herein builds on Stillinger andconfiguration will have enough kinetic energy to cross a

Weber's™ inherent structure theory for liquids. The idea saddle point on the potential energy surface and will jump to

behind inherent structure theory is that there is a divisiorthe cell surrounding a different local minimum. The major

between the vibrational dynamics of liquids and the largeeffect of the jump between the cells is to rearrange the posi-

scale structural changes that happen over a much longer tim@ns of some of the molecules. The positions of the remain-

scale. Earlier approaches that bear some similarity to thithg molecules are unchanged. The velocities of the particles

idea can be found in Eyring’'s method of significant before the jump is understood to be uncorrelated from the

structures and in some studies of pair-correlation functionsvelocities after the jump.

from the time-averaged particle positions in water  The starting point in Zwanzig's theory is the Green-

simulations>’ Stillinger and Weber’s contribution was the Kubo formul&'° for the self-diffusion constant,

mapping of the atomic positions throughout the simulation

onto a sequence of local minima on the potential energy D:l focdt(v(t)-v(O)) 1)

surface. The mapping was made by following the steepest 3 Jo '

descent patior quenching to the nearest local minimum.

The many-body configuration space was thus divided int where(v(t) -v(0)) is the time-dependent velocity autocorre-

regions(or “cells” ) surrounding each local minimum. Over cfation fu.nction. Zyvapzig’s model predict; the diffgsiqn con-
time, the liquid’s configuration vibrates around a single Iocalstant usingr, the lifetime which characterizes the distribution

minimum, and occasionally hops to an adjacent minimum or{exrl’:(gltl?vgi:f fsllj(:r?ncfhgrzce)ﬁelretnhceeC(i‘”tsr;e harmonic oscil-
the surface. The distribution of the inherent local minima g ajump,

. Iar\tions is disrupted, so all correlations between velocities
depends on the temperature, density and on the topology evill be destroyed after each jump. Zwanzig writes the veloc-
the potential energy surface. y Jump. g

In the solid, the inherent structure is identical to the Crys_|ty autocorrelation function in terms of the velocities of the

tal structure, and the vibrations are simply the phonons of thgic:e ;mglen;ﬁgfjc'tg:igigﬁaﬁj ﬁglrlr'n;ﬂgegogig?rli&ggﬁ ;Li%l:ii?]'
solid. In liquids, the inherent structures are metastable, ang y

transitions between two different structures happen wit .q(wzj’ and dthe tm;e |crj1tegrald(;]an be .solveq” assm;mmg Lhef
some regularity. Stillinger and Weber observed that as thei Ir?;eno?regll rﬁggI(Zso I‘Z tﬁrgiintir?l:umn(znlli(r:n(i)tsg:‘ itg’rrmg: ?r?g deo
simulations progressed, the quenched configurations we . L
stable for short periods of time and then suddenly jumpeé?equenues, one obtains
(with some recrossingo other configuration%. KT (= pe

