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We consider the problem of calculating the electronic absorption spectrum of a chromophore with
intramolecular degrees of freedom coupled to a condensed phase environment. We approach this
calculation in the framework of the imaginary-time path integral Monte Carlo techniques, and focus
on the problem of the analytic continuation of the imaginary-time data to the real-time axis. Two
alternative analytic continuation methods are considered: the maximum entropy method and the
singular value decomposition method. An exactly solvable model is introduced to test the accuracy
of these methods. Exact numerical results for the absorption spectra are compared to the spectra
reconstructed by the analytic continuation methods; it is found that the singular value decomposition
method gives systematically higher resolution than the maximum entropy method and is capable of
reproducing the fine vibronic structure of the absorption spectrum. ©1997 American Institute of
Physics.@S0021-9606~97!51146-9#
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I. INTRODUCTION

Numerous problems in chemical physics involve calc
lation of dynamic correlation functions in quantu
systems.1,2 For an isolated system with a few degrees
freedom, the correlation functions can be obtained from c
tain path integral techniques~e.g., numerical matrix
multiplication3,4! or from the wave packet dynamics.5 A
more challenging situation occurs when the primary sys
is coupled to a condensed phase environment~‘‘bath’’ ! with
essentially infinite number of degrees of freedom. Particu
examples include: medium-induced electron transfer, di
pative tunneling, activated processes, and electronic s
troscopy of chromophores in crystals and in liquids. O
possible strategy is to treat the bath dynamics classica
while retaining the quantum mechanical treatment of the
mary system.6 Mixed quantum-classical simulations of th
type are suitable for certain problems, but, in general, do
give state-to-state transition probabilities accurately. In or
to account for the quantum nature of the bath, some alte
tive methods have been employed, such as the ti
dependent, self-consistent field approximation7 or the cumu-
lant expansion-based techniques.8 The former method is
based on the factorization of the system plus bath w
packet into wave packets for individual degrees of freedo
and the latter method employs truncation of the time evo
tion operator after the second-order term in the system–
interaction. These approximations could limit the applicab
ity of the above methods to relatively weak system–b
coupling.

Another possibility is to use path integral Monte Car
~PIMC! techniques.9–16The direct Monte Carlo simulation o
real-time quantum dynamics is extremely difficult due to t
‘‘alternating weights’’ problem. To avoid this difficulty, on
can calculate the Euclidean-time correlation functions, a
analytically continue these to the real-time axis.17 While the
PIMC simulation of imaginary time correlation functions
9312 J. Chem. Phys. 107 (22), 8 December 1997 0021-9606/
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relatively straightforward, the analytic continuation is ve
difficult to perform numerically, because the solution of th
‘‘inverse problem’’ is extremely sensitive to the statistic
noise in the simulation data. In recent years, two meth
have been applied to problems of this type: the maxim
entropy method18–22 and the singular value decompositio
~SVD! method.23–25 The purpose of the present work is
test the applicability of these methods to the problem of c
culating the electronic absorption spectrum of a ch
mophore coupled to a bath. We consider an exactly solva
model, where the relevant time correlation function~and,
hence, the spectrum! can be computed exactly. This allow
us to assess the accuracy of the two aforementioned ana
continuation methods in calculating the spectrum.

The paper is organized as follows. In Sec. II we pres
the expression for the electronic absorption spectrum,
discuss the problem of inverting the imaginary-time data
calculate the spectrum. In Sec. III we specify an exactly so
able model, which is used to assess the accuracy of the
lytic continuation methods. The details of implementation
these methods are given in Sec. IV. In Sec. V we present
numerical results, and in Sec. VI we conclude.

II. ELECTRONIC ABSORPTION SPECTRUM AND THE
INVERSION PROBLEM

We consider a chromophore with intramolecular degr
of freedom coupled to a condensed phase environment.
focus on a particular electronic transition, when the ch
mophore goes from its ground electronic state~denoted by
u0&! to the excited electronic state~denoted byu1&!. In the
Born–Oppenheimer approximation, the total Hamiltoni
can be written as

H5H0u0&^0u1H1u1&^1u, ~1!

whereH0 (H1) is the Hamiltonian for the nuclear degrees
freedom of the system and the bath, corresponding to
97/107(22)/9312/7/$10.00 © 1997 American Institute of Physics
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9313Egorov, Gallicchio, and Berne: Simulation of electronic absorption
motion on the Born–Oppenheimer potential surface wh
the chromophore is in its ground~excited! electronic state.

Within the electric dipole approximation, the normalize
electronic absorption spectrum is given by the Fourier tra
form of the dipole–dipole time correlation function:

I ~v!5
1

2p E
2`

`

dteivtC~ t !, ~2!

C~ t !5
Tr@e2bHeiHt /\me2 iHt /\m#

Tr@e2bHm2#
, ~3!

whereb51/kT, Tr~•••! denotes the trace over all nuclear a
electronic degrees of freedom, andm is the transition dipole
operator.

