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We present a method for estimating the hopping rate for Zwanzig’s model of self-diffusion in
liquids @R. Zwanzig, J. Chem. Phys.79, 4507~1983!#. To obtain this estimate, we introduce the cage
correlation function which measures the rate of change of atomic surroundings, and associate the
long-time decay of this function with the basin hopping rate for diffusion. Results from a set of
simulations on Lennard-Jones particles are presented. A simple analytic model for the diffusion
constant in supercooled and normal liquids that is based on estimates of the activation energy
obtained via the cage correlation function is derived. We discuss the breakdown of Zwanzig’s
hopping mechanism for mass transport as well as the low temperature behavior of the self-diffusion
constant on rough potential energy surfaces. ©1997 American Institute of Physics.
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I. INTRODUCTION

The theory described herein builds on Stillinger a
Weber’s1–4 inherent structure theory for liquids. The ide
behind inherent structure theory is that there is a divis
between the vibrational dynamics of liquids and the lar
scale structural changes that happen over a much longer
scale. Earlier approaches that bear some similarity to
idea can be found in Eyring’s method of significa
structures5 and in some studies of pair-correlation functio
from the time-averaged particle positions in wa
simulations.6,7 Stillinger and Weber’s contribution was th
mapping of the atomic positions throughout the simulat
onto a sequence of local minima on the potential ene
surface. The mapping was made by following the steep
descent path~or quenching! to the nearest local minimum
The many-body configuration space was thus divided i
regions~or ‘‘cells’’ ! surrounding each local minimum. Ove
time, the liquid’s configuration vibrates around a single lo
minimum, and occasionally hops to an adjacent minimum
the surface. The distribution of the inherent local minim
depends on the temperature, density and on the topolog
the potential energy surface.

In the solid, the inherent structure is identical to the cr
tal structure, and the vibrations are simply the phonons of
solid. In liquids, the inherent structures are metastable,
transitions between two different structures happen w
some regularity. Stillinger and Weber observed that as t
simulations progressed, the quenched configurations w
stable for short periods of time and then suddenly jump
~with some recrossing! to other configurations.2

Based on the work of Stillinger and Weber, Zwanzig h
suggested a model that relates self-diffusion to the long
dinal and shear viscosities in liquids.8 Zwanzig divides the
configuration space into ‘‘cells,’’ each associated with a
cal minima on the potential energy surface. One of the c
corresponds to the crystalline configuration and others
amorphous, or liquid-like configurations.
J. Chem. Phys. 107 (17), 1 November 1997 0021-9606/97/107(17)
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For a period of time, the liquid’s configuration oscillate
harmonically in one of these cells. Occasionally, the liqu
configuration will have enough kinetic energy to cross
saddle point on the potential energy surface and will jump
the cell surrounding a different local minimum. The maj
effect of the jump between the cells is to rearrange the p
tions of some of the molecules. The positions of the rema
ing molecules are unchanged. The velocities of the partic
before the jump is understood to be uncorrelated from
velocities after the jump.

The starting point in Zwanzig’s theory is the Gree
Kubo formula9,10 for the self-diffusion constant,

D5
1

3 E
0

`

dt^v~ t !•v~0!&, ~1!

where^v(t)•v(0)& is the time-dependent velocity autocorr
lation function. Zwanzig’s model predicts the diffusion co
stant usingt, the lifetime which characterizes the distributio
(exp(2t/t)) of residence times in the cells.

Following a jump, the coherence of the harmonic osc
lations is disrupted, so all correlations between velocit
will be destroyed after each jump. Zwanzig writes the velo
ity autocorrelation function in terms of the velocities of th
normal modes in the nearest cell. The normal mode frequ
cies are characterized by the normalized distribution funct
rq(v), and the time integral can be solved assuming
time dependence of a damped harmonic oscillator for eac
the normal modes. In the continuum limit of normal mo
frequencies, one obtains

D5
kT

M E
0

`

dvrq~v!
t

~11v2t2!
, ~2!

whereM is the mass of the particles.
Zwanzig does not explicitly derive the inherent structu

normal modes from the potential energy surface~he used the
Debye spectrum forrq(v) and estimatedt from the longi-
tudinal and shear viscosities of the liquid!. Moreover, the
6867/6867/10/$10.00 © 1997 American Institute of Physics
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6868 Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
theory avoids the problem of how to estimate the lifetimet
for cell jumps that destroy the coherent oscillations in
subvolume. Nevertheless, the model fits the experimenta
sults quite well for the self-diffusion of tetramethylsilan
~TMS! and benzene over large ranges in temperature.11,12

Recently, Cao and Voth have provided a mathemat
procedure which obtains the vibrational modes of the inh
ent structures. Their method is based on the optimized q
dratic approximation,13–15 which allows them to transform
the many-body potential energy surface into an effect
quadratic potential. In their work, Cao and Voth introduce
universal decay function~similar to the one used by Zwan
zig! which characterizes the metastable nature of the se
inherent structure normal modes. Cao and Voth prov
some of the missing elements in Zwanzig model, but th
approach does not provide a way to compute the unive
decay function for an arbitrary system—indeed the lifetimt
is adjusted until they obtain the experimental self-diffusi
constant.