Based on the work of Stillinger and Weber, Zwanzig has D= 17 . dopy(w) (1t w?)’ 2
suggested a model that relates self-diffusion to the longitu-
dinal and shear viscosities in liquilZwanzig divides the whereM is the mass of the particles.
configuration space into “cells,” each associated with a lo-  Zwanzig does not explicitly derive the inherent structure
cal minima on the potential energy surface. One of the cellmormal modes from the potential energy surféoe used the
corresponds to the crystalline configuration and others t@ebye spectrum fop,(w) and estimated from the longi-
amorphous, or liquid-like configurations. tudinal and shear viscosities of the liquidMoreover, the
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theory avoids the problem of how to estimate the lifetime fied the modes into “double well” modes and “shouldered”
for cell jumps that destroy the coherent oscillations in themodes>?* A projection along a double well mode will ex-
subvolume. Nevertheless, the model fits the experimental rdiibit local minima on both sides of the instantaneous con-
sults quite well for the self-diffusion of tetramethylsilane figuration, while a projection along a shouldered mode will
(TMS) and benzene over large ranges in temperattie. exhibit only one local minimum along that direction. Bem-
Recently, Cao and Voth have provided a mathematicabenek and Laird further classify the double well INMs into
procedure which obtains the vibrational modes of the inher~localized” and *“extended” modes depending on how
ent structures. Their method is based on the optimized quamany atoms are involved in a mode’s projected motion, and
dratic approximatiort>~® which allows them to transform were able to study the kinds of motion that occur both above
the many-body potential energy surface into an effectiveand below the glass transition temperatufg)( Keyes has
quadratic potential. In their work, Cao and Voth introduce asuggested that one should include in the density of states
universal decay functiofsimilar to the one used by Zwan- used to calculate only the double well or extended double
zig) which characterizes the metastable nature of the set ofell modes’ citing as evidence the fact that these modes
inherent structure normal modes. Cao and Voth providglisappear below 2
some of the missing elements in Zwanzig model, but their ~ Vijayadamodar and Nitzan included only those modes in
approach does not provide a way to compute the universdhe density of states which haweero-force?” Zero-force
decay function for an arbitrary system—indeed the lifetime modes exist only when the configuration is very close to an
is adjusted until they obtain the experimental self-diffusionéxtremum along that INM coordinate.
constant. In a previous papef, we have shown that one of the
Only one approach to calculating directly from mo-  underlying assumptions of the INM theories is invalid—
lecular dynamics simulations has been presented in the lif?amely that the barriers observed in the INM theories really
erature (although the method could apply to Monte Carlo do correspond to diffusive barrier crossings. Lennard-Jones
simulations as well Keyes and co-workers have used in- Systems exhibit “false-barriers” in the INM picture. False
stantaneous normal mod@siMs) (Ref. 16 in an attempt to  barriers are imaginary frequency INMs which are accepted
compute the lifetimer from first principlest’=2! Their pri- by both the double-wel?-**and zero-forc& modifications to
mary contribution was an estimate ferbased on the un- the INM theory, but which quench to the same minimum
stable branch of the instantaneous normal mode density ¢fom both sidesof the barrier. These motions cannot be dif-
states. In their theory, the potential energy surface of théusive, but are included in the calculation ofin all of the
system is expanded ina Tay|or ser(ee’[aining terms up to INM theories presented in the literature. This leads to an
quadratic orderaround a set of instantaneous liquid configu-unphysically large estimate of the diffusion constant in the
rations. The instantaneous normal modes frequencies are ogtystalline solids.
tained by diagonalizing the force constant matrix at each of ~ To our knowledge, no one has yet tested the limits of the
these configurations. The density of states for the INMs iZwanzig model or reported a method for calculating the life-
then obtained by averaging over different liquid configura-time 7 correctly from molecular dynamics simulations. This
tions. Since the liquid configurations are chosen from trajecthen is the aim of this paper—we seek a method to compute
tories which have non-zero temperature, they will not necesthe lifetime r and the survival distribution for cell jumggt)
sarily be found at a minimum on the potential energy(the universal decay functipmnd to establish the validity of
surface. Therefore, the density of states of the INMs exhibit$he cell-hopping mechanism.
both real and imaginary frequencies. In Sec. Il we present a model for self-diffusion, which is
Keyes uses this density of states to obtain the distribubased on correlations between an atom’s surroundings at dif-
tion of barrier heights on the potential energy surface—ferenttimes. Based on the multiple time scales for changes in
barrier heights that he associates with the barriers betweegdfomic surroundings, we posit a simple kinetic mechanism
adjacent local minima on the potential energy surface. Mostor self-diffusion by associating the slow time scale with
importantly, Keyes assumes that these barriers are the sarfiépping between basins, which can have many local minima
barriers between the cells used in Zwanzig's theory. Keye®n a rough potential energy surface. In Sec. I, we test the
then estimates the hopping rate out of a given local minimunyalidity of the model over a wide range of temperatures and
using transition state theory. The average rate is estimated Bignsities for liquid and solid argon, and compare our results
summing the transition state theory rate over all exit chanto diffusion constants calculated via the Einstein relation
nels from a single minimum and averaging over all local
minima on the surface. Readers interested in the details of 1
this theory are urged to consult Ref. 19. D=lim a<|fi(t)—ri(0)|2>, 3
Recent work by other groufs?*has attempted to cor- =
rect some problems with the INM approach. The imaginary
frequency INMs include contributions from non-barrier an- wherer;(t) is the position of particlé at timet. We derive
harmonicities, and the corrections to the INM theory for dif- an approximate expression for the self-diffusion constant in
fusion have all centered around removing these non-barrigBec. 1V, and discuss the temperature dependence of the ap-
anharmonicities from the INM density of states. Bembenekproximate expression near the glass transition temperature
and Laird followed projections along each INM and classi-(T,). Section V concludes.
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do these changes in atomic surroundings take place? We
would also like to be able to answer some questions about
the basin-hopping process: How many atoms are involved in
the hopping? How often does an atom return to its original

surroundings?

To answer these questions, we have formulated a new
correlation function that is an accurate measure of changes in
the atom’s surroundings. We first introduce the correlation

function, and observe it's time behavior in Lennard-Jones

TT liquids and solids. Then we present a simple kinetic mecha-

Local Minima nism for diffusion based on observations made here and in
previous work® In Sec. lll we will use this kinetic model to

predict diffusion constants in Lennard-Jones liquids and sol-

ids over a wide range of temperatures and densities.
FIG. 1. A sketch of a “rough” potential energy surface which has a distri- . . . .
bution of small barriergwith barrier heights characterized By, super-  A. Generalized neighbor lists and correlation
imposed on the real barriers to diffusidoharacterized byE,,q9 which functions
separate the basins from one another.

