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We consider the problem of calculating the electronic absorption spectrum of a chromophore with
intramolecular degrees of freedom coupled to a condensed phase environment. We approach this
calculation in the framework of the imaginary-time path integral Monte Carlo techniques, and focus
on the problem of the analytic continuation of the imaginary-time data to the real-time axis. Two
alternative analytic continuation methods are considered: the maximum entropy method and the
singular value decomposition method. An exactly solvable model is introduced to test the accuracy
of these methods. Exact numerical results for the absorption spectra are compared to the spectra
reconstructed by the analytic continuation methods; it is found that the singular value decomposition
method gives systematically higher resolution than the maximum entropy method and is capable of
reproducing the fine vibronic structure of the absorption spectrum19@7 American Institute of
Physics[S0021-960807)51146-9

I. INTRODUCTION relatively straightforward, the analytic continuation is very
Numerous problems in chemical physics involve Calcu-?.IffICUIt to perfomlr)umencally, becau;g the solution (.)f .th|s
inverse problem” is extremely sensitive to the statistical

lation of dynamic correlation functions in quantum =TT the simulation data. | ¢ ; thod
systems:? For an isolated system with a few degrees of101S€ In the simulation data. n recent years, o methods
have been applied to problems of this type: the maximum

freedom, the correlation functions can be obtained from cer- " thot-22 and the sinaul e d i
tain path integral techniquede.g., numerical matrix entropy metho an € singular value decomposition

multiplicatior®® or from the wave packet dynamigsA (SVD) methc_)dz's_,z.s The purpose of the present work is to
more challenging situation occurs when the primary syste est the applicability of these methods to the problem of cal-

is coupled to a condensed phase environniidsath” ) with culating the electronic absorption spectrum of a chro-

essentially infinite number of degrees of freedom. ParticuIaFnOphore coupled to a bath. We consider an exactly solvable

examples include: medium-induced electron transfer, dissir-nOdel’ where the relevant time correlation functitand,

pative tunneling, activated processes, and electronic speE'—ence' the spectryntan be computed exactly. This allows

troscopy of chromophores in crystals and in liquids Onels to assess the accuracy of the two aforementioned analytic
' ontinuation methods in calculating the spectrum.

possible strategy is to treat the bath dynamics classicall)f Th ) od as foll In Sec. Il ;
while retaining the quantum mechanical treatment of the pri- € paper Is organized as 10llows. In Sec. Il we presen

mary systenf. Mixed quantum-classical simulations of this the exprt(:]ssmn glor thef glect;pnlcthab§orpt!on s;:_e Cmijmt’ atnd
type are suitable for certain problems, but, in general, do noijISCUSS € problem of inverting theé Imaginary-ime data 1o

give state-to-state transition probabilities accurately. In ordeFEllcmat%tTe srp]).ecr:]tr_um. In dStec. Il we fﬁ ecify an exac;tlt);]solv-
to account for the quantum nature of the bath, some alterng- '€ Mocel, Which 1S used to assess Ihe accuracy of the ana-
tive methods have been employed, such as the tim ytic continuation methods. The details of implementation of

dependent, self-consistent field approximationthe cumu- these methods are given in Sec. IV. In Sec. V we present the

lant expansion-based techniqlfe¥he former method is numerical resuits, and in Sec. VI we conclude.
based on the factorization of the system plus bath wave
packet into wave packets for individual degrees of freedom!!- ELECTRONIC ABSORPTION SPECTRUM AND THE
and the latter method employs truncation of the time evolu-iNVERSION PROBLEM
tion operator after the second-order term in the system—bath We consider a chromophore with intramolecular degrees
interaction. These approximations could limit the applicabil-of freedom coupled to a condensed phase environment. We
ity of the above methods to relatively weak system—battfocus on a particular electronic transition, when the chro-
coupling. mophore goes from its ground electronic stédenoted by
Another possibility is to use path integral Monte Carlo |0)) to the excited electronic stafglenoted by|1)). In the
(PIMC) techniques:*°The direct Monte Carlo simulation of Born—Oppenheimer approximation, the total Hamiltonian
real-time quantum dynamics is extremely difficult due to thecan be written as
“alternating weights” problem. To avoid this difficulty, one
can calculate the Euclidean-time correlation functions, and H =Ho|0)(0[ + Ha| 1)(1], @D
analytically continue these to the real-time aXisVhile the ~ whereH, (H;) is the Hamiltonian for the nuclear degrees of
PIMC simulation of imaginary time correlation functions is freedom of the system and the bath, corresponding to the
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motion on the Born—Oppenheimer potential surface wherll. MODEL HAMILTONIAN AND MODEL SPECTRAL
the chromophore is in its grour@xcited electronic state. = DENSITIES
Within the electric dipole approximation, the normalized