Only one approach to calculatingt directly from mo-
lecular dynamics simulations has been presented in the
erature~although the method could apply to Monte Car
simulations as well!. Keyes and co-workers have used i
stantaneous normal modes~INMs! ~Ref. 16! in an attempt to
compute the lifetimet from first principles.17–21 Their pri-
mary contribution was an estimate fort based on the un
stable branch of the instantaneous normal mode densit
states. In their theory, the potential energy surface of
system is expanded in a Taylor series~retaining terms up to
quadratic order! around a set of instantaneous liquid config
rations. The instantaneous normal modes frequencies are
tained by diagonalizing the force constant matrix at each
these configurations. The density of states for the INMs
then obtained by averaging over different liquid configu
tions. Since the liquid configurations are chosen from traj
tories which have non-zero temperature, they will not nec
sarily be found at a minimum on the potential ener
surface. Therefore, the density of states of the INMs exhi
both real and imaginary frequencies.

Keyes uses this density of states to obtain the distri
tion of barrier heights on the potential energy surface
barrier heights that he associates with the barriers betw
adjacent local minima on the potential energy surface. M
importantly, Keyes assumes that these barriers are the s
barriers between the cells used in Zwanzig’s theory. Ke
then estimates the hopping rate out of a given local minim
using transition state theory. The average rate is estimate
summing the transition state theory rate over all exit ch
nels from a single minimum and averaging over all loc
minima on the surface. Readers interested in the detail
this theory are urged to consult Ref. 19.

Recent work by other groups22–24 has attempted to cor
rect some problems with the INM approach. The imagin
frequency INMs include contributions from non-barrier a
harmonicities, and the corrections to the INM theory for d
fusion have all centered around removing these non-ba
anharmonicities from the INM density of states. Bemben
and Laird followed projections along each INM and clas
J. Chem. Phys., Vol. 107, N
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fied the modes into ‘‘double well’’ modes and ‘‘shouldered
modes.23,24 A projection along a double well mode will ex
hibit local minima on both sides of the instantaneous c
figuration, while a projection along a shouldered mode w
exhibit only one local minimum along that direction. Bem
benek and Laird further classify the double well INMs in
‘‘localized’’ and ‘‘extended’’ modes depending on how
many atoms are involved in a mode’s projected motion, a
were able to study the kinds of motion that occur both abo
and below the glass transition temperature (Tg). Keyes has
suggested that one should include in the density of st
used to calculatet only the double well or extended doub
well modes,25 citing as evidence the fact that these mod
disappear belowTg .24

Vijayadamodar and Nitzan included only those modes
the density of states which havezero-force.22 Zero-force
modes exist only when the configuration is very close to
extremum along that INM coordinate.

In a previous paper,26 we have shown that one of th
underlying assumptions of the INM theories is invalid—
namely that the barriers observed in the INM theories rea
do correspond to diffusive barrier crossings. Lennard-Jo
systems exhibit ‘‘false-barriers’’ in the INM picture. Fals
barriers are imaginary frequency INMs which are accep
by both the double-well23,24and zero-force22 modifications to
the INM theory, but which quench to the same minimu
from both sidesof the barrier. These motions cannot be d
fusive, but are included in the calculation oft in all of the
INM theories presented in the literature. This leads to
unphysically large estimate of the diffusion constant in t
crystalline solids.

To our knowledge, no one has yet tested the limits of
Zwanzig model or reported a method for calculating the li
time t correctly from molecular dynamics simulations. Th
then is the aim of this paper—we seek a method to comp
the lifetimet and the survival distribution for cell jumpsf (t)
~the universal decay function! and to establish the validity o
the cell-hopping mechanism.

In Sec. II we present a model for self-diffusion, which
based on correlations between an atom’s surroundings at
ferent times. Based on the multiple time scales for change
atomic surroundings, we posit a simple kinetic mechani
for self-diffusion by associating the slow time scale wi
hopping between basins, which can have many local min
on a rough potential energy surface. In Sec. III, we test
validity of the model over a wide range of temperatures a
densities for liquid and solid argon, and compare our res
to diffusion constants calculated via the Einstein relation9

D5 lim
t→`

1

6t
^ur i~ t !2r i~0!u2&, ~3!

wherer i(t) is the position of particlei at time t. We derive
an approximate expression for the self-diffusion constan
Sec. IV, and discuss the temperature dependence of the
proximate expression near the glass transition tempera
(Tg). Section V concludes.
o. 17, 1 November 1997
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6869Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
II. MODELING THE CHANGE IN ATOMIC
SURROUNDINGS

Although we believe that the idea behind the Zwan
cell-hopping model is correct, calculatingt by measuring
changes in the potential energy of the quench
configurations2 is probably not the best way to procee
Since theN individual atoms may hop at any time in low
density liquids, hops to new local minima on theglobal po-
tential energy surface happen at nearly every time step.
is a sign that the potential energy surface is ‘‘rough,’’ i
there are very many small perturbing barriers superimpo
on the background potential of large basins. Quenche
different local minima on a rough potential energy surfa
are not indicators of diffusive barrier hopping, since the
can be many local minima within each basin. We cann
therefore, use jumps in the quenched trajectories to ob
estimates for the hopping rates in the low-density liquids
sketch of a rough one-dimensional potential surface is sh
in Fig. 1.