An atom’s immediate surroundings are best described as
the nearest neighboftm solidg or as the first solvation shell
Il. MODELING THE CHANGE IN ATOMIC (in liquids). When a diffusion event has taken place, the
SURROUNDINGS atom has left its current solvation shell and entered a inid

Although we believe that the idea behind the Zwanzigsonds' this could be an interstitial site or a vaga?ﬁ):yvhich
cell-hopping model is correct, calculatingby measuring s a different group of atoms surrounding it. If one were
changes in the potential energy of the quenche@_ble to paint identifying numbers on each of the atoms in a
configurationd is probably not the best way to proceed. simulation, and kept trag:k of the list of.numbers that each
Since theN individual atoms may hop at any time in low- &tom could see at any time, then the diffusion event would
density liquids, hops to new local minima on thbal po- be evident as a substantial change in this list of neighbors.

tential energy surface happen at nearly every time step. This"iS 1S precisely what is done when using neighbor lists in
is a sign that the potential energy surface is “rough,” i.e. molecular dynamics simulations—where they are used to re-

there are very many small perturbing barriers superimposeﬂuce the time spent on computing interatomic forces. Tradi-

on the background potential of large basins. Quenches thonally, the list of nearby atoms is updated every few time

different local minima on a rough potential energy surfaceStePS, and the forces are calculated using only those atoms

are not indicators of diffusive barrier hopping, since therethat are within each atom’s list of neighbors. This can save

can be many local minima within each basin. We cannot&" immense amount of CPU time, and has become an invalu-
therefore, use jumps in the quenched trajectories to obtaii?'® echnique in large smqla’uo?%. .
estimates for the hopping rates in the low-density liquids. A A generalized neighbor list(;) for atomi in anN atom
sketch of a rough one-dimensional potential surface is showfYStem is & vector of lengti, and is defined as
in Fig. 1. f(rip)

Additionally, quenching to the nearest local minimum . :'1
may cause many atoms to adjust their positions during the /= ) ' )
guench. Since a barrier crossing is involved, the quenched F(rin)

positions may be quite distant from the same positions in heref(r;;) is a function of the inter-atomic distance;;().

previous quench, even though the atoms have not changgf |arge simulationsf(r;) is typically the Heaviside func-
position by very much in the real trajectory. Therefore, meaxjon,

suring positional changes in the quenched trajectories can
make it appear that more atoms are involved in a basin- 1 if rjsrog
hopping than would be the case in the real trajectory. f(rij) =0 (Tt Tij) = 0 otherwise ' ()
We have also seen that attempts to use local information
(the INMs) on the potential energy surface can misidentify wherer s is the neighbor list cutoff radius.
regions of negative curvature as the true barriers to diffusion, A radial cutoff is certainly not the only conceivable way
giving estimates of hopping times in the crystalline solidsof choosing the members of the neighbor list. An even more
that are unphysically larg®. This “false-barrier” problem  general neighbor list could depend on a complicated function
persists into the liquid phase, and can give estimates of thef all of the atomic positions—the members of thecould
hopping times that are inaccurate in that regime. be chosen as the 12 atoms that are closest to at@mone
When an atom makes a jump to a new basin, the mostould use the number of faces of the Voronoi polyh&trd
striking change that occurs from the atom’s point of view isto decide which atoms make up the surrounding cage. Both
that the surrounding atoms have suddenly changed. What wef these methods require a substantial amount of computa-
would like to be able to measure is exactly this—how oftentional effort—N? log(N) operations for the sorting required
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I.OI—o—o—o—so—o—o—o—o—o—o—o—o—o——o-‘-o—H—o n?“t(o,t)=|/i(0)|2—/i(0)-/i(t), (8
0—oT =0.52 . . .
N I O-—aT =072 while the number of atoms that have entered the neighbor list
0.8 ‘\&:n\ﬁ\ Solid A—AT =085 | - in that time is
WA #=—=T =1.00 i , , )
"f\\\é\\A\U\D\n\ =0T =114 n"(01)=|/i(t)|?=7i(0)- /i(). 9
A a- - *= . . H-
06 SN A\A - rootT =154 ) In these equationg//(t)|? is the number of atoms iin's
= t\b\\\z\ A Py neighbor list at timet, while /;(0)-7;(t) is the number of
) FRSN A\A\ \D‘ﬂ\un atoms that are im's neighbor list at both time 0 and tirte
04 F v N ’A\A* E One can deducg{"(0,t) easily from Eq.(8) by going back-
o O A wards in time. The number of atoms leaving a list in a time-
N N ds in time. Th ber of atoms leaving a list in a t
. S AN D reversed simulation is identical to the number entering the
Liquid—— ™, OE o . . L
02t TR 2o list in a simulation run forward in time.
“"‘+~-o~+_+ff Next, we definec, which is the number of atoms that
must leave or enter an atom’s neighbor list before we can be
0.0 : ' ‘ ' reasonably sure that a change in surroundings has taken
0 10 20 30 40 50 . ) )
time (ps) place. The correlation function for the cage is then

in—ou _ _ pou _nin
FIG. 2. A plot of the time-dependence of the neighbor list correlation func- Ccage t(t)_<®(c n 0n)e(c ni'(0.0))), (10

tion (C,(1)) in solid argon, and in normal and supercooled liquid argon. \yhere @ is again the Heaviside function. An alternative to
The densities of all six simulations wepé =0.94. The solid simulation is this formula forccage(t) is

shown with a solid line. Supercooled liquids are shown with dashed lines,
and the liquid simulation is shown with a dotted line. Note the length of time out [y __ 0u

it takes for the neighbor list correlation function to decay. C ag@«(t)_<®(c ni t(o’t)»' 1D