electronic absorption spectrum is given by the Fourier trans- In order to _speC|fy our model, we ne_ed to def!ne Fhe
form of the dipole—dipole time correlation function: ground and excited state Born—Oppenheimer Hamiltonians

in Eq. (1). In what follows, we consider a chromophore with

1 (= _ a single intramolecular degree of freedom, which we denote
l(w)= pye J dte'“'C(t), (2) by Q; the collection of the bath nuclear coordinates is la-
T beled byq. Quite generally, one can write:
Cit)= Trle AHeh ye™ MY y) 3 Ho=ho(Q) +hp(a) +Vo(Q,q), )
- Trle AMu? '
e k] Hi=hy(Q)+ hy(@) +V4(Qa) + e, ®)

where,Blz 1/KT, Tr(---) denotes the trace over aI'I .nuclgar andwherehO(Q) [hy(Q)] is the Hamiltonian for the vibrational
electronic degrees of freedom, apds the transition dipole  .qqdinate of the system when it is in its groufekcited
operator. o electronic stateh,,(q) is the bath Hamiltonian, and,(Q,q)
Within the Cor_1don approximatiop dqes not depend on (V4(Q,q)) is the system—bath coupling, which we assume to
the nuclear coordinates, and can be written as follows: e gifterent for the two electronic states of the chromophore:;
hwe is the gas phase electronic transition of the chro-
1= po1| 0)(1[+ 1 1)(O]. ) mophore, for convenience we set it equal to 0.

Assuming the electronic energy gap between the excited and Wef how ;:otﬂsmebr the foI(Ijovlwr]Igh exe.\t;:tlyt. sol\iagle hlf?r'
ground states to be much larger thah, one can write ap- monic form of the above model. The vibrational Hamitto-

proximately: nians for the system are taken to be harmonic in both elec-
tronic states, but with different equilibrium positioQ@g and
Tr,[e~AHogiHot/ig=iH1t/f] Q;:, and (possibly different frequenciesvy, and w;. The
C(t)~ bath is modeled by a collection ™ harmonic oscillators,
and the system—bath coupling is taken to be linear in both
system and bath coordinates albeit with different coupling
strengths for the two electronic states. The two Born—
Oppenheimer Hamiltonians thus becoiffim now on we
pse atomic units

Tr[e #Ho] ’ ®)

where Tp(---) denotes the trace over the nuclear coordi-
nates.

Once the dipole autocorrelation function is known, the
electronic absorption spectrum can be obtained in a straigh
forward way via Eq(2). However, exact calculation @@(t) 1 2 1 1 2

is possible only for a very limited number of simple models, Hp=— 2m 907 +3 Mw§(Q—Qg)?— E m I8
e.g., when bothH, and H, are quadratiqsee below. In ' o
order to deal with anharmonic systems, one has to resort to 1
simulation techniques, such as path integral Monte Carlo +3 Z miwizqi2+zi 97 (Q— Qo) 9
methods.

As mentioned in Sec. |, the direct evaluation of the real- 1 # 1, , 1 92
time correlation function by PIMC methods is not feasible  H;= >m r7Q2+ 5 Mwi(Q—Q4) Z 2m, 9o’

because of the phase oscillations. Instead, one can work with
its analytic continuation to the imaginary axis defined ac- 1 - L
cording to: G(7)=C(—i7), 0=r<ph. G(7) and |(w) are 3 2 mofal+ 2 gi(Q-Qua;. (10)
related by the two-sided Laplace transform.

In the abovem is the reduced mass of the system; index
©) (running from 1 toN,,) labels the bath normal modegswith

frequenciesw; and massesn;; g° (g') are the coupling

strengths for the groun¢excited state of the chromophore.
The major limitation of this approach stems from the fact = The harmonic model defined by Eg@) and (10) is
that the Euclidean-time correlation function is defined on theexactly solvable. In order to compute the real-time dipole
negative imaginary time axis only up te- —i 8%,'" and the  autocorrelation function from Ed5), one can employ either
unavoidable statistical errors in this function limit the regionthe density matrix formalism of Kubo and Toyoz&va
of the complex plane where the analytic continuation can bébased on Gaussian integralsr the boson algebra technique
performed with sufficient accuracy. Hence, it is important toof Balian and Brezirf/ which allows evaluation of the ther-
study exactly solvable models, where the real-time correlamal averages of exponentiated quadratic functions of phonon
tion function(and its Fourier transforjrcan be obtained ex- operators. In practice, both methods are limited to a finite
actly, which then allows a test of the accuracy of the analytimumber,N,, of bath modes, and are essentially equivalent.
continuation methods. In Sec. Il we provide a description ofThroughout the present work, we have utilized the Gaussian
such a model. method of Kubo and Toyozawa.