Additionally, quenching to the nearest local minimu
may cause many atoms to adjust their positions during
quench. Since a barrier crossing is involved, the quenc
positions may be quite distant from the same positions i
previous quench, even though the atoms have not chan
position by very much in the real trajectory. Therefore, m
suring positional changes in the quenched trajectories
make it appear that more atoms are involved in a ba
hopping than would be the case in the real trajectory.

We have also seen that attempts to use local informa
~the INMs! on the potential energy surface can misident
regions of negative curvature as the true barriers to diffus
giving estimates of hopping times in the crystalline sol
that are unphysically large.26 This ‘‘false-barrier’’ problem
persists into the liquid phase, and can give estimates of
hopping times that are inaccurate in that regime.

When an atom makes a jump to a new basin, the m
striking change that occurs from the atom’s point of view
that the surrounding atoms have suddenly changed. Wha
would like to be able to measure is exactly this—how oft

FIG. 1. A sketch of a ‘‘rough’’ potential energy surface which has a dis
bution of small barriers~with barrier heights characterized byEsmall! super-
imposed on the real barriers to diffusion~characterized byElarge! which
separate the basins from one another.
J. Chem. Phys., Vol. 107, N
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do these changes in atomic surroundings take place?
would also like to be able to answer some questions ab
the basin-hopping process: How many atoms are involve
the hopping? How often does an atom return to its origi
surroundings?

To answer these questions, we have formulated a n
correlation function that is an accurate measure of change
the atom’s surroundings. We first introduce the correlat
function, and observe it’s time behavior in Lennard-Jon
liquids and solids. Then we present a simple kinetic mec
nism for diffusion based on observations made here an
previous work.26 In Sec. III we will use this kinetic model to
predict diffusion constants in Lennard-Jones liquids and s
ids over a wide range of temperatures and densities.

A. Generalized neighbor lists and correlation
functions

An atom’s immediate surroundings are best described
the nearest neighbors~in solids! or as the first solvation shel
~in liquids!. When a diffusion event has taken place, t
atom has left its current solvation shell and entered a void~in
solids, this could be an interstitial site or a vacancy27! which
has a different group of atoms surrounding it. If one we
able to paint identifying numbers on each of the atoms i
simulation, and kept track of the list of numbers that ea
atom could see at any time, then the diffusion event wo
be evident as a substantial change in this list of neighb
This is precisely what is done when using neighbor lists
molecular dynamics simulations—where they are used to
duce the time spent on computing interatomic forces. Tra
tionally, the list of nearby atoms is updated every few tim
steps, and the forces are calculated using only those at
that are within each atom’s list of neighbors. This can sa
an immense amount of CPU time, and has become an inv
able technique in large simulations.28

A generalized neighbor list (l i) for atomi in anN atom
system is a vector of lengthN, and is defined as

l i[S f ~r i1!

A
f ~r iN!

D , ~4!

where f (r i j ) is a function of the inter-atomic distance (r i j ).
In large simulations,f (r i j ) is typically the Heaviside func-
tion,

f ~r i j !5Q~r nlist2r i j !5H 1 if r i j <r nlist

0 otherwise
, ~5!

wherer nlist is the neighbor list cutoff radius.
A radial cutoff is certainly not the only conceivable wa

of choosing the members of the neighbor list. An even m
general neighbor list could depend on a complicated func
of all of the atomic positions—the members of thel i could
be chosen as the 12 atoms that are closest to atomi , or one
could use the number of faces of the Voronoi polyhedra29–31

to decide which atoms make up the surrounding cage. B
of these methods require a substantial amount of comp
tional effort—N2 log(N) operations for the sorting require
o. 17, 1 November 1997
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6870 Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
for the fixed-size neighbor lists andN3 log(N) operations for
the Voronoi polyhedra. The radial-cutoff neighbor list can
calculated during the simulation with a trivial amount of a
ditional computational work.

We have chosenr nlist differently than how one would
choose it to speed the calculation of forces. In calculat
l i , we setr nlist to the location of the first minimum in the
pair correlation function,28

g~r !5
V

N2 K (
i

(
j Þ i

d~r2r i j !L , ~6!

which restricts our view of the atom’s surroundings to tho
within the first solvation shell. This distance is not necess
ily the best choice forr nlist , but it provides a starting poin
for the calculation of neighbor list correlation functions.

We have discovered that there are some quite strik
properties of correlation function,

Cl ~ t ![
^l i~0!•l i~ t !&

^l i~0!2&
, ~7!

for the radial cutoff neighbor lists. In Fig. 2 we show th
time dependence ofCl (t) for some normal and supercoole
liquids. Since the surroundings have to change comple
for the correlation to drop to zero, the long-time decay of t
function is extremely slow.

When an atom jumps to an adjacent cage, many of
original members of that atom’s neighbor list persist into
atom’s new neighbor list. What we seek is a correlation fu
tion that is a measure of whether or not the cage has un
goneany real change in timet. To compute this, we mus
first know the number of atoms that have left or entered
neighbor list since the original configuration. The number
atoms that have left atomi ’s original neighbor list at timet is

FIG. 2. A plot of the time-dependence of the neighbor list correlation fu
tion (Cl (t)) in solid argon, and in normal and supercooled liquid arg
The densities of all six simulations werer* 50.94. The solid simulation is
shown with a solid line. Supercooled liquids are shown with dashed li
and the liquid simulation is shown with a dotted line. Note the length of ti
it takes for the neighbor list correlation function to decay.
J. Chem. Phys., Vol. 107, N
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while the number of atoms that have entered the neighbor
in that time is

ni
in~0,t !5ul i~ t !u22l i~0!•l i~ t !. ~9!

