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A new Monte Carlo algorithm is presented for the efficient sampling of protein conformation space
called the Smart-WalkingS-Walking method. The method is implemented using a hybrid Monte
Carlo protocol. The S-Walking method is closely related to the J-Walking method proposed by
Frantzet al. (J. Chem. Phys93, 2769, 1990. Like the J-Walking method, the S-Walking method

runs two walkers, one at the temperature of interest, the other at a higher temperature which more
efficiently generates ergodic distributions. Instead of sampling from the Boltzmann distribution of
the higher temperature walker as in J-Walking, S-Walking first approximately minimizes the
structures being jumped into, and then uses the relaxed structures as the trial moves at the low
temperature. By jumping into a relaxed structure, or a local minimum, the jump acceptance ratio
increases dramatically, which makes the protein system easily undergo barrier-crossing events from
one basin to another, thus greatly improving the ergodicity of the sampling. The method
approximately preserves detailed balance provided the time between jumps is large enough to allow
effective sampling of conformations in each local basin. 1@97 American Institute of Physics.
[S0021-96087)51845-9

I. INTRODUCTION is trapped in a local potential basin. Unfortunately, the time
scales for functionally important motions, such as protein
Computer simulations of protein structures and dynamfolding, are often longer than accessible MD or MC runs by
ics have been of great interest in the past decade. It is nOppday’s computing resourée. Therefore, enhanced sam-
widely believed that the complexity of the potential energypjing algorithms which improve the rate of barrier crossings
landscape results in the rich dynamical behavior ofye required for the search of conformation space.
proteins!™ The rugged energy surface arises from the het-  £nnanced sampling algorithms should be designed in
erogeneous nature of proteins because of the presence Qich a way as to allow protein systems to have a significant
many energy scales. For example, the barriers are due to gf,hapility for making long-range moves or simply visiting
least two classes of interactions: first, local barriers separatg, rior regions. It is not practical for conventional MC meth-

stable torsion angle states; second, barriers arise from clo%%s to make nonlocal collective moves because of the pro-
encounters of atoms among the sidechains. The eqUIIIbrIurﬂibitively low acceptance ratio. It is also not practical for

and dynamical properties of proteins are thought to be deter- - . _
. . . o . normal MD methods to efficiently sample barrier crossings
mined by this temperature-independent multidimensional po- . .
. - ..~ “due to the very small time steps required by energy conser-
tential energy hypersurface consisting of many local minima_ - . ;
and barriers vation. One efficient method for generating collective moves

When molecular dynamicéVD) or Monte Carlo(MC) is the hybrid Monte CarlgHMC) method invented by Duane
simulations are used to determine the conformational equfimd Kennedy.In this method, one starts with a conﬂguranon
librium of proteins or other biomolecules, the underlying as-Cf the system and samples the momenta of the particles from

sumption is that the average over the simulation trajectory Maxwell distribution. Molecular dynamics is then used to
(the trajectory or time averapés equal to the average over MOVe the whole system for a timt, and finally one ac-

all possible states of the systdthe statistical or phase space CEPLS Or rejects the move by a Metropolis criterion based on
average This is often called the “ergodic hypothesis.” €XP(~BH) whereH is the Hamiltonian of the whole system.
However, due to the finiteness of the simulation time, the® number of authors have further elaborated the HMC
trajectory average often differs from the phase space avefl€thod, and have applied it to many systems, such as spin
age; and the trajectory averages obtained from different starglasses and polymefs:*

ing configurations may have very different values. In this ~ The HMC method also gives rise to one practical prob-
case, the sampling scheme is said to be “non-ergodic” ofem. Since the momenta are constantly refreshed, the accom-