This second form of the cage correlation function prevents us
from counting too many of the vibrational motions of the
cage atoms as changes in the composition of the ¢hgear

and Chandler have introduced a concept similar to the cage
correlation function in their study of the dynamics of hydro-

for the fixed-size neighbor lists aidf log(N) operations for
the Voronoi polyhedra. The radial-cutoff neighbor list can be
calculated during the simulation with a trivial amount of ad-

ditional (;]omputﬁtlonal WOI’|'(f.f v than h , 9en bonding between dimethyl sulfoxideOMSO) and
We have chosem,s differently than how one would '\ 546/32 aithough in a less general form than what is intro-
choose it to speed the calculation of forces. In calculatlnqjuced here

/;, we setr s 1o the location of the first minimum in the We have choseiCqdt) from Eq. (1) andc=1 for

pair correlation functiort most of the calculations in this paper. Logarithmic plots of
\Y; the cage correlation functiofut-only,c=1) for two densi-
9(n =2 <Z ; 5(r_rij)>’ (6)  ties are shown in Fig. 3. Since single atoms can leave and
o rejoin the neighbor list during normal vibrational motion,
which restricts our view of the atom’s surroundings to thosethere is a significant decay @ .odt) at short times. For
within the first solvation shell. This distance is not necessarsolids, changes in the cage correlation function are due only
ily the best choice for ¢, but it provides a starting point to this vibrational motion(This is true only for the relatively
for the calculation of neighbor list correlation functions. short time scale of the simulation. At much longer times
We have discovered that there are some quite strikingstoms may diffuse, although the diffusion constant is many

properties of correlation function, orders of magnitude smaller than in the liquids the cage
(/(0)-7i(1)) correlation function, the effect of vibrational motion is seen
C,(t)= W (7)  as afast decay to a plate@olid lines in Fig. 3. We refer to
i

this fast decay as the “vibrational” decay channel. The value
for the radial cutoff neighbor lists. In Fig. 2 we show the of C,¢{t) at the plateau represents the average cage corre-
time dependence & ,(t) for some normal and supercooled lation, and is typically lower than onén the logarithmic
liguids. Since the surroundings have to change completelplots the value is lower than=8In(1)). When the tempera-
for the correlation to drop to zero, the long-time decay of thisture is very low, the amplitude of the vibrations is insuffi-
function is extremely slow. cient to make any changes in the neighbor list. This explains
When an atom jumps to an adjacent cage, many of thevhy we observe the plateau value to be inversely propor-
original members of that atom’s neighbor list persist into thetional to the temperature and directly proportional to the den-
atom’s new neighbor list. What we seek is a correlation funcsity of the solids.
tion that is a measure of whether or not the cage has under- The situation in supercooled and regular liquids is some-
goneany real change in timé&. To compute this, we must what more complex than in the solids. Two competing chan-
first know the number of atoms that have left or entered thenels contribute to the decay of the cage correlation function.
neighbor list since the original configuration. The number ofln addition to the vibrational channel, the cage can change
atoms that have left atoi's original neighbor list at timéis  when an atom hops over a barrier to an adjacent basin. It is
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FIG. 3. A logarithmic plot of the time-dependence of the cage correlation
function (Eq. (11)) for two different densities. The upper and lower panels FIG. 4. A logarithmic plot of the time-dependence of the two formulations
are for reduced densitigs* =po® of 0.85 and 1.0 respectively. In each of the cage correlation functiofEgs.(10) and (11)) for different values of
panel, the solid line is for the solid, the dashed line is for the supercoole¢. The solid lines are for the cage correlation function which uses only
liquid, and the dotted line is for a liquid that is well above the melting atoms that are leaving the neighbor list, while the dashed lines treat both
temperature. Note the clear separation of time scales between the vibrationahtering and leaving atoms as changes in the cage. The symbols denote the
and hopping decay channels in the supercooled liquids. different values oft. Open circlegO), triangles(A), and stargx) are for

c=1, 2, and 3 respectively.

this hopping channel which is associated with the diffusion
process. The long-time decay Qf,{t) in the liquids is  derivativeof the correlation function, we use a linear fit to
therefore quite different than in the solids—the fast compothe long-time decay of Iff.,,{t)) to obtain the raté®
nent is followed by a slower decay. Zwanzig’s dynamical picture makes sense only if the
The decay of correlation functions over multiple time amount of time spent in each basin is longer than the vibra-
scales is by no means a newly-observed phenomenon. In thi@nal period. So we expect that the hopping mechanism will
late 1970's, Chandler, Montgomery, and Befii@ observed  break down when the separation of time scales between vi-
this phenomenon in the correlation function for fluctuationsprational and hopping motions is violated. This appears to be
in the number of particles at the barrier to isomerization of ahe case for the high temperature liquids shown in Fig. 3.
model double-well system. They treated the dynamics using  Also evident in Fig. 3 is that most of the cage correlation
the reactive flux methotf, **which has often been used to function has decayed due to the fast vibrational motion. Af-
study rare events in liquid?. ter 1 ps,Ceagdt) has already decayed by an order of magni-
In the reactive flux method, the instantaneous rate of aude. Therefore, to obtain good statistics for the hopping rate,
process is equal to the first time derivative of the correlatiorone must obtain data for many changes in the neighbor lists.