In these equations,ul i(t)u2 is the number of atoms ini ’s
neighbor list at timet, while l i(0)•l i(t) is the number of
atoms that are ini ’s neighbor list at both time 0 and timet.
One can deduceni

in(0,t) easily from Eq.~8! by going back-
wards in time. The number of atoms leaving a list in a tim
reversed simulation is identical to the number entering
list in a simulation run forward in time.

Next, we definec, which is the number of atoms tha
must leave or enter an atom’s neighbor list before we can
reasonably sure that a change in surroundings has ta
place. The correlation function for the cage is then

Ccage
in–out~ t ![^Q~c2ni

out~0,t !!Q~c2ni
in~0,t !!&, ~10!

whereQ is again the Heaviside function. An alternative
this formula forCcage(t) is

Ccage
out ~ t ![^Q~c2ni

out~0,t !!&. ~11!

This second form of the cage correlation function prevents
from counting too many of the vibrational motions of th
cage atoms as changes in the composition of the cage.~Luzar
and Chandler have introduced a concept similar to the c
correlation function in their study of the dynamics of hydr
gen bonding between dimethyl sulfoxide~DMSO! and
water,32 although in a less general form than what is intr
duced here.!

We have chosenCcage(t) from Eq. ~11! and c51 for
most of the calculations in this paper. Logarithmic plots
the cage correlation function~out-only,c51! for two densi-
ties are shown in Fig. 3. Since single atoms can leave
rejoin the neighbor list during normal vibrational motio
there is a significant decay ofCcage(t) at short times. For
solids, changes in the cage correlation function are due o
to this vibrational motion.~This is true only for the relatively
short time scale of the simulation. At much longer tim
atoms may diffuse, although the diffusion constant is ma
orders of magnitude smaller than in the liquids.! In the cage
correlation function, the effect of vibrational motion is se
as a fast decay to a plateau~solid lines in Fig. 3!. We refer to
this fast decay as the ‘‘vibrational’’ decay channel. The va
of Ccage(t) at the plateau represents the average cage co
lation, and is typically lower than one~in the logarithmic
plots the value is lower than 05 ln(1)!. When the tempera-
ture is very low, the amplitude of the vibrations is insuf
cient to make any changes in the neighbor list. This expla
why we observe the plateau value to be inversely prop
tional to the temperature and directly proportional to the d
sity of the solids.

The situation in supercooled and regular liquids is som
what more complex than in the solids. Two competing ch
nels contribute to the decay of the cage correlation functi
In addition to the vibrational channel, the cage can cha
when an atom hops over a barrier to an adjacent basin.

-
.
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6871Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
this hopping channel which is associated with the diffus
process. The long-time decay ofCcage(t) in the liquids is
therefore quite different than in the solids—the fast com
nent is followed by a slower decay.

The decay of correlation functions over multiple tim
scales is by no means a newly-observed phenomenon. In
late 1970’s, Chandler, Montgomery, and Berne33,34 observed
this phenomenon in the correlation function for fluctuatio
in the number of particles at the barrier to isomerization o
model double-well system. They treated the dynamics us
the reactive flux method,33–36 which has often been used t
study rare events in liquids.37

In the reactive flux method, the instantaneous rate o
process is equal to the first time derivative of the correlat
function

k~ t !52
dC~ t !

dt
. ~12!

At t50, k(t) will be exactly the transition state theory~TST!
rate, but at short times,k(t) will show deviations from the
TST rate due to recrossings of the barrier. If there is a s
stantial separation of time scales between the fast recros
process and the slow activation process, thenk(t) appears to
stabilize to a plateau region at intermediate times. One
extrapolate the plateau values back tot50 and can estimate
the rate for the process from the intercept.33

Since the atoms in our simulations also have many
crossings from one cage to another we expect a fastnon-
exponentialrelaxation followed by a slowexponentialdecay
in the correlation function, which is exactly the behavior w
observe inCcage(t). We do not, however, have the larg
separation of time scales that is required for the reactive
method. Instead of extrapolating the plateau region in

FIG. 3. A logarithmic plot of the time-dependence of the cage correla
function ~Eq. ~11!! for two different densities. The upper and lower pane
are for reduced densitiesr* 5rs3 of 0.85 and 1.0 respectively. In eac
panel, the solid line is for the solid, the dashed line is for the superco
liquid, and the dotted line is for a liquid that is well above the melti
temperature. Note the clear separation of time scales between the vibra
and hopping decay channels in the supercooled liquids.
J. Chem. Phys., Vol. 107, N
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derivativeof the correlation function, we use a linear fit t
the long-time decay of ln(Ccage(t)) to obtain the rate.38

Zwanzig’s dynamical picture makes sense only if t
amount of time spent in each basin is longer than the vib
tional period. So we expect that the hopping mechanism
break down when the separation of time scales between
brational and hopping motions is violated. This appears to
the case for the high temperature liquids shown in Fig. 3

Also evident in Fig. 3 is that most of the cage correlati
function has decayed due to the fast vibrational motion.
ter 1 ps,Ccage(t) has already decayed by an order of mag
tude. Therefore, to obtain good statistics for the hopping r
one must obtain data for many changes in the neighbor l
For this reason, our data collection is done over 20 ps w
the hopping time is only around 1 ps~see Sec. III for details
on the specifics of the simulations!.