“quasi-ergodic.” panying dynamics is similar to Smoluchowski dynamics and
How to avoid this “quasi-ergodicity” problem in real thus gives a spatial diffusion process superimposed on the
protein systems still remains a great challenge in computdnertial dynamics. This added spatial diffusion can lead to
simulations. Quasi-ergodicity appears whenever the timemaller rates for barrier crossidgdne way to improve this
scale of MD or MC simulations is shorter than an importantis to couple it with the J-Walking method proposed by
relaxation time scale in proteins, or when the protein systenkrantz, Freeman and Ddff. Unlike the conventional MC
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method which samples a small move and accepts or rejectmgre S-Walkingwhich requires only two walkeysvith two-
the move based on Metropolis criterion, in the simplest in-stage J-Walking and find S-Walking samples conformation
carnation, the J-Walking method runs two walkers, one at thepace much more efficiently. Since a multi-stage J-Walking
temperature of interest, the other, called the J-Walker, at procedure will increase CPU cost linearly with the number of
higher temperature. The lower temperature walker can occastages, we focus only on the comparison of two-stage J-
sionally jump into the J-Walker's configurations, and theWalking with S-Walking.
jump is then accepted or rejected based on a Metropolis cri-  This paper is organized as follows: several ergodic mea-
terion such that detailed balance is preserved for the lowesures for measuring the ergodicity of the sampling are de-
temperature walker. The occasional sampling from the Jscribed in Section Il, followed by three sections on method-
Walker's Boltzmann distribution, which samples a largerology, HMC (Section Il), J-Walking (Section I\V) and S-
conformation space due to its higher temperature, allows th&v/alking (Section \j. Section VI gives some application
lower temperature walker to easily move form one basin tgesults on a one dimensional random potential surface and
another and thus speeds up the conformation space samplifg/0 protein systems, a pentpeptide Met-enkephalin and a
A similar method, called the exchange Monte Carlo methodprotein melittin(PDB file 2mit, 431 atoms Section VII con-
was introduced by Hukushimat all® for spin glasses. In tains the conclusion. The basic approach introduced in this
practice, it has been found that the use of only a single highpaper can easily be used in conjunction with other schemes
temperature J-Walkeftwo-stage is insufficient to treat to enhance the rate of conformation sampling.
quasi-ergodicity in physically realistic systerfeven small
clusters.** A multi-stage J-Walking must then be used. Ob-
viously, the CPU and memory cost will increase linearly||. GENERALIZED ERGODIC MEASURES
with the number of stages. The computational cost for simu-
lating large protein systems may then be enormous. In order to compare the new S-Walking algorithm with
There are many other methods proposed to enhance tigher methods such as J-Walking, it is essential to define a
conformation space sampling, such as anti-force-bias MC bjneasure of the efficiency of a method and to determine if a
Cao and Berné® multicanonical MC by Berg and diven sampling method is ergodic.
Neuhaus® the cluster move method by Swendsen and |f the true normalized probability distribution,
Wang?” the fluctuating potential method by Liu and Beffle, Pexac{I’)=Z"‘exp(—BV(I), of the conformational states is
the Monte Carlo-minimization approach by Li and known, and ifp(I",t) is the normalized distribution found
Scherag®?° and the mixed Monte Carlo/stochastic dynam-from simulation after a timet, one can monitor the
ics method by Guarneri and Sti#?2 These methods have duantity®
shown some success in model systems, small clusters or +oo
Lennard-Jones systems. The Monte Carlo-minimization Xz(t)—f dl'[p(I',t) = pexac()]? (1)
method generates a MC move for a system, followed by a *
minimization of the structure, which then accepts or rejectsas a function of run length. Her&, denotes the conforma-
the minimized structure by the Metropolis criteribtt’ The  tional space, and the integral is over all conformational
method is very successful in a global minimum search for astates. The root mean square deviation should decay to zero
pentpeptide, Met-enkephalin; however, the distribution itif the sampling method is ergodic and if the run length ex-
generated is no longer canonical and the system might stiteeds the mixing time of the sampling algorithm. Then the
be trapped in a “deep” local minimuninot global mini- rate of decay ofy(t) is a measure of how efficient a simu-
mum) at low temperatures. The mixed MC/stochastic dy-lation method is. For one-dimensional energy landscapes,
namics method>??which alternates small moves generatedone knowsp,,..(X), so thaty(t) offers a simple measure of
by stochastic dynamics with large MC moves of certain tor-sampling efficiency as was shown in Ref. 15. We w$€
sion angles, has been quite successful for chain molecules on a simple one-dimensional random potential later in Sec-
continuum solvent, but should face difficulties in explicit sol- tion VI. For multi-dimensional systems with rugged energy
vents. Very recently, Andricioaei and Straub also proposedandscapes, however, the exact normalized distribution is
an enhanced sampling method based on the Tsallis statisticasually not known. Then one must search for other measures
distributior?® and applied it to atomic clusters. However, the of sampling efficiency.
problem of sampling protein conformation space efficiently ~ Thirumalai et al?* have introduced an approximate
still remains unsolved. method for determining whether or not a sampling algorithm
In this paper, we present a new Monte Carlo algorithmis ergodic that also produces a measure of the mixing time.
called the Smart-WalkingS-Walking method for efficient The underlying idea is that for any system in equilibrium,
sampling of protein systems. The method is implementedndependent trajectories over an ergodic system must be self-
with a HMC protocol, although it could also be implementedaveraging. Take a property such as the pair distance between
with an ordinary Monte Carlo. The beauty of this new a particular pair of sites in a protein. If the protein system
method is that it often requires only two stages for effectivedynamics is ergodic, the average value of the pair distance
sampling compared with J-Walking which often requiresover two independent trajectories and 8 must be equal.
multi-stages. Thus, S-Walking will often be computationally This condition is of course not sufficient for ergodicy of the
much less costly than J-Walking. In the following, we com- system, but it is necessary.
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Several ergodic measures, such as a force measure p=min[1,exg—BAH)], (4)
(based on vector force of an atgnand an energy measure
(based on the non-bonded energy of an atamong others,
have been proposed by Thirumadial ?* and Strautet al?

In general, for a quantitg of the jth atom orjth pair, the
average over time for a particular trajectory is defined as

wherep is the acceptance probability, ahtlis the Hamil-
tonian of the system. This whole process is called one HMC
cycle. The HMC cycle is repeated over and over until a long
trajectory is generated. Thus, in summary, the HMC algo-
rithm can be described as follows:

g_j“(t): %ftds g'(s), (2) (1) Starting from an initial position in phase spacep),

0 resample the momentafrom a Maxwell distribution.
where o indicates the average calculated ovetrajectory.  (2) Performnyp steps of a constant energy MD simulation,
For two independent trajectoriesand 3 starting from inde- with a time stepét, to generate a new configuration
pendent initial configurations, we define the mean-square (Fnews Pnew-
difference between averages of trajectaryand 8 as the  (3) Accept or reject this new configuration based on the Me-

metric tropolis criterion on the total Hamiltonian, EG}), then
LN go back to stefil).
dg(t)= NE |gj“(t)—gjf(t)|2. (3 It can be shown that HMC leads to the canonical prob-
i=1

ability distribution, provided that the MD algorithm is time
This metric dy(t) is often called the ergodic measdfeé. reversible and symplectftSince our multiple time step al-
There are many possible choices for the quargityseveral gorithm, the so-called reversible Reference System Propaga-
different measures will be discussed in this paper, such as ttier Algorithm (-RESPA?*~*% s time reversible and sym-
force magnitude metric, the potential energy metric, the 1-4lectic, it is very useful in combination with HMC for large
pair distance metric, and the all-pair distance metric. As weprotein systems.
will see later, the force metric, energy metric and 1,4-pair  In practice, the HMC method should be optimized for
distance metric will measure more about local samplinggdifferent systems by fine tuning the time sté&pand number
however, the all-pair distance metric will give more informa-of MD steps nyp used in one MC cycle. For many

tion about the long-range sampling. system$ 1131 HMC can sample the phase space very effi-
ciently; however, it is still not efficient enough for large pro-
11l. HYBRID MONTE CARLO METHOD tein systems, as we will see in the Results section. One way