function For this reason, our data collection is done over 20 ps when
dc(t) the hopping time is only around 1 fsee Sec. Il for details
k(t)=— TR (12 on the specifics of the simulations

The choice ofc=1 and the out-only cage correlation

At t=0, k(t) will be exactly the transition state theofyST) function may seem arbitrary. There are practical reasons for
rate, but at short time(t) will show deviations from the choosing this combination, however. We have calculated
TST rate due to recrossings of the barrier. If there is a sub€.,4{t) for values ofc that are larger than 1 and for both the
stantial separation of time scales between the fast recrossinig—out (Eq. (10)) and out-only (Eq. (11)) versions of
process and the slow activation process, thih appears to  C,4{t). Plots of the two versions of the cage correlation
stabilize to a plateau region at intermediate times. One cafunction (and with different values of) for a typical liquid
extrapolate the plateau values back t60 and can estimate are shown in Fig. 4.
the rate for the process from the interc&pt. The in—out form of the cage correlation functiogg.

Since the atoms in our simulations also have many re¢10)) with c=2 gives a nearly identical long-time slope to
crossings from one cage to another we expect arfast  the out-only versiogEq. (11)) with c=1, and both appear to
exponentiarelaxation followed by a slovexponentiadecay = be measuring the rate of the same long-time process. With
in the correlation function, which is exactly the behavior wec=3 (in—ou and c=2 (out-only) the cage can change
observe inCg.¢{t). We do not, however, have the large many times before we register the change, and the decay
separation of time scales that is required for the reactive fluseems to be governed by the time it takes to make two or
method. Instead of extrapolating the plateau region in thehree hops instead of a single hop. The in—out form with
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c=1 decays almost completely due to vibrational motion,Assuming thak_,=Kk;,, this simplifies to

which makes it very difficult to get good long-time statistics, [A]

since nearly all of the cages have decayed after only 1 ps. [A;](t)= J(e—(zkﬁkd)q e kdt), (15)

We can choose either the in—out with=2 or the out-only 2

with c=1 and we will measure the same rate, but the outThis kinetic mechanism exhibits exactly the same double-

only cage correlation function is computationally cheaper. exponential behavior that we observe in the cage correlation
Another interesting feature of the cage correlation funcfunction. If we understand the specids to be the atom in

tion is the dependence of the decay ;. We have ob- its original cage, then it is clear that the slow rate in this

served that there is a value fop;s; which minimizes the  mechanisn{ky in both Eq.(14) and Eq.(15)) is identical to

number of changes in the atomic cages. This has a simplge hopping rate out of the cage. Now that we have identified

explanation—ifr s, is too small, vibrations from the first the hopping rate, our method for calculating diffusion con-
solvation shell will contribute to the decay of the cage cor-stants is quite simple:

relation at short times and will increase the total number of ) . . .

cage changes. If ;. is too large, vibrations from the second (1) Run short trajectories and store atomic positions.
solvation shell will also result in rapid changes to the atomic\2) COMPUtECcqgdt) from stored atomic positions.
surroundings. Therefore, minimizing the number of cagel® Fit long-time decay oc.{t) to obtain hopping rate.
changes can be used to sgf variationally, and we have (4) Obtainpy(w) from quenches of some of the stored con-

used this procedure in all subsequent calculations. figurations. ,
We expect that the short time behavior Gf..{t), (5) Use the Zwanzig formuldEq. (2)) to calculate the dif-

which determines the mechanism for hopping to a nearby [USion constant.

local minimum, will be sensitive to our choice of the defini- The only part of this method that requires computational
tion of the cage(the value ofr ;). However, we have ob- effort above and beyond standard trajectory methods is the
served that the slope of ttieng timedecay ofC,g{t) is not  calculation ofpy(w), which involves following the steepest

sensitive to reasonable changes jf; . descent path to the nearest local minimum on the surface
followed by a diagonalization of the force constant matrix.
B. The kinetic scheme To obtain good statistics fos,(w), this procedure must be

done for a few statistically independent liquid configurations.
Note thatp,(w) is nearly independent of temperature, so one
must compute it only once for each density.