1 [o
G(7)= Fye fﬁxdwl(w)ef“".
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For the harmonic model considered here, the effect offersion procedure to produce the exact absorption spectra
the bath on the spectrum is completely determined by théue to the bias introduced by the numerical implementation

two spectral densities defined as follows: of the analytic continuation methods.
(00)? In this work, we have chosen to generate the imaginary
Jo(w)Zz 9i Sw—wy), (11) t|me_ data _by adding 'some rgndom noise to the exact
T 2o Euclidean-time correlation functions. The latter were calcu-
o lated by the same method due to Kubo and ToyoZ8\waa
Jl(w)=2 (9i) So—w). (12) their real-time counterparts. By decreasing the amplitude of
T 2w : the artificially added noise, one can eventually arrive at the

best possible numerical solution of the inverse problem. We
now give a brief account of the two analytic continuation
methods employed in the present work.

In this work we assume for simplicity thdf(w) andJq(w)
have the same functional form, and differ only by an overall
system—bath coupling strength, ie., we writh(w)
=pod(w) and J,(w)=p1J(w), whereJ(w) is taken to be
normalized according tof jdwJ(w)=1. We now introduce
two model spectral densitie w)—for acoustic and optical The maximum entropy method is based on well-
phonons, respectively. established mathematical axioms from information and prob-
The conventional choice of spectral density for acousticbility theories. In this method the inversion problem is re-
phonons is the Debye model coupled with the deformatiorfluced to maximizing the entropy of the spectr(aefined in
potential approximatio”® This gives a spectral density the information theory senssubject to a constraint on the
which is proportional tow®, and has a sharp cutoff at the value of the least-square deviation from the data. The
Debye frequency. For numerical convenience the model camethod selects the positive spectrum to which corresponds
be slightly modifie8 by introducing a smooth exponential the largest number of ways of reproducing the data; it also
cutoff: allows the introduction of prior known information about the
solution through a default spectrum. When the method is
(13) applied to the PIMC data with the statistical noise in it, the
necessary Lagrange multiplier can be determined self-

Optical phonons are generally characterized by narrov&OnSIStentIy according to the classic maximum entropy

8 . .
dispersion. As a model for the spectral density, we hav%Ch?.r;el' ?lnced '? th.?h priieptllwotglé \éve uge thGe eX?CI
taken the following phenomenological forfh: uclidean-time data with artificially added random aussian

noise, we employ the historic maximum entropy scheme,
where the Lagrange multipliéthe regularization paramejer

A. Maximum entropy method

4
a
Jodw)= 5 o> exp — aw).

Jop(®) = 4A3 [AZ_(“’_“’Op)Z] is chosen by ensuring that the least-squares deviation from
the data is equal to the number of observations. The imple-
XOlo—(0ep=A)]0[(weptA)—w], (14 mentation of the maximum entropy method has been de-

Iscribed in detail in Ref. 21. The results of its application to
the present problem of calculating the vibronic spectrum of a
chromophore coupled to a bath will be given in Sec. V.

where 6(x) is a step function. This is a parabolic spectra
density peaked ab,, with base linewidth 2.
The numerical results for the electronic absorption spec

tra obtained with the two spectral densities specified above N
will be given in Sec. V. B. Singular value decomposition method