. . . to improve it is to couple the HMC method with the Jump-
Conventional Monte Carlo simulations are generally Car'WaIking (J-Walking or Smart-Walking(S-Walking tech-
ried out by means of _smgle-pamcle MOVes. Updating _morehiques discussed in the following sections. In the results sec-
than one patrticle at a time for large protein systems typlcally[ion, we will see that the combination of HMC with S-

results in prohibitively low average acceptance ratios. On thgzN . : ;
. : alking greatly speeds up the conformational sampling of
other hand, MD simulations can perform global moves, how- g9 y SP P ping

ever, the MD scheme is prone to errors and instabilities dugrotelns over J-Walking and pure HMC.
to finite time step sizes. Thus only very small time stefis (

= 0.5 fs for proteing can be used for normal MD simula-

tions. IV. JUMP WALKING

The hybrid Monte CarloHMC) method proposed by
Duaneet al® combines the ease of global update by MD and
the Metropolis criterion of MC. It is unlike conventional MC
methods, however, because it involves global updates of p
sitions of all atoms based on an accept/reject decision for th
whole configuration. It is also unlike the normal MD scheme
because there are no discretization errors due to finite tim%
step size. In general, the time step in HMC could be 2— € u; i e
times larger than the normal MD time step for proteins whilg®' réjects the move according to the Metropolis criterion at
keeping the method exact and with sufficiently high accep:[he temperature of interest,
tance ratio. The beauty of the HMC method is that it is  p=min[1,q(x’|x)], 5
actually anexactMC method with global updates.

In the HMC method, one starts with an initial state of the
system (¢,p), and resamples momengafrom a Maxwell T(x|x")p(x")
distribution. Molecular dynamics is used to move the whole ~ q(X'|X)= ——————,
system for a timeAt=nypdt, whereét is the time step of Tx')p(x)
the MD simulation, anchy,p is the number of MD steps in  p(x)=Z"texg —BV(X)] is the Boltzmann distribution witd
one MC cycle. BecausAt is chosen sufficiently large that the partition function, and (x’|x) is the trial sampling dis-
the total energy is not conserved, one then accepts or rejedtsbution. The trial sampling distribution adopted in MC
the move based on the Metropolis criterion, methods is usually a uniform distribution over a step fize

The Jump-Walking(J-Walking method was first pro-
posed by Frantz, Freeman and DBblin MC studies of
0altomic clusters. It has been shown that J-Walking is very
Bowerful in reducing the quasi-ergodic behavior of model
systems and small atomic clustéfs?14
The J-Walking technique can be described as follows. In
usual MC method, one samples a small move and accepts

where

(6)
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1 A (1) Starting from some initial configuration, run a J-Walker
T(x'[x) = A X' —X|<§ ) at a high enough temperatufg using the HMC method
o for N MC cycles, and generat®! conformations uni-
0, otherwise formly (one everyN/M HMC cycles. Store thesev
This gives the well-known Metropolis probability function conformations in an external file. Memorize the last con-
q(x’|x), figuration of the J-Walker for future use.
(2) Starting from the initial configuration, run the low tem-
q(x"[x)=exp{~ BLV(X") = V(x)]}. (®) perature walker using the HMC method fof MC
In the J-Walking method, this normal sampling is infre-  cycles. During the HMC run, randomly jump to the J-

quently punctuated by sampling from a higher temperature Walker conformations stored in the external file, when a
distribution for the same system. Since a higher temperature randomly generated numbgx P, (P is the jump prob-
MC simulation can involve larger attempted moves and more ~ ability). The jump is accepted or rejected according to
frequent barrier crossings, this allows the system to access EQ. (10). At the end, store the last configuration of the
more conformational states according to the high tempera- low temperature walker.

ture Boltzmann distribution. Then, the lower temperature(3) Assign the last configurations of J-Walker and low tem-
walker attempts occasional jumps to the conformation states perature walker as their new initial configurations, re-
of the high temperature walker, thus enhancing the barrier Spectively, then go back to stef) and repeat the pro-
crossing. The trial sampling distribution for these occasional ~ cess until the simulation converges or a predefined
jumps is the Boltzmann distribution at the higher tempera- number of steps is exceeded.

ture The starting configuration of the two walkers is the same

Ty(x'|x)=Z"texd — B;V(X')], (9) in our implementation, but that is not necessary. This J-
Walking method preserves detailed balance for the low tem-
perature walker, and the occasional jumps to the J-Walker
configurations allow the low temperature walker to move
a;(x'[x)=exp{— (B— By)[V(X") = V(x)]}. (100  from one potential energy basin to another, thus reducing the
CPU time required to sample conformation space. This ap-
proach appears to work very well for model systems and
small atomic clustefé3%14 of great interest to determine
how well the J-Walking method works for large real protein
Qf/stems, which was the initial goal of this research project.

which, from Eq.(6), gives the acceptance probability func-
tion q(x’|x) as

In the limit 8;—0, g;(x’'|x) reduces to the standard Me-
tropolis acceptance probability in E@). This is reasonable
because the high temperature distribution broadeng; ake-
creases to zero, and the J-Walker method then essential

reduces to simple jumping with a large step siegin this  ynrtortunately, the normal two-stage J-Walking metiiodly

o - , .
limit. In the limit of B,— B, g5(x’[x)—1 since the low tem- 5 temperatureshas very limited success in protein sys-
s_erta_tl;Jr? walker is now effectively sampling from its own tems(see the Results section

istribution.