The choice ofc51 and the out-only cage correlatio
function may seem arbitrary. There are practical reasons
choosing this combination, however. We have calcula
Ccage(t) for values ofc that are larger than 1 and for both th
in–out ~Eq. ~10!! and out-only ~Eq. ~11!! versions of
Ccage(t). Plots of the two versions of the cage correlati
function ~and with different values ofc! for a typical liquid
are shown in Fig. 4.

The in–out form of the cage correlation function~Eq.
~10!! with c52 gives a nearly identical long-time slope
the out-only version~Eq. ~11!! with c51, and both appear to
be measuring the rate of the same long-time process. W
c53 ~in–out! and c52 ~out-only! the cage can chang
many times before we register the change, and the de
seems to be governed by the time it takes to make two
three hops instead of a single hop. The in–out form w

n

d

nal

FIG. 4. A logarithmic plot of the time-dependence of the two formulatio
of the cage correlation function~Eqs.~10! and ~11!! for different values of
c. The solid lines are for the cage correlation function which uses o
atoms that are leaving the neighbor list, while the dashed lines treat
entering and leaving atoms as changes in the cage. The symbols deno
different values ofc. Open circles~s!, triangles~n!, and stars~!! are for
c51, 2, and 3 respectively.
o. 17, 1 November 1997
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6872 Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
c51 decays almost completely due to vibrational motio
which makes it very difficult to get good long-time statistic
since nearly all of the cages have decayed after only 1
We can choose either the in–out withc52 or the out-only
with c51 and we will measure the same rate, but the o
only cage correlation function is computationally cheape

Another interesting feature of the cage correlation fu
tion is the dependence of the decay onr nlist . We have ob-
served that there is a value forr nlist which minimizes the
number of changes in the atomic cages. This has a sim
explanation—if r nlist is too small, vibrations from the firs
solvation shell will contribute to the decay of the cage c
relation at short times and will increase the total number
cage changes. Ifr nlist is too large, vibrations from the secon
solvation shell will also result in rapid changes to the atom
surroundings. Therefore, minimizing the number of ca
changes can be used to setr nlist variationally, and we have
used this procedure in all subsequent calculations.

We expect that the short time behavior ofCcage(t),
which determines the mechanism for hopping to a nea
local minimum, will be sensitive to our choice of the defin
tion of the cage~the value ofr nlist!. However, we have ob
served that the slope of thelong timedecay ofCcage(t) is not
sensitive to reasonable changes inr nlist .

B. The kinetic scheme

Our model of self-diffusion is conceptually quite simpl
and is quite obvious in light of the time dependence ofCcage.
The model assumes that atoms are locked within a cageA)
until they can make a hop to another cage (D). As an atom
moves around in it’s cage, it can see surroundings that d
slightly from the original surroundings. It is still locked i
the cage, however, and these fast changes in the surro
ings do not represent diffusive hoppings between basins

The different configurations of the cage atoms are
noted (A1 ,A2 ,...), and thecage atoms can shift betwee
these different configurations rapidly. The rapid transfer
tween cage configurations is characterized by fast rate
stants for the forward (k1) and backwards (k21) directions.
Atomic transfer to another cage is relatively rare, howev
and once an atom has entered the new cage (D), it does not
return. The relatively rare transfer of atoms between cage
characterized by a slow rate constant,kd .

The kinetic mechanism for diffusion in this model

. ~13!

The solution to the kinetic mechanism is obtained ea
with the standard Laplace transform or matrix method39

and assuming that all of the atoms in the system start inA1 ,
the number of atoms remaining inA1 at time t is

@A1#~ t !5
@A1#0

k11k21
~k1e2~k11k211kd!t1k21e2kdt!. ~14!
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Assuming thatk215k1 , this simplifies to

@A1#~ t !5
@A1#0

2
~e2~2k11kd!t1e2kdt!. ~15!

This kinetic mechanism exhibits exactly the same doub
exponential behavior that we observe in the cage correla
function. If we understand the speciesA1 to be the atom in
its original cage, then it is clear that the slow rate in th
mechanism~kd in both Eq.~14! and Eq.~15!! is identical to
the hopping rate out of the cage. Now that we have identifi
the hopping rate, our method for calculating diffusion co
stants is quite simple:

~1! Run short trajectories and store atomic positions.
~2! ComputeCcage(t) from stored atomic positions.
~3! Fit long-time decay ofCcage(t) to obtain hopping rate.
~4! Obtainrq(v) from quenches of some of the stored co

figurations.
~5! Use the Zwanzig formula~Eq. ~2!! to calculate the dif-

fusion constant.

The only part of this method that requires computatio
effort above and beyond standard trajectory methods is
calculation ofrq(v), which involves following the steepes
descent path to the nearest local minimum on the surf
followed by a diagonalization of the force constant matr
To obtain good statistics forrq(v), this procedure must be
done for a few statistically independent liquid configuration
Note thatrq(v) is nearly independent of temperature, so o
must compute it only once for each density.