Our model of self-diffusion is conceptually quite simple,
and is quite obvious in light of the time dependenc€gfge.
The model assumes that atoms are locked within a cAye ( An alt i thod f timati s th
until they can make a hop to another ca@® ( As an atom h afternative method tor es4|gna ngq(w) is ne
moves around in it's cage, it can see surroundings that diffe?u.enCh. e_cho techmque of Naglal, bl.Jt for small simu-
slightly from the original surroundings. It is still locked in ations it is computationally less expensive to diagonalize the

e cage,Nowewer,and ose as cranges n o surourff°® SPSE at Ao, San(e) conans o
ings do not represent diffusive hoppings between basins. q '

The different configurations of the cage atoms are de_(in principle) be possible to obtain the same information

noted A;,A,,...), and thecage atoms can shift between from the fast decay 0Cct) although we have not yet

these different configurations rapidly. The rapid transfer befound a method 1o do this, and on_rough potential energy
urfaces,pq(w) may not be related in a simple fashion to

tween cage configurations is characterized by fast rate corms X . . . .
stants for the forwardky) and backwardsk_,) directions, vibrational motion of atoms in their respective cages.
Atomic transfer to another cage is relatively rare, however,
and once an atom has entered the new c&pje {t does not  C. Limitations of the model
return. The relatively rare transfer of atoms between cages is
characterized by a slow rate constagy,

The kinetic mechanism for diffusion in this model is

If the potential energy surface is rough, i.e. if it has an
oscillating or random perturbation superimposed on a
smooth background, one would expect an additional contri-

k, bution to the fast decay. In liquids the fast decay channel can
A1<—k—" A, be associated either with the vibrational motion or with the
\;\ T i (13)  rapid recrossing of the small barriers on the rough surface.

d 4 (These barriers can be considered small only when the tem-

perature is very much in excess of their average heigdt.
the high temperature liquids, we are lumping the small bar-
The solution to the kinetic mechanism is obtained easilyier crossing motions together with the vibrations since they
with the standard Laplace transform or matrix methtdds, are comparable in time scale and contribute to the decay of
and assuming that all of the atoms in the system sta#t;in  the neighbor list correlation function in a similar fashion.
the number of atoms remaining Ay at timet is Both the pure vibrational motion and the rapid recrossing of
smaller barriers will contribute to the changes in the neigh-
[A](t)= &(kle—(kl+k,l+kd)t+kile—kdt)_ (14)  bor list at short times and both can be counted on to return
ki+k-yg the neighbor list to its initial state.
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At temperatures comparable to the average height of the 1.0
smaller barriers(which is a measure of the roughn)sé’s
crossing the smaller barriers requires activation, and one
would expect that there would be a sharp drop-off in the 00 }
diffusion constant? Therefore, near the glass transition tem-
perature Tgy), lumping the small barrier crossings together
with the vibrations is incorrect. The atoms now have to dif- — -10
fuse across the smaller basins in order to get to the barrier: &
between larger basins. Our kinetic model does not take thes &4
smaller barriers into account, and we must point out that neai= 2.0
T4, one should be very careful in interpreting the vibrational
and hopping decay rates obtained from the neighbor list cor-

relations. 30 1
Ill. RESULTS 40
_ . ) T0.0 X . 3.0
We performed molecular dynamics simulations on sys- uT

V(r)=4e

tems of particles interacting via the Lennard-Jones potential
12 6 FIG. 5 An Arrhenius plot of the hop_ping rates between basins for three
o (oa densities. Error bars have been omitted from the plot because they are
(F) - F) _chtv (16) smaller than the symbols used._ Linea_r fits to the rr_]easqred _hopping ra_tes_are
also shown. The slopes of the linear fits are used in estimating the activation
with parameters chosen to approximate the interactions bé&nergy in Table I.
tween argon atomsée=0.2381 kcal/mol,o= 3.405 A).2843
V..t IS the standard Lennard-Jones potential evaluated at the _
cutoff radius ¢.,~=10 A) outside of which the potential en- A. The hopping rate
ergy is set to 0. The lower-density{=0.75,0.85,0.94) Using the model presented in Sec. Il, we can compute
simulations were carried out with 108 particles, and at thehe hopping rate, which we identify with the slope of the
higher density 6*=1.0) we carried out simulations with long-time decay of theC ,,{t). An Arrhenius plot of the
256 atoms. hopping rates K,= A exp(—E,/kT)) is shown in Fig. 5 for
All of the liquid, supercooled liquid, and glass simula- three different densities and for a wide range of tempera-
tions were started with the atoms in the face-centered-cubitures. As expected, the rate increases with decreasing density
(fco) lattice, and with velocities sampled from a Maxwell- at a given temperature.
Boltzmann distribution with a temperature that was at least  All three densities exhibit an Arrhenius-type behavior in
four times the melting temperature. Following a 60 ps periodiquids and supercooled liquids over the entire temperature
of equilibration, we quenched the atomic positions to therange. This is not the case for the lower densji{f € 0.75),
nearest local minimum on the potential energy surface using/hich we have not shown in Fig. 5. The hopping rate at this
the standard steepest-descent method. Following the quenafensity depends linearly on the temperature, which is what
the velocities were resampled from a Maxwell-Boltzmannone would expect if the decay was due solely to vibrational
distribution with a temperature twice the target temperaturgnotion. This indicates to us that the hopping mechanism has
for the simulation. Another short equilibration of 20 ps fol- broken down at the lowest density, i.e. there is no longer a
lowed the resampling of the velocities, and a 20 ps dataeparation of time scales between vibrational motion and
collection run began at the end of the equilibration. Diffusionbarrier hopping.
constants were calculated via the Einstein relation during a The value of the activation energy in reduced units
longer (200 ps run following the same equilibration steps. (EX =E,/¢) is summarized in the table provided in Sec. IV.
This equilibration procedure ensured that the initial configu-The average barrier height, which we associate with the ac-
rations for the trajectories were disordered liquids or glassesivation energy, increases with increasing density. The close
even when the desired temperatures are well below the melpacking of the atoms at high densities forces a diffusing
ing temperature. We monitored the temperature and the paitom to hop over larger barriers.
correlation functiong(r), throughout the runs to verify that
the liquids, supercooled liquids, and glasses did not crystal- I
lize dclljring eqLE)iIibration orqdata collec%ion. ’ B. Self-diffusion constants
Simulations of the solids were done in a similar manner,  Using the estimated hopping rates calculated from the
although the initial 60 ps equilibration steps at temperatureslecay ofCc.g{t) we can apply Zwanzig's mod€Eq. (2))
above the melting temperature were omitted for these runsand calculate the self-diffusion constant. The quenched den-
During the trajectory calculations, we saved the atomicsity of statesp,(w) in Eq. (2), is obtained by computing the
positions every ten time steps. These configuration were laterormal-mode frequencies for a collection of quenched liquid
used to compute the neighbor ligkq. (7)) and cage corre- configurations. These are obtained by following the steepest-
lation (Eq. (11)) functions. descent path to the nearest local minima for a sequence of
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FIG. 6. Plots of the temperature dependence of the diffusion constant for
four different densities. The circle®©) are diffusion constants calculated
via the Cage correlation functiofEq. (11)) combined with the Zwanzig
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FIG. 7. Fits to the normalized quenched density of stapgéd)) using the
functional form in Eq.(17) for liquids of 3 different densities.