It should be noted that the Hamiltonian is used in the
HMC method and the potential energy is used in the J—V' SMART WALKING

Walking method(S-Walking tog. This is permissible since As mentioned above, in order for the J-Walking method
both methods generate the same canonical Boltzmann distite work well for large protein systems, it might need a large
bution. number of stages of walkers and thus a large amount of

The easiest way to implement the J-Walking method iparallel processors. The reason is obvious because the acces-
to run two walkers in tandem. However, this will result in sible temperature of the J-Walker needs to be very close to
large correlations between two walkers and thus large syghat of the low temperature walker to have a reasonable jump
tematic errors. Another way to implement J-Walking methodacceptance ratio. If too high a temperature is used for the
is to run the J-Walker first and generate an external file of tha-Walker, configurations are generated in which some groups
configurations at the high temperature, then run the low temmay overlap and the van der WadlslW) interactions are
perature walker and infrequently sample from this externakufficiently large that most of these will be rejected by the
file randomly. Dollet al*232%found that the second method low temperature walker. In other words, if the difference
is more efficient and generates less systematic error than theetween the temperatures of the low temperature walker and
first method. However, the first method, running two walkersJ-Walker is large, the average potential energy of the J-
in tandem, is more convenient for parallel machines. Thus, itWalker will be much higher than that of the low temperature
might be appropriate to use tandem walkers in parallel mawalker in terms ofkT, and the jump success ratio will be
chines and external files in serial machines. Since there areextremely low. For example, the jump success ratio for the
huge number of conformations for real proteins, enormoupent-peptide Met-enkaphalin jumping from 300 K to 400 K
disk storage may be needed for the external file in the seconid less than 5%. It will be even less for larger proteins.
method, thus the two methods are combined in our imple- Thus, a multi-stage jumping process instead of a two-
mentation(we use serial machines herdhe modified J- stage jumping scheme is necessary for real systems. For ex-
Walking algorithm based on a hybrid Monte CafldMC)  ample, a three-stage jump walking schenig%$T,>T5,)
protocol is then as follows: can be described as follows: a low temperature walker at
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temperaturd 5 can occasionally jump to a intermediate tem-
perature walker afl,, and the intermediate walker &,
occasionally jumps to the high temperature walkerTat
provided T, is higher enough for the MC simulation to be
ergodic. This process can be extendedntstage jumping
processes. However, because CPU time and memory require?)
ment increases linearly with the number of stages, this many
stage process is very resource consuming. Matro, Freeman
and ToppeY* proposed a parallel jump-walking scheme,
which uses as many as 90 processors in parallel for atomic
clusters (NHCI),,, n=3-10. Hukushima and Nemdtb
proposed a similar method called the exchange Monte Carlo
Method, which used 32 stages in the jumping process for
three-dimensional spin glass systems with lattice dize (3)
=6-16.

However, jumping directly into a high temperature struc-
ture is not the only way to use the conformational space
information from the J-Walker. Instead, the structure can be
first relaxed before being jumped into. Approximate minimi-
zation with a steepest descent mettiodconjugate gradient
method will generate structures close to the local minimum,

9189

(one everyN/M HMC cycle9, and approximatelynini-
mize each of them to their corresponding local minima
using steepest descent method. Store these mininMzed
conformations in an external file. Memorize the last con-
figuration of the J-Walker for future use.

Starting from the initial configuration, run the low tem-
perature walker using the HMC method f&f MC
cycles. During the HMC run, randomly attempt a jump
to one of the minimized conformations stored in the ex-
ternal file, when a random numbé Pg (Pg is the
jump probability in S-Walking The jump is accepted or
rejected according to Eq12). Store the last configura-
tion of the low temperature walker.

Assign the last configurations of the J-Walker and the
low temperature walker as their new initial configura-
tions, respectively, then go back to st€p) and repeat
the process until the simulation converges or a pre-
defined number of steps is exceeded.

VI. RESULTS AND DISCUSSION

relax

{x'} = {x"},

where{x'} is the configuration of the J-Walker before mini-
mization,{x"} is the configuration after minimization. These
relaxed configurations will significantly decrease the poten-
tial energy, and thus increase the jump success ratio dramatj
cally. However, since the relaxation process is a non-therme%
process, the minimized structurgs’} no longer satisfy the
Boltzmann distribution at high temperature. Fortunately, th
high temperature Boltzmann distribution need not to be sat-
isfied in order to use the minimized structures. Instead, we
regard a minimized structure as one of the possible trial
moves at low temperature and use the normal acceptanc
probability function,

q(x"[x)=exp{ = BLV(X") = V(X)]}.

Unlike the J-Walking acceptance probability in Ej0), this
scheme, which we call Smart-Walking, or S-Walking, will
dramatically increase the jump success ratio from one basir
to another. It also enables the system to explore more phas
space and undergo more efficient barrier crossings. This S
walking method avoids the linear increase of CPU time andZ
memory usage required by the multiple-stage J-Walking
method, because it is not necessary to use multiple stages fc
most systems, even though it would be very easy to imple-
ment a multi-stage S-Walking procedure. S-Walking pre-
serves detailed balance approximately provided the time be
tween S-jumps is much longer than the time required by the
low temperature walker to explore its local basin effectively
(a further discussion follows in the section on Resulfdis
new S-Walking algorithm only requires a simple modifica-
tion of the J-Walking algorithm.