While the maximum entropy method is well-defined
mathematically and requires minimal priori information
IV. ANALYTIC CONTINUATION METHODS about the solution, there exists a maré hoc approach to
solving the inverse problems, which is based on the singular
Having defined a model for which the exact electronicvalue decomposition method. Having the disadvantage of be-
absorption spectrum is known, we can assess the accuracyiofy much more problem specific in its implementation, the
the analytic continuation methodsnaximum entropy and SVD method is generally characterized by a higher resolu-
SVD) by applying them to this model. As discussed earlier,tion compared to the maximum entropy appro&tisince
the imaginary-time correlation function data required as inthe electronic absorption spectrum of a chromophore in a
put for analytic continuation methods can be generated bgondensed phase environment can have relatively fine struc-
PIMC simulations. These data are affected both by the sysure arising from individual vibronic transitions, it would be
tematic errors due to the discretization of path integrals, andf interest to apply the SVD method to this problem and to
by the statistical uncertainties present in any simulation datacompare the results with the maximum entropy solution.
In principle, these errors can be reduced by increasing the One immediate difficulty in applying the SVD method to
number of time slices in the path integrals, and by runninghe present problem is due to the fact that the method by
longer PIMC simulations. However, it is important to em- itself does not guarantee the positivity of the calculated spec-
phasize that even when the exact imaginary-time data areum. While certain regularization procedures have been
available(as in the present casene cannot expect the in- propose&® which would restrict the SVD solution to positive
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values only, these procedures concomitantly reduce the res&VD has to be combined with some smoothing procedure,
lution of the method, thus making its use as an alternative te.g., Tikhonov regularizatioft The latter amounts to solving
maximum entropy much less justified. In order to avoid thisEq. (18) under a constraint of minimizing the norm of the
problem, we use the SVD method to reconstruct not the absolution or the norm of its derivativgossibly, a high-order
sorption spectrum itself, but rather the difference betweemne. This procedure smoothes out irregular features associ-
the fully quantum mechanical spectrum and the one calcuated with the small singular eigenvalues, but can also smooth
lated within the classical Franck—Condon approximationout the essential features present in the fur&known solu-

i.e., whenall the nuclear degrees of freeddiiatomic plus tion (this situation is analogous to the one mentioned earlier
bath are held fixed®3%3! The calculation of the classical in the context of imposing the positivity constraint on the
Franck—Condon spectrum reduces to a simple configuratio8VD algorithm). In order to circumvent this problem, the
space average; for the present all-harmonic model, this avefellowing approach***3*has been proposed: instead of ex-
age can be performed analyticallgnalogously to the fully panding the solution in the singular eigenvectors of the ma-
quantum mechanical casky doing Gaussian integrals. The tric K'K [as is suggested by E¢L8)], one expanda| (o)
corresponding Euclidean-time correlation function can alsdn a set of some known basis functiogs (i=1,2,...n):

be calculated, the differencAG(7) between the classical
Franck—Condon function and the one obtained in the fully
guantum mechanical treatment is related via the two-sided
Laplace transfornjcf. Eq. (6)] to the differenceAl(w) be-
tween the classical Franck—Condon spectrum and the fullwhere®;; = ¢;(w;), andc; are the(unknown expansion co-
guantum mechanical spectrum: efficients. With the above, Eq16) takes the form:

Al((!)])zz Ci(I)iju (19)

AG(T)Zi f:de(w)e*M. (15) Al(@)=®(M™M) " IMTAG(7), (20

In general, the sign oAl (w) alternates, and one can apply wherg. M=K®. Of course, the matan_ 'S allso -

the SVD n,1ethod in its original forn(i e, without the posi- cond|t.|oned,. and solvmgl Eq20) again requires using SVD

tivity constraini to reconstruch| («) f.ro.r,n AG(r). Adding combined with a smoothing procedure. However, in this case
' Tikhonov regularization has a very different effect from the

Al(w) to the classical Franck—Condon spectrum, one ObE:ase when it is combined with the standard SVD metfod.

ta_u_ns the fP”V quantum mechanical sp_ec_trum. The appllc_:a-On the basis of certaia priori knowledge about the quali-
bility of this approach to a more realistically anharmonic

tative features of the solution, one can construct the mditrix

system relies on the assumption that the classical Franck—= . ) o
.In such a way, that increasing the regularization parameter

Condo.n spectrqm for such a system can still be calculated Izra]ccentuates the desirable features of the solution, rather than
a relatively straightforward way.

. . . . simply making the solution smoothé&f.

writ;—rl]ze S(tfg'?r? tﬁglgﬁgg:eaggg'% %nt_lhe SVD approach is to Unfortunately, in contrast to the classic maximum en-

9 ' tropy method, there is no well-defined prescription for
choosing the regularization parameter. The prescriptions

AG(7)=2) KijjAl(w)), (160 commonly used in the literatu¥s® are based on thg? cri-
terion similar to the one used in the historic Maximum En-

with tropy scheme. Denoting byr; the uncertainties in the
Euclidean-time datay? can be written as

1

Kij=5= X; exp(— 1jw)), 17 "
o s [AG(m)= 3Ky lred )V

where the summation indgx(going from 1 toN) labels the X == of

frequency pointsw; at which the solution is calculated;

are the suitably chosen quadrature weights, and the indexwhere Al {w;) is the spectrum obtained from E¢20)