An alternative method for estimatingrq(v) is the
quench echo technique of Nagelet al.,40 but for small simu-
lations it is computationally less expensive to diagonalize
force constant matrix. Also, sincerq(v) contains informa-
tion about the vibrational frequencies in the basins, it sho
~in principle! be possible to obtain the same informatio
from the fast decay ofCcage(t) although we have not ye
found a method to do this, and on rough potential ene
surfaces,rq(v) may not be related in a simple fashion
vibrational motion of atoms in their respective cages.

C. Limitations of the model

If the potential energy surface is rough, i.e. if it has
oscillating or random perturbation superimposed on
smooth background, one would expect an additional con
bution to the fast decay. In liquids the fast decay channel
be associated either with the vibrational motion or with t
rapid recrossing of the small barriers on the rough surfa
~These barriers can be considered small only when the t
perature is very much in excess of their average height.! In
the high temperature liquids, we are lumping the small b
rier crossing motions together with the vibrations since th
are comparable in time scale and contribute to the deca
the neighbor list correlation function in a similar fashio
Both the pure vibrational motion and the rapid recrossing
smaller barriers will contribute to the changes in the neig
bor list at short times and both can be counted on to ret
the neighbor list to its initial state.
o. 17, 1 November 1997
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6873Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
At temperatures comparable to the average height of
smaller barriers~which is a measure of the roughness!,41

crossing the smaller barriers requires activation, and
would expect that there would be a sharp drop-off in
diffusion constant.42 Therefore, near the glass transition tem
perature (Tg), lumping the small barrier crossings togeth
with the vibrations is incorrect. The atoms now have to d
fuse across the smaller basins in order to get to the bar
between larger basins. Our kinetic model does not take th
smaller barriers into account, and we must point out that n
Tg , one should be very careful in interpreting the vibration
and hopping decay rates obtained from the neighbor list
relations.

III. RESULTS

We performed molecular dynamics simulations on s
tems of particles interacting via the Lennard-Jones poten

V~r !54eF S s

r D 12

2S s

r D 6G2Vcut, ~16!

with parameters chosen to approximate the interactions
tween argon atoms~e50.2381 kcal/mol,s53.405 Å!.28,43

Vcut is the standard Lennard-Jones potential evaluated a
cutoff radius (r cut510 Å) outside of which the potential en
ergy is set to 0. The lower-density (r* 50.75,0.85,0.94)
simulations were carried out with 108 particles, and at
higher density (r* 51.0) we carried out simulations with
256 atoms.

All of the liquid, supercooled liquid, and glass simul
tions were started with the atoms in the face-centered-c
~fcc! lattice, and with velocities sampled from a Maxwe
Boltzmann distribution with a temperature that was at le
four times the melting temperature. Following a 60 ps per
of equilibration, we quenched the atomic positions to
nearest local minimum on the potential energy surface us
the standard steepest-descent method. Following the que
the velocities were resampled from a Maxwell-Boltzma
distribution with a temperature twice the target temperat
for the simulation. Another short equilibration of 20 ps fo
lowed the resampling of the velocities, and a 20 ps d
collection run began at the end of the equilibration. Diffusi
constants were calculated via the Einstein relation durin
longer ~200 ps! run following the same equilibration step
This equilibration procedure ensured that the initial config
rations for the trajectories were disordered liquids or glas
even when the desired temperatures are well below the m
ing temperature. We monitored the temperature and the
correlation function,g(r ), throughout the runs to verify tha
the liquids, supercooled liquids, and glasses did not crys
lize during equilibration or data collection.

Simulations of the solids were done in a similar mann
although the initial 60 ps equilibration steps at temperatu
above the melting temperature were omitted for these ru

During the trajectory calculations, we saved the atom
positions every ten time steps. These configuration were l
used to compute the neighbor list~Eq. ~7!! and cage corre-
lation ~Eq. ~11!! functions.
J. Chem. Phys., Vol. 107, N
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A. The hopping rate

Using the model presented in Sec. II, we can comp
the hopping rate, which we identify with the slope of th
long-time decay of theCcage(t). An Arrhenius plot of the
hopping rates (kh5A exp(2Ea /kT)) is shown in Fig. 5 for
three different densities and for a wide range of tempe
tures. As expected, the rate increases with decreasing de
at a given temperature.

All three densities exhibit an Arrhenius-type behavior
liquids and supercooled liquids over the entire temperat
range. This is not the case for the lower density (r* 50.75),
which we have not shown in Fig. 5. The hopping rate at t
density depends linearly on the temperature, which is w
one would expect if the decay was due solely to vibratio
motion. This indicates to us that the hopping mechanism
broken down at the lowest density, i.e. there is no longe
separation of time scales between vibrational motion a
barrier hopping.

The value of the activation energy in reduced un
(Ea* 5Ea /e) is summarized in the table provided in Sec. I
The average barrier height, which we associate with the
tivation energy, increases with increasing density. The cl
packing of the atoms at high densities forces a diffus
atom to hop over larger barriers.