11

12

(1) Starting from some initial configuration, run a J-Walker

We have applied the S-Walking algorithm to several sys-

tems and compared it with other methods, such as the HMC
and J-Walking algorithms. Constant energy MD and constant
temperature MD, are also included for comparison. A one-
imensional rugged potential surface is tested first, for which
Fe exact normalized probability distribution is known. Then,
WO protein systems, a pentpeptide Met-enkephalin and a
eDrotein Melittin (PDB file 2ml, are tested.

6.0 T T

4.0 b

20 | B

00

_6.0 Il Il Il
00 20 40 &6

0 80 10.0 120 14.0 16.0 18.0 20.0
X

at high enough temperature using the_HMC methOd fOlFiG. 1. Diagram of a one-dimensional random potential energy surface
N HMC cycles. Generaté/l conformations uniformly  from a sum of Fourier sine waves with periodic boundary condition.
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A. One-dimensional random potential surface

We begin with a simple one-dimensionédlD) model 80 F e CEMD 1
system. A Fourier sum of sine waves is used to generate : ‘ R S%D
rugged potential surface, 70 | — J_Wak i

~—— S-Walk
_[nmwx
Veo=2 cngn(T). (13 60 ]

The potentiaNV(x) is periodic in thex direction withL the
size of the primary cell, an€,, the coefficient of thenth
component. By changing the coefficielts and the number
of termsn, various 1D potential surfaces can be generated.™ 4.0
In this study,L =10, n=20 and a randomly generated coef-
ficient set{C,} are used. The generated 1D potential surface,
as shown in Figure 1, has a global minimumxat9.7 and
various local minima betweex=0 andx=10.

The units of the 1D potential energy are arbitrary, and 20 ||
other parameters are set to be reduced units, such as the me
m =1.0, and the Boltzmann constakt=1.0. Thus the re- 10 1
duced temperaturd;* will be 2KE, where KE is the kinetic
energy of the particle with the same units as the potential ‘ . . :
energy. 00, 20000 40000 60000 80000 100000

Five different methods are tested: constant energy MD MD STEPS
(CEMD); constant temperature MECTMD); hybrid Monte
Carlo (HMC); the Jump Walkm_g method based on HMC FIG. 2. A plot of y, as defined in Eq( 1), versus the number of MD steps
(J-Walking and the Smart-Walking method based on HMC oy the 1D rugged potential surface at temperafiite-0.1 using various
(S-Walking. In the CTMD method, a simple velocity scal- methods. It is shown that constant energy MCEMD) and constant tem-
ing scheme proposed by Berendson is wBed. perature MD(CTMD) methods cannot cross barriers efficiently. The hybrid

. . . . Monte Carlo(HMC) method improves the ergodic sampling to some extent
The time stepst used in CEMD is determined by energy at this temperature. Both the J-Walkifdg+Walk) and S-Walking(S-Walk)

conservationAE, which is defined & methods work very well, with S-Walking working a little better. However,
N as we will see later, the S-Walking method will be much more efficient than
1 Einitial — Ei the J-Walking method in real protein systems.
AE= L |Eninial =&
N Einitial

i=1

5.0

x(t)

3.0 |

: (14

whereE; is the total energy at step Ei,itia IS the initial  of these high temperature configurations is generated uni-
energy, and\ is the total number of time steps. A require- formly (every 20 MC cycles or 100 MD stepsA low tem-
ment of logAE)<—3.0 is used to determine the time step in perature walk is then generated, which occasiond@®b of
CEMD for different temperatures. The CTMD method the movegjumps into the configurations stored in the exter-
shares the same time st&jp as the CEMD for the same nal file. The S-Walking method follows the same procedure
temperature. In the HMC method, two parameters are use@s the J-Walking method, except that a relaxation process
the MD time stepét and the number of MD steps,p in (implemented with the steepest descent methedadded
each MC cycle. In general, the time step adopted in HMCbhefore storing the high temperature configurations to the ex-
can be much larger than that of CEMD. For the simple 1Dternal file. Since the required disk storage of this 1D system
random potential surface, the time step of HMC can be as moderate, we can generate the high temperature walk first
large as 10 times that of CEMD with the resulting accep-and store all resulting configuratiori$0 000 structuresin
tance ratio still higher than 50%. However, as we will seeone file.

later in the real protein systems discussed in this paper, the Since we know the exact form of the 1D rugged poten-
MD time step in HMC can be only a factor of 2—3 times tial energy surface, it is easy to calculate thectprobabil-
larger than that of the CEMIthe time step in HMC will ity distribution function,peyac{X). Thus,x(t), as defined in
decrease as the size of protein systems incje&se a rea- Eq.(1) can be used as a criterion for ergodic measurement of
sonable comparison, we used a factor of 4 in the time stefhe sampling. If the sampling is ergodig(t) should decay

for this 1D system witm,,p equal to 5. Both the J-Walking to zero. The rate of decay is a measure of the convergence of
and S-Walking methods are based on an HMC protocol, wittsampling, which indicates how fast the walker accesses all
the same jumping probability d®;=Ps=3% (the jumping possible states.