, (21)

(going from 1 toM) labels the data points; . combined with the Tikhonov regularization procedure. In the
Introducing the transposié” of the matrixK, Eq.(16)  present work we have found empirically the? has a pro-
can be written in the following matrix form: nounced minimum as a function of the regularization param-

eter; the value of? at this minimum is generally close to the
number of observationM. In all cases studied, we have
The ill-posed nature of the inverse Laplace problem maniused the value of the regularization parameter corresponding
fests itself in the fact that the matri'K is nearly singular, to this minimum.

and the solution of Eq(18) is extremely unstable: small It follows from the above discussion that in order to
statistical noise IMG(7) is greatly amplified in the recon- apply the SVD analytic continuation method to the present
structed spectrum| (w). A common method for calculating problem we need to specify the set of basis functigns

the inverse of a nearly singular matrix is the singular valueThese functions have to be chosen in such a way that they
decompositiorf? The singular eigenvectors associated withcan reproduce the essential qualitative features of(éixe

the smallest singular eigenvalues are highly irregular, and thpected solution. Since the electronic absorption spectrum of

Al(w)=(KTK)IKTAG(7) (18
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a chromophore in a bath is generally characterized by some

vibrational fine structure, we have chosen as our basis set the 0.20 |- Classical
functions of Lorentzian form: 015 L 4
$ilw)= — sy (22 010

(0= i)+ 0.05 - -
The peak positions; are chosen randomly within the fre- 0.00 —t I =i
guency range supporting the classical Franck—Condon spec- 020 8
trum, and the widthsy, are also chosen randomly within 0.15 - 1
“reasonable” limits. In fact, for the present all-harmonic )
model, both the peak positions and the widths can be calcu- =010 ¢ i
lated analytically’® However, for an anharmonic system 0.05 q
such a calculation is generally not possible, and therefore we 0.00 :
do not use the analytic results in constructing the basis func- 020 - §
tions. At the same time, by considering a harmonic Hamil- o1 b . |
tonian which approximates the anharmonic Hamiltonian of ' W\
interest, one can at least obtain a rough estimate of the pa- 0.10 - ' ]
rameters referred to above, and thus impose certain limits on 0.05 F .
the range of these parameters. This is what we mean by ‘ ,

oo . . o 0.00 !
reasonable limits in choosing randomly the widths of indi- -5 0 5 10 15
vidual Lorentzian basis set functions. o (au)

Alternatively, one can choose other basis sets. For ex- _ _
ample with a Gaussian basis, a slightly Iarger number 0]FIG. 1. The electronic absorption spectrum of the chromophore coupled to

. . . acoustic phonons. The solid line in all three panels is the fully quantum
basis functions are found to be needed to get the same k"}gsult. The dashed lines from top to bottom are as follag\sthe classical

of agreement with the exact spectrum. Franck—Condon spectrurt®) the spectrum reconstructed by the maximum
entropy method{3) the spectrum reconstructed by the singular value de-
composition method.

V. NUMERICAL RESULTS

In performing the numerical calculations presented beyegit for the fully quantum mechanical electronic absorption

low we have us.ed the following values for the parameters inyhectrym is shown in Fig. 1 together with the corresponding
Egs.(9) and(10): Qo=0, Q1=2, wo=w,=1. For simplicity,  ¢|5ssical Franck—Condon absorption spectrum. The former
we have takemm=m;=1. spectrum has a pronounced fine vibronic structure, while the

_ Asmentioned earlier, the numerical calculations are lim-a¢er is a featureless single band. Nevertheless, the overall
ited to a finite numbeN, of bath modes. In order to obtain shapes of the two spectra are quite similar.

the qoupling coefficients vyhich would m_imic the appropriate  The absorption spectra obtained by the maximum en-
continuous spectral density, the following p_rocedluwas tropy and SVD analytic continuation methods as described in
utilized: J(w) was discretized evenly with an incremel,  gec |y are also shown in Fig. (the magnitude of random
and the coupling coefficients were calculated according t0 5,ssian noise added to the exact Euclidean-time data was
(9?)2=ZwiPoJ(wi)Aw,(gil)ZZ2wi013(wi)Aw- (23)  taken to be 0.1% The maximum entropy_ method repro-
duces well the overall shape of the absorption band, but does

In performing the calculations, we have checked for the on ot capture the vibrational fine structure. The SVD method is

vergence with respect to the number of modes by increasingharacterized by a higher resolution, although not all posi-