cesses of diffusion. We begin by deriving an approximate
expression for the self-diffusion constant. The underlying as-

formula(Eqg. (2)) and the triangle$A) are the diffusion constants calculated sumptions are the following:

via the Einstein relatiofEq. (3)). Open symbols are results for supercooled
and regular liquids and filled symbols are results for solids. The dashed line€a)
indicate the solid-liquid phase transitions&t=0.69, 1.20, and 1.65, for
p*=0.85, 0.94, and 1.0 respectively. Vertical error bars have been omitted
from the plot because they are smaller than the symbols used.

statistically independent liquid configurations. We have veri-
fied that over the relevant temperature ranggw) is inde-
pendent of temperature.

Self-diffusion constants calculated via the cage correla-
tion function combined with the Zwanzig formul&q. (2))
have been plotted along with diffusion constants calculate(zb
via the Einstein relatioEqg. (3)) in Fig. 6. In contrast to the )
instantaneous normal mode theorishe diffusion con-
stants calculated via the cage correlation function are effec-
tively zero for crystalline solids. Note that the data presented
in Fig. 6 are obtained from constant energy trajectories, so
the largest uncertainties are along the temperature axis. The
data points each have a standard error of 0.06 in reduced
temperature units along this axis.

The present theory does quite well at predicting the dif-
fusion constant in the high density fluids for a wide range of
temperatures. At the lowest density showst €0.75), the
agreement is poor. This indicates that the hopping mecha-
nism for self-diffusion in liquids breaks down at the lower
density, and can be considered relevant only for moderate to
high density liquid$*4°

IV. DISCUSSION

KT
D= — aky, exp(ak?)(—Ei(—ak?)),

An Arrhenius behavior of the hopping rate. In Sec. llI
we have shown that this is the case for the medium and
high density Lennard-Jones fluids. At very high tem-
peratures(for supercritical fluids and at low liquid
densities, this assumption breaks down. As discussed in
Sec. lll we believe that this is a sign that the hopping
mechanism itself is incorrect for very high tempera-
tures and low densities. Deviations from Arrhenius be-
havior can also occur at very low temperatutasar
Ty) where the roughness of the surface requires careful
treatment.
The liquid’'s quenched density of states is approximated
by the following functional form

po( @) =2aw exp(— aw?), (17)
which scales linearly at low frequencies and has a high
frequency Gaussian cutdf.« is a free parameter es-
timated from a nonlinear fit to the quenched density of
states. This form fits the computed results reasonably
well. It deviates at high frequencies, where the
guenched density of states decays faster than the
Gaussian cutoff. Typical fits to the quenched density of
states are shown in Fig. 7.