probability of J-WalkingP; will be increased to 10% for Figure 2 shows the decay gf(t) as a function of the
protein systems in order to increase the jump success ratenumber of MD steps for the various methods at temperature
In the J-Walking method, a high temperature walk is per-T*=0.1, starting from an initial position of=6.9 (a local
formed first using HMC afr* = 3.0 (high enough for HMC  minimum). Here we used the number of MD steps, not the
to sample all states in a reasonable firand an external file MD real timet, as our time axis, because the time steps used
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in normal MD methods and HMC methods are different.20.0
Another reason for using MD steps is because they reflect th
CPU time. It should be noted that the CPU time for J-
Walking is about twice that of regular MD because there are >0 |
two walkers; and the CPU cost of S-Walking is about 3 times T =01
that of regular MD because of the extra cost of minimizatioryg g |
procedures. The CPU time of HMC is comparable with nor-
mal MD methods for the same number of MD steps. It is
clear from the figure that for both CEMD and CTMR(t) 5.0 |
decays to large plateau values, which means that these nc
mal MD methods cannot cross barriers efficiently, resulting ‘ .
in non-ergodic sampling. Thermal averages based on the: 9.0 95 10.0
simulation methods depend on the initial conformational
states. In order for the CEMD method to be ergodic in this 30 [ o walk
1D system, the temperature has to be raised to abol — Exact
T*=13.0 (kinetic energy larger than~6.5). In contrast,
HMC is ergodic at any temperature, but at low temperatures , , |
barrier crossings will be so infrequent that the conforma-
tional sampling is in a practical sense “non-ergodic.” In this
1D system, whem* <1.5, we observe this “non-ergodic”
behavior in less than 500 000 MD moves or equivalently 1.0 -
100000 HMC moves fp=5). For T*>1.5, HMC

samples the rugged landscape very efficiently. Thus, for ver I
low temperatures, likd* =0.1, there is little difference be- 0.0 e A A A _,.A_»A ~
tween HMC and CEMD/CTMD as shown in Figure 2, but "o0.0 2.0 4.0 6.0 8.0 10.0
HMC is markably superior to CEMD/CTMD at*>1.5,
well before CEMD/CTMD becomes “ergodic.” The reason
why we select a very low temperature here is to clearly showrG. 3. A comparison of the probability distribution functiop(x), ob-
the difference between HMC and the J_Walk|ng method’ an(Pined from S-Walking simulation and from the exact evaluation, for two
also the difference between the J-Walking and S-Walkingifferent temperaturesa) T* = 0.1,(b) T* = 1.0. The results show that the

. . -Walking method witiPs=3% generates correct Boltzmann distributions
methods. Both the J-Walking and S-Walking methods gensy, poth temperatures.
erate a significant decay fogu(t) at T* =0.1, indicating that
both methods can access all possible states in this rugged 1D
potential surface even at very low temperatures. Of coursdunction calculated from the S-walking method agrees very
as we can see from the figure, the S-Walking method is stillvell with the exactdistribution function for both tempera-
3-4 times faster in the initial decay than the J-Walkingtures, indicating that the S-Walking method generates the
method. Accounting for the fact that the S-Walking methodBoltzmann distribution. However, it should be pointed out
requires 50% more CPU time, it is a factor of 2—3 timesthat if very large jumping probabilityPs is used, the S-
more efficient than the J-Walking method for this 1D system Walking method will spend a lot of time just sampling the
When the temperature is increased, the difference betwedacal minima, not the thermal distribution of configurations
HMC, J-Walking, and S-Walking methods for this 1D model around each of these minima, resulting in an over-weighting
systems becomes smaller, because HMC already crosses barthese local minima configurations. To reduce this possible
riers efficiently at higher temperatures. However, as we willover-weighting of the local minima, the jump frequency
see in the next section, the difference between these threshould be low enough so that the time interval between
methods will become more significant in multi-dimensionaljumps will be much larger than the energy relaxation time.
systems. The HMC and the two-stage J-Walking method&ortunately, the jump success ratio for each jump is very
will then have very limited success in sampling protein sys-high, so the overall barrier crossing probability is still much
tems, whereas the S-Walking meth@ao-stage still works  higher than the two-stage J-Walking method.
very well. Figure 4 shows the decay gf(t) with time at tempera-

As shown in Frantzt al’s paper, the J-Walking method ture T*=0.1 using various S-Walking jumping probability
preserves detailed balance. The S-Walking method only preRs. As expected from the above discussigiff) does not
serves detailed balance approximately, and generates a Bottecay to zero folPg larger than 10% because of the over-
zmann distribution provided the time interval between jumpsweighting of the local minima. Clearly, iP5 is made too
is much longer than the energy relaxation time. Figure 3mall, the relaxed structures will be chosen so rarely that
shows the spatial distribution functiop(x), calculated from very long runs will be required to obtain effective sampling
the S-Walking methodafter 100 000 HMC steps, or 500 000 of the correct distribution. This is shown in Figure 4 fog
MD steps and from exact numerical evaluation for two dif- =0.3%. Thus, it behooves the simulator to determine the
ferent temperature§;* =0.1 andT* =1.0. The distribution optimal value ofPg for various systems. We note that meth-

—— S-Walk
—— Exact

T =1.0
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1.0 ) w , , not-too-low temperatures. Protein systems have multi-

] oo Ps=30% dimensional rugged conformational h}/per surfaces. Will

+ — PS=10°§ these methods still work for large protein systems?

b RS Two protein systems are studied: one is an oligopeptide,
08 : 1 * Ps=0.3% Met-enkephalin (residue sequence Tyr-Gly-Gly-Phe-Nlet
1 4 and the other is a protein melittin from honey H&®DB file

' i 2mit, 26 residues and 431 atomAn all-atom model is used

1 i for both protein systems, and the AMBER force filis

l used in all calculations. All simulations are performed by

go5

_ incorporating the new methodologies into the biomolecular
simulation package, IMPACY®