B. Self-diffusion constants

Using the estimated hopping rates calculated from
decay ofCcage(t) we can apply Zwanzig’s model~Eq. ~2!!
and calculate the self-diffusion constant. The quenched d
sity of statesrq(v) in Eq. ~2!, is obtained by computing the
normal-mode frequencies for a collection of quenched liq
configurations. These are obtained by following the steep
descent path to the nearest local minima for a sequenc

FIG. 5. An Arrhenius plot of the hopping rates between basins for th
densities. Error bars have been omitted from the plot because they
smaller than the symbols used. Linear fits to the measured hopping rate
also shown. The slopes of the linear fits are used in estimating the activ
energy in Table I.
o. 17, 1 November 1997
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6874 Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
statistically independent liquid configurations. We have ve
fied that over the relevant temperature range,rq(v) is inde-
pendent of temperature.

Self-diffusion constants calculated via the cage corre
tion function combined with the Zwanzig formula~Eq. ~2!!
have been plotted along with diffusion constants calcula
via the Einstein relation~Eq. ~3!! in Fig. 6. In contrast to the
instantaneous normal mode theories,26 the diffusion con-
stants calculated via the cage correlation function are ef
tively zero for crystalline solids. Note that the data presen
in Fig. 6 are obtained from constant energy trajectories
the largest uncertainties are along the temperature axis.
data points each have a standard error of 0.06 in redu
temperature units along this axis.

The present theory does quite well at predicting the d
fusion constant in the high density fluids for a wide range
temperatures. At the lowest density shown (r* 50.75), the
agreement is poor. This indicates that the hopping mec
nism for self-diffusion in liquids breaks down at the low
density, and can be considered relevant only for moderat
high density liquids.44,45

IV. DISCUSSION

The primary aim of Sec. II was to provide a simp
method to compute the hopping rate between basins. In
III we illustrated how well the model works over a wid
temperature and density range for Lennard-Jones syst
Now we will look deeper into the underlying physical pr

FIG. 6. Plots of the temperature dependence of the diffusion constan
four different densities. The circles~s! are diffusion constants calculate
via the Cage correlation function~Eq. ~11!! combined with the Zwanzig
formula ~Eq. ~2!! and the triangles~n! are the diffusion constants calculate
via the Einstein relation~Eq. ~3!!. Open symbols are results for supercool
and regular liquids and filled symbols are results for solids. The dashed
indicate the solid-liquid phase transitions atT* 50.69, 1.20, and 1.65, for
r* 50.85, 0.94, and 1.0 respectively. Vertical error bars have been om
from the plot because they are smaller than the symbols used.
J. Chem. Phys., Vol. 107, N
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cesses of diffusion. We begin by deriving an approxim
expression for the self-diffusion constant. The underlying
sumptions are the following:

~a! An Arrhenius behavior of the hopping rate. In Sec.
we have shown that this is the case for the medium
high density Lennard-Jones fluids. At very high tem
peratures~for supercritical fluids! and at low liquid
densities, this assumption breaks down. As discusse
Sec. III we believe that this is a sign that the hoppi
mechanism itself is incorrect for very high temper
tures and low densities. Deviations from Arrhenius b
havior can also occur at very low temperatures~near
Tg! where the roughness of the surface requires car
treatment.

~b! The liquid’s quenched density of states is approxima
by the following functional form

rq~v!52av exp~2av2!, ~17!

which scales linearly at low frequencies and has a h
frequency Gaussian cutoff.46 a is a free parameter es
timated from a nonlinear fit to the quenched density
states. This form fits the computed results reasona
well. It deviates at high frequencies, where t
quenched density of states decays faster than
Gaussian cutoff. Typical fits to the quenched density
states are shown in Fig. 7.

Inserting Eq.~17! into the Zwanzig self-diffusion ex-
pression~Eq. ~2!! and integrating over the frequency yield

D5
kT

M
akh exp~akh

2!~2Ei~2akh
2!!, ~18!

where Ei(x) is an exponential integral function47 and
kh5A exp(2Ea /kT) is the hopping rate. The values of th
activation energy, the pre-exponential factor and the inve
width of the quenched density of states were obtained fr
the decay of the cage correlation function, and are sum
rized in Table I.

or

es

d

FIG. 7. Fits to the normalized quenched density of states (rq(v)) using the
functional form in Eq.~17! for liquids of 3 different densities.
o. 17, 1 November 1997
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6875Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
Sinceakh
2 is typically much smaller than unity, we ca

use an asymptotic form for the exponential integral48 to ob-
tain

D5
kT

M

x

kh
exp~x!~2g2 ln~x!!, ~19!

where x5akh
2 and g50.5772156649 . . . is Euler’s

constant.48 Self-diffusion constants calculated via Eq.~19!
are shown in Fig. 8 along with the results obtained using
cage correlation function and the Einstein relation~Eq. ~3!!.