Inserting Eq.(17) into the Zwanzig self-diffusion ex-
pression(Eq. (2)) and integrating over the frequency yields

v (18

where Eik) is an exponential integral functidh and

The primary aim of Sec. Il was to provide a simple k,=A exp(—E,/kT) is the hopping rate. The values of the
method to compute the hopping rate between basins. In Seactivation energy, the pre-exponential factor and the inverse
Il we illustrated how well the model works over a wide width of the quenched density of states were obtained from
temperature and density range for Lennard-Jones systentbe decay of the cage correlation function, and are summa-
Now we will look deeper into the underlying physical pro- rized in Table I.
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TABLE I. The activation energy&; =E,/«), the pre-exponential factor - T, . In the strong limit, the diffusion displays Arrhenius tem-
(A* =A/(el(ma?)Y?)) obtained from an Arrhenius fit to the computed hop- perature dependenéé‘,‘g while in fragile liquids, there is a

ping rates, and the inverse width{ = a€?) obtained from a non-linear fit rossover from Armhenius to a super-exponential
to the quenched density of states for three different densities. All quantitieg P P

are expressed in reduced units for the Lennard-Jones potential. (exp(—(To/T)?)) temperature dependence as the temperature
is lowered toT.**
p* E: A* o It is believed that this difference in the temperature de-
0.85 1.16 8.6 6.84 pendence of the diffusion constant arises from the size of
0.94 1.93 10.3 5.11 diffusive barriers relative to the average barrier height that
1.00 2.66 11.0 3.51 characterizes the roughness of the potential energy

surface*®®? In the strong limit, the potential energy surface
is thought to be uniformly rougtthe energy gap between the
small and large barriers is negligible, or all of the barriers are
barriers to diffusiof, while atoms in fragile liquids have to
become activated to cross the small barriers in addition to the
larger diffusive barriers. At temperatures well in excess of
Ty, these barriers are crossed easily, and the diffusive barri-
ers result in simple Arrhenius-like temperature dependence.
As the temperature falls, atoms must diffuse across the small
barriers to reach the diffusive barriers, so the diffusion con-
stant can display the super-exponential temperature
Yependencd:

Keyes (using an instantaneous normal mode apprpach

- o e has observed this crossover in Lennard-Jones systems to oc-
alistic approximation to the self-diffusion constant. It cap—Curjust aboveT, > but in normal glasses the superexponen-
g L

tures both the magnitude of the self-diffusion constant and it%Ial behavior can persist over a wider range of
temperature dependence. However, its main advantage is tr}%tmp erature®:53

it highlights the parameter that governs the magnitude of the If one were to look at the temperature dependence of our

self-diffusion constant—the ratio between the hopping rateanalytical expression for the diffusion constant in €tQ),

ky and the frquency width °£ the quenched density of Sta®ne would see an almost perfect Arrhenius-like behavior. We
1/ae, which is given byy= ak;,.

: ! e should note, however, that our simple approximation to the
In the literature concerning diffusion in amorphous ma- b'e app

. L = . self-diffusion constant fails to predict the low-temperature
terials, liquids are often classified agongor fragile based P P

the t ture d d fthe diffusi tant crossover to the super-exponential behavior which has been
on the temperature dependence of the diffusion constant Negf .o ed in real glasseé&Therefore, at temperatures ndar

the diffusion process will depend strongly on the heights of
the small surface-roughening barriers and we expect an ad-

Since ak? is typically much smaller than unity, we can
use an asymptotic form for the exponential inte$ftab ob-
tain

3 KT x
D= & X0 (— 7= In(x) 19

where y=ak? and y=0.577215668... is Euler's
constanf?® Self-diffusion constants calculated via EQ.9
are shown in Fig. 8 along with the results obtained using th
cage correlation function and the Einstein relati{&g. (3)).
The simple analytical formuléEg. (19)) provides a re-

04
03 ditional key mechanism to interfere with the diffusive barrier
) hopping, which will strongly decrease the hopping rates from
02 .
our calculated values. We therefore caution readers about
01 applying our simple approach in cases where there are more
90 than two time scales in the deca d
04 y Of.gdt), as a secon
=03 slow decay mechanism may indicate the crossing of the
= o2 smaller barriers.
o] °
o 01
8'2 V. CONCLUSIONS
03 In the preceding pages, we have presented a method for
0.2 ® using molecular dynamics simulations to estimate the hop-
0.1 “ ping rate for the Zwanzig model of self-diffusiqiq. (2)).
0.0 We associate the hopping rate with the slow decay of the
0.0 05 10 15 2.0 cage correlation functiofEgs. (10) and(11)), while we as-
T sign the fast initial decay either to simple vibrational motion

FIG. 8. Plots of the diffusion constant for three different densities. Theor to barrier crqssmg rates of the small perturb!ng barriers on
diamonds(¢) are diffusion constants calculated via the cage correlation@ rough potential energy surface—barriers which are not the
function (Eq. (11)) combined with the Zwanzig formuléEq. (2)) and the  barriers to diffusion.

crosseg+) are the diffusion constants calculated via the Einstein relation There is excellent agreement between the self-diffusion

(Eg. (3)). The curves are the results obtained using @€). Note the sud- .
den change in the self-diffusion constant near the liquid-glass transitioncpnsmmts calculated with our method and those calculated

(T:~0.34 for p* =1.0) (Ref. 24. Vertical error bars have been omitted V1 the Einstein relat_iQmEQ- (3)) over a wide range of tem'
from the plot because they are smaller than the symbols used. peratures and densities. This agreement holds both in the
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393, 1. Steinfeld, J. S. Francisco, and W. L. Ha€kemical Kinetics and
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intriguing quantities, and in future work we will be investi-

gating their usefulness in other areas of molecular S|mula
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