However, unlike the 1D model system, it is impossible
to calculate thexactspatial probability distribution function
pexacfl',t) for protein systems. Thug(t) is no longer a
useful measure of sampling for these real systems. We adopt
ergodic measuresi(t), introduced by Thirumalaét al.?*®
to measure the convergence of the conformational space
sampling approximately. However, in order to make these
J . \ ergodic measures meaningful, one must run tab leas}t
0 250000 500000 750000 1000000 simulations starting from two independent initial conforma-

MD STEPS tions. It could be difficult in practice to determine which

states are independent. If the two initial structuseand 8
FIG. 4. The decay of(t) with time, i.e., the number of MD steps in HMC, are dependent on each other, or they are too close in phase
for the 1D ruggg_d potgntlal surfa_lce at temperaflite=0.1 using various space(for example, if they are Separated by only a small
jumping probability Pg in S-Walking. The results show that the optimal . . .
S-Walking jump probability is about 1—10% for this 1D system. barriep, the results would be misleading. Here, we follow
Straubet al’s* method for preparing the two initial indepen-

dent configurationsyg and 8. The configuratiorw is chosen
ods based on the maximization of the rate of informationfrom a 50 ps MD equilibration at 300 K using velocity scal-

entropy production might be useful for this optimizgtﬁﬁn. ing. The configuration is obtained by gradually heating up
The optimal value ofs is found to be 1-10% for this 1D the pentpeptide and melittin to 1000 &5 ps MD), then

random potential surface. In this papePg= 3% is used for guenching down to 300 K, followed by another 50 ps equili-

both 1D random potential and protein systems. The optima)ation at 300 K. All the simulations are then started from
value of Pg may depend on the relative curvature of the

. . AR . ese two configurationsg and B. In the J-Walking and
barrier regions and local minima in potential hypersurfaces . . . _

In some extreme cases, such as a broad potential We‘ﬁ-Walklng simulations, at.otal number b= 500 structgres
with a very sharp hole in the centéa “needle-point”), the are generate@and stored in an external fjlérom the high
minimization process in S-Walking will locate the “needle €mperature walker everfN/M =20 HMC cycles (total
point” as the trial move for the low temperature walker, N=20X500=100 000 HMC cyclepwith or without mini-
resulting in a serious over-weighting of this point. Thus, amization (100 steps of minimization by steepest desgent
very smallPg should be used for this kind of potential sur- The low temperature walker is then followed for the same
face. Alternatively, another approach can also be used toumber of HMC cycleg100 000 HMC cycleswith occa-
reduce this local minima over-weighting in which after the sional jumps to the structures in the external file. The above
energy minimization the system is thermalized at the lowprocess is repeated until the simulation converges or a pre-
temperature using HMC before Metropolis acceptance. Thiglefined number of steps is exceeded. The number of HMC

alternative approackwhich is not implemented in this pa- steps (N/M=20) separating these stored structures should
pen will have an additional CPU cost for the thermalization |, large enough to eliminate the correlation between them:

around local minima at the low temperature, but may US€ &4 the total number of structura should be as large as
larger jumping probabilityPs. Which of the two methods

: T i . possible consistent with the disk space available and small
will be more efficient for various systems is currently under . .
investigation enough to guarantee reasonable direct access time.

' Three ergodic measures are used in this st(ajya force
metricdf(t) for the magnitude of force on each atofth) a
1,4-pair distance metrid14(t) for 1,4-pair distances; ana)
As we have seen above, both the two-stage J-Walking pair distance metridij(t) for all pairs(for large proteins,

and S-Walking methods work very well for one-dimensionalwe can pick a fixed number of pairs uniformly to save disk
rugged potential surfaces. In fact, HMC also works well forspace,

0.0

B. Application to two protein systems
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1 I _
d14<t>=WE r14e(t)—r14l(v)|?, (15)

k=1

NH
.. 1 —a -
dij(ty= =2 |rijg(t)—rij £(1)|.
N"k=1
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around 0.65 even after 500 000 MD steps. This means that
the pair distance metrics are much more sensitive and also
demanding than the commonly used force or energy
metrics?** Similar results are also found in the J-Walking
and S-Walking methods, as well as in the larger protein sys-
tem, melittin. The reason for this is that different structures
may have the same forces or energies. However, requiring all
pair distances to be self-averaging is a very demanding re-
quirement, thusdij(t) is a very strong ergodic measure,

even though it may still not be sufficient.

whereN,N’,N"” are number of atoms, number of 1,4 pairs, The J-Walking method uses the same optimized param-
and number of all pairs, respectively, arth,rij are 1,4 and eters as HMC. As the J-Walker’s temperatdigincreases,
i,j pair distances. The force metuid(t) measures the mag- the jump success ratio decreases dramatically. This is be-
nitude of total force on each atom. However, the force iscause the average potential energy of the pentpeptide at a
weighted by local interactions, thus it is often a measure ohigh temperature is much higher than the potential energies
the local sampling. On the other hand, the pair distance metcceptable at the lower temperature of 300 K. Thus, the jump
ric dij(t) measures all pair distances, but its value is affectecceptance ratio, Eq10) decreases to almost zero whep
more by long-range than short-range pair distances, so i increased to about 500 K. To maintain a reasonable jump
weights the long-range overall similarities between twoacceptance ratio, for example 5-10%, we must choose the
structures. The 1,4-pair distance metric only measures locamperatureT; to be about 350—400 K for this pentpeptide.
sampling as is obvious from its definition. As we will see However, the J-Walker at these temperatui2s0—400 K
later, the all-pair distance metritij(t) is a very sensitive cannot efficiently sample the conformational states within a
and demanding measure for the ergodic sampling. The vecteeasonable CPU time, for example 500 000 MD stgpsl
force metric,df(t), for vector forces on each atom, as usedproteins will denature at these temperatures thpugio
by Thirumalai and Straulet al,>** has also been tried for make the high temperature walker efficiently sample states in
these protein systems. However, the time average of the vee-reasonable CPU tim&00 000 MD step)s the temperature
tor forces decays to zero very quickly due to the cancellatio; must be raised above 1000 K. Thus, for the J-Walking
of forces pointing in different directions. Therefore, it be- method to work properly, a multi-stage walker must be used
comes difficult to discern the differences between variougfor example, jumping from 300 to 350 K, and 350 to 450 K,
methods using the vector force metric. Meanwhile, the enetc). The temperature interval T between two consecutive
ergy metric is similar to the force magnitude metric. So, westages need not be taken equal, instead these intervals can be
do not include the vector force metric or energy metric inoptimized by requiring the same jump success ratio between
this study. stages. In this study, only the normal two-stage J-Walking