Ny, until no further change in the calculated spectra was 0bgiong and widths of individual peaks are reproduced quanti-
served. Typically,N,=30 was found to be sufficient to tatively.

achieve convergence. Similar calculations have been performed for other val-

To test the applicability of the analytic continuation 65 of temperature and coupling strengths. As one would
methods, we have performed the calculations of the eleCaypect, raising the temperature and increasing the coupling

tronic absorption spectra for a variety of temperatures andyangih produce the same qualitative effect: the real-time
coupling strength parameters both for acoustic and for optigjngle autocorrelation function is damped faster, and the vi-

cal phonons. bronic structure of the spectrum becomes less pronounced.
A. Acoustic phonons For all sets of parameters studied, the performance of the two
analytic continuation methods is similar to the case presented

The spectral density for acoustic phonons is given by Eqin Fig. 1, and we do not reproduce these results here.

(13); in performing the calculations we have takes5. We
further assume the overall system—bath coupling strength t
be larger in the ground electronic state of the chromophor
than in its excited state. Taking,=0.125 andp,=0.05, we The spectral density for optical phonons is given by Eg.
perform the calculations at the temperatgre0.5. The exact  (14); in performing the calculations we have takeg,=1

. Optical phonons
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method has a well-defined mathematical foundation in the

Classical information theory, while the second one is somewhat more
0.15 i ad hocand problem specific. In order to assess the accuracy
0.10 - V i of these methods, we have studied an exactly solvable all-
harmonic model, for which the absorption spectrum can be

0.05 1 calculated exactlyf\numerically. For the purpose of testing
, the analytic continuation methods, we have used the exact

0.00 =t : —— . . . : : i ;
ME imaginary-time data with artificially added random Gaussian
0.15 1 ] noise. Two model spectral densities were introduced to
3 010 - ) i model the effect of the environment on the chromophore’s
= K absorption spectrum: one appropriate for acoustic phonons,
0.05 - , . and the other—for optical ones. The calculations have been
S performed for a variety of temperatures and chromophore—
0.00 ‘ ’ ’ “ bath coupling strengths. In all the cases studied, both analytic
045+ SVP - . continuation methods reproduced well the overall shape of
W the absorption spectrum. The singular value decomposition
0.10 r ) method gives systematically higher resolution than the maxi-
0.05 | ] mum entropy method, and is thus capable of reproducing to
some extent the fine vibronic structure of the absorption

%% 50 00 50 100 150 spectrum.

o (au) The main focus of the present work has been to test the

accuracy of two alternative analytic continuation methods for

FIG. 2. The electronic absorption spectrum of the chromophore coupled t&he F_melem of CalCU|at|_ng the apsorpnon spectra from the

optical phonons. The solid line in all three panels is the fully quantum resultEuclidean-time correlation functions. As such, the exact

The dashed lines from top to bottom are as follow®) the classi_cal imaginary-time data with artificially added random Gaussian

Franck—Condon spectrur(2) the spectrum reconstructed py the maximum noise have been used as input for the analytic continuation

entropy methodf3) the spectrum reconstructed by the singular value de- .

composition method. stage. A more stringent test of the aboye methods would
involve “real” Euclidean-time data obtained from PIMC

simulations, in which case a certain amount of cross corre-

andA=0.5. Generally, one would expect the coupling of thelations between different imaginary-time data points would
chromophore to the optical phonons to be stronger as conbe present! As long as the condensed phase environment is
pared to the acoustic ones. Hence, we take=0.25 and modeled with a harmonic bath, in calculating the dipole time
p1=0.10. Setting8=0.5, we calculate the same quantities asautocorrelation function the bath degrees of freedom can be
described in Sec. V A, and show the results in Fig. 2. Thdntegrated out analytically to give the Feynman—Vernon type
general qualitative features are very similar to the case ohfluence functionaf®*® The imaginary-time PIMC simula-
acoustic phonons, although the fine structure of the quanturtions can then be performed for an arbitréanpt necessarily
mechanical spectrum is somewhat less pronounced due t&rmonig form of the chromophore’s intramolecular poten-
the enhanced chromophore—bath coupling. Once again, tHial energy. Carrying out such simulations and applying the
maximum entropy method reproduces well the overall bandnalytic continuation methods to the simulated Euclidean-
shape, while the SVD method, in addition to that, capturedgime correlation functions will be the subject of future
the individual vibronic feature&lbeit not quantitatively investigations’®
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