The simple analytical formula~Eq. ~19!! provides a re-
alistic approximation to the self-diffusion constant. It ca
tures both the magnitude of the self-diffusion constant and
temperature dependence. However, its main advantage is
it highlights the parameter that governs the magnitude of
self-diffusion constant—the ratio between the hopping ra
kh and the frequency width of the quenched density of sta
1/a, which is given byx5akh

2 .
In the literature concerning diffusion in amorphous m

terials, liquids are often classified asstrongor fragile based
on the temperature dependence of the diffusion constant

TABLE I. The activation energy (Ea* 5Ea /e), the pre-exponential facto
(A* 5A/(e/(ms2)1/2)) obtained from an Arrhenius fit to the computed ho
ping rates, and the inverse width (a* 5ae2) obtained from a non-linear fit
to the quenched density of states for three different densities. All quant
are expressed in reduced units for the Lennard-Jones potential.

r* Ea* A* a*

0.85 1.16 8.6 6.84
0.94 1.93 10.3 5.11
1.00 2.66 11.0 3.51

FIG. 8. Plots of the diffusion constant for three different densities. T
diamonds~L! are diffusion constants calculated via the cage correla
function ~Eq. ~11!! combined with the Zwanzig formula~Eq. ~2!! and the
crosses~1! are the diffusion constants calculated via the Einstein rela
~Eq. ~3!!. The curves are the results obtained using Eq.~19!. Note the sud-
den change in the self-diffusion constant near the liquid-glass trans
(Tg* '0.34 for r* 51.0! ~Ref. 24!. Vertical error bars have been omitte
from the plot because they are smaller than the symbols used.
J. Chem. Phys., Vol. 107, N
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Tg . In the strong limit, the diffusion displays Arrhenius tem
perature dependence,41,49 while in fragile liquids, there is a
crossover from Arrhenius to a super-exponent
(exp(2(T0 /T)2)) temperature dependence as the tempera
is lowered toTg .41,49

It is believed that this difference in the temperature d
pendence of the diffusion constant arises from the size
diffusive barriers relative to the average barrier height t
characterizes the roughness of the potential ene
surface.49,50 In the strong limit, the potential energy surfac
is thought to be uniformly rough~the energy gap between th
small and large barriers is negligible, or all of the barriers
barriers to diffusion!, while atoms in fragile liquids have to
become activated to cross the small barriers in addition to
larger diffusive barriers. At temperatures well in excess
Tg , these barriers are crossed easily, and the diffusive b
ers result in simple Arrhenius-like temperature dependen
As the temperature falls, atoms must diffuse across the s
barriers to reach the diffusive barriers, so the diffusion co
stant can display the super-exponential tempera
dependence.41

Keyes ~using an instantaneous normal mode approa!
has observed this crossover in Lennard-Jones systems t
cur just aboveTg ,51 but in normal glasses the superexpone
tial behavior can persist over a wider range
temperatures.52,53

If one were to look at the temperature dependence of
analytical expression for the diffusion constant in Eq.~19!,
one would see an almost perfect Arrhenius-like behavior.
should note, however, that our simple approximation to
self-diffusion constant fails to predict the low-temperatu
crossover to the super-exponential behavior which has b
observed in real glasses.52 Therefore, at temperatures nearTg

the diffusion process will depend strongly on the heights
the small surface-roughening barriers and we expect an
ditional key mechanism to interfere with the diffusive barri
hopping, which will strongly decrease the hopping rates fr
our calculated values. We therefore caution readers ab
applying our simple approach in cases where there are m
than two time scales in the decay ofCcage(t), as a second
slow decay mechanism may indicate the crossing of
smaller barriers.

V. CONCLUSIONS

In the preceding pages, we have presented a method
using molecular dynamics simulations to estimate the h
ping rate for the Zwanzig model of self-diffusion~Eq. ~2!!.
We associate the hopping rate with the slow decay of
cage correlation function~Eqs.~10! and ~11!!, while we as-
sign the fast initial decay either to simple vibrational moti
or to barrier crossing rates of the small perturbing barriers
a rough potential energy surface—barriers which are not
barriers to diffusion.

There is excellent agreement between the self-diffus
constants calculated with our method and those calcula
via the Einstein relation~Eq. ~3!! over a wide range of tem
peratures and densities. This agreement holds both in
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6876 Rabani, Gezelter, and Berne: Hopping rates for self-diffusion
supercooled and regular liquids, and we are also able to
dict the large drop in the diffusion constant for solids.~We
also note that this method can calculate diffusion consta
using simulations that are substantially shorter than th
required to obtain good results using the Einstein relatio!

Additionally, we have shown that at low densities~and
possibly at higher temperatures!, the time scales for vibra
tional motion and basin hopping merge, and the Zwan
model for diffusion begins to break down. It might be use
at the higher temperatures to use the procedure introduce
Cao and Voth which accounts for some of the anharmon
ties within each basin.14,15 At lower densities, we must look
for a different mechanism for self-diffusion, since the ato
reside in each basin for less than a vibrational period.

We have also used an approximation to the vibratio
density of states in the liquid (rq(v)) to derive a simple
analytical model for the self-diffusion constant in liquids a
supercooled liquids. This simple model also gives quant
tive agreement with the correct diffusion constants.

There remain a few loose ends in this work that we w
attempt to tie up in the future. We believe that there may
a way to estimate the vibrational density of states in
liquid using thefast decay of the cage correlation functio
but we have not been able to make this connection in
paper. There are also some subtleties about the decay o
cage correlation function at temperatures that are near
glass transition temperature (Tg), and resolving the hopping
rate on rough surfaces may need a more thoughtful treatm
than we have provided above.

The cage and neighbor list correlation functions are qu
intriguing quantities, and in future work we will be invest
gating their usefulness in other areas of molecular sim
tions.
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