Figures %a)—(c) shows these three ergodic measuresscheme is used for comparison. A J-Walker at 400 K is used
df(t), d14(t) and dij(t), for the pentpeptide Met- with a higher jump trial probability oP;=10% (the jump
enkephalin obtained from various methods. As expectedprobability for S-Walking is still taken aBs=3%. The re-
both the CEMD and CTMD methodsime stepst=0.5 f9 sults in Figures &)—(c) show that in the J-Walking method,
give a non-decaying plateau in the three ergodic measurethe decay rate of our ergodic measures improves compared
because normal MD methods do not generate barrier crosgs HMC, but not as dramatically as in the 1D system. Also,
ings efficiently. The two pentpeptide configurations areshown in Figure &), the J-Walking method has a larger
trapped in two different local minima, and the time averageplateau value for thel14(t) measure than that of the HMC
of the pair distance or force magnitude for each configuratioomethod. This is one example where the ergodic measures are
are not able to change with time after equilibrium at the localonly approximate measures. Sometimes, such measures can
basin. The CTMD method is slightly better than the CEMD be misleadingsee the discussion at the end of this segtion
method in general, as shown in Figure 5, because the fluc- Unlike the J-Walking method, the S-Walking method
tuation of the total energy in CTMD helps it access more ofallows the use of a much higher temperattiggfor the high-
the conformation space. The HMC method improves thdemperature walker. Because the high temperature structures
sampling to some extent because a larger time step can lage relaxed, the average potential energy of the relaxed struc-
used. The optimal HMC parameters for this pentpeptide aréure is comparable or even lower than that of the low tem-
found to beét = 1.0-1.5 fs(2—3 times larger than normal perature walker at 300 K. The results show that ergodic mea-
MD) and nyp = 5-10. In this study,6t = 1.5 fs and sures,df(t), d14(t) and dij(t), all decay to zero much
nyp=>5 are used. The results show that the HMC methodaster than the J-Walking method. The most demanding met-
does indeed enhance the ergodic sampling for this pentpepic dij(t) decays to zero after 400 000 MD steps, indicating
tide. The force metrid f(t) decays to zero after 10 000 MD that the quasi-ergodic behavior in the other methods is
steps, and the pair distance metrics4(t) anddij(t) both  greatly reduced in the S-Walking method.
decay to a smaller value compared to normal MD methods. A larger protein melittin, with 431 atoms and more than
However,d14(t) anddij(t) do not decay to zero, instead, 1200 degrees of freedom, is also tested. Similar results are
d14(t) shows a plateau around 0.46, adij(t) a plateau shown in Figures @&—(c). For this system, a time step of 0.5
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FIG. 5. Decay of the three ergodic measures with the number of MD steps for the pentpeptide Met-enkephalin using various samplingamiettoeds:
magnitude metridf(t); (b) 1,4-pair distance metrid14(t); (c) all-pair distance metridij(t). It should be noted that the CPU time for J-Walking is about
twice that of regular MD or HMC, and the CPU time for S-Walking is about three times that of regular MD or HMC. See the text for details.

fs is also used in the CEMD and CTMD methods, and a timeobtained from HMC and J-Walking is smaller. Both the
step of 1.0 fs andhy,p=5 is used in the HMC method. The HMC and J-Walking methods have limited success for this

J-Walker temperaturd ; is reduced further to 350 K to

larger protein system. On the other hand, the S-Walking

achieve a reasonable jump success ratio. As can be seen franethod(with Tg = 1000 K) still works very well. Of course,
the figure, for this larger system, the difference in the resultsve do not see the pair distance metrics decay to zero within
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FIG. 6. Decay of the three ergodic measures with the number of MD steps for the protein nleltBrfile 2mlY using various sampling methods) force
magnitude metrid f(t); (b) 1,4-pair distance metrid14(t), (c) all-pair distance metridij(t). It should be noted that the CPU time for J-Walking is about
twice that of regular MD or HMC, and the CPU time for S-Walking is about three times that of regular MD or HMC. See the text for details.

500 000 MD steps, because it takes more time for thehe two structures are dependent or too close in phase space,
method to sample the much larger conformation space of thithe less efficient methods might give better ergodic measures
larger protein.

because the two simulations are essentially sampling the
Finally, it should be noted that the requirement of havingsame local basin. On the other hand, more efficient methods

two initial independent structures is very crucial for thesemay enable the system to cross barriers more easily, and thus

ergodic measures to be meaningful. As mentioned above, dccess other phase regions, which may result in a temporary
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