Within the Condon approximationm does not depend on
the nuclear coordinates, and can be written as follows:

m5m01u0&^1u1m10u1&^0u. ~4!

Assuming the electronic energy gap between the excited
ground states to be much larger thankT, one can write ap-
proximately:

C~ t !'
Trn@e2bH0eiH 0t/\e2 iH 1t/\#

Trn@e2bH0#
, ~5!

where Trn(•••) denotes the trace over the nuclear coor
nates.

Once the dipole autocorrelation function is known, t
electronic absorption spectrum can be obtained in a strai
forward way via Eq.~2!. However, exact calculation ofC(t)
is possible only for a very limited number of simple mode
e.g., when bothH0 and H1 are quadratic~see below!. In
order to deal with anharmonic systems, one has to reso
simulation techniques, such as path integral Monte Ca
methods.

As mentioned in Sec. I, the direct evaluation of the re
time correlation function by PIMC methods is not feasib
because of the phase oscillations. Instead, one can work
its analytic continuation to the imaginary axis defined a
cording to:G(t)5C(2 i t), 0<t<b\. G(t) and I (v) are
related by the two-sided Laplace transform.

G~t!5
1

2p E
2`

`

dvI ~v!e2vt. ~6!

The major limitation of this approach stems from the fa
that the Euclidean-time correlation function is defined on
negative imaginary time axis only up tot52 ib\,17 and the
unavoidable statistical errors in this function limit the regi
of the complex plane where the analytic continuation can
performed with sufficient accuracy. Hence, it is important
study exactly solvable models, where the real-time corre
tion function~and its Fourier transform! can be obtained ex
actly, which then allows a test of the accuracy of the analy
continuation methods. In Sec. III we provide a description
such a model.
J. Chem. Phys., Vol. 107, N
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III. MODEL HAMILTONIAN AND MODEL SPECTRAL
DENSITIES

In order to specify our model, we need to define t
ground and excited state Born–Oppenheimer Hamiltoni
in Eq. ~1!. In what follows, we consider a chromophore wi
a single intramolecular degree of freedom, which we den
by Q; the collection of the bath nuclear coordinates is
beled byq. Quite generally, one can write:

H05h0~Q!1hb~q!1V0~Q,q!, ~7!

H15h1~Q!1hb~q!1V1~Q,q!1\ve , ~8!

whereh0(Q) @h1(Q)# is the Hamiltonian for the vibrationa
coordinate of the system when it is in its ground~excited!
electronic state,hb(q) is the bath Hamiltonian, andV0(Q,q)
(V1(Q,q)) is the system–bath coupling, which we assume
be different for the two electronic states of the chromopho
\ve is the gas phase electronic transition of the ch
mophore, for convenience we set it equal to 0.

We now consider the following exactly solvable ha
monic form of the above model. The vibrational Hamilt
nians for the system are taken to be harmonic in both e
tronic states, but with different equilibrium positionsQ0 and
Q1 , and ~possibly! different frequenciesv0 and v1 . The
bath is modeled by a collection ofN harmonic oscillators,
and the system–bath coupling is taken to be linear in b
system and bath coordinates albeit with different coupl
strengths for the two electronic states. The two Bor
Oppenheimer Hamiltonians thus become~from now on we
use atomic units!

H052
1

2m

]2

]Q2 1
1

2
mv0

2~Q2Q0!22(
i

1

2mi

]2

]qi
2

1
1

2 (
i

miv i
2qi

21(
i

gi
0~Q2Q0!qi , ~9!

H152
1

2m

]2

]Q2 1
1

2
mv1

2~Q2Q1!22(
i

1

2mi

]2

]qi
2

1
1

2 (
i

miv i
2qi

21(
i

gi
1~Q2Q1!qi . ~10!

In the above,m is the reduced mass of the system; indei
~running from 1 toNb! labels the bath normal modesqi with
frequenciesv i and massesmi ; gi

0 (gi
1) are the coupling

strengths for the ground~excited! state of the chromophore
The harmonic model defined by Eqs.~9! and ~10! is

exactly solvable. In order to compute the real-time dipo
autocorrelation function from Eq.~5!, one can employ eithe
the density matrix formalism of Kubo and Toyozawa26

~based on Gaussian integrals!, or the boson algebra techniqu
of Balian and Brezin,27 which allows evaluation of the ther
mal averages of exponentiated quadratic functions of pho
operators. In practice, both methods are limited to a fin
number,Nb , of bath modes, and are essentially equivale
Throughout the present work, we have utilized the Gauss
method of Kubo and Toyozawa.26
o. 22, 8 December 1997
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9314 Egorov, Gallicchio, and Berne: Simulation of electronic absorption
For the harmonic model considered here, the effec
the bath on the spectrum is completely determined by
two spectral densities defined as follows:

J0~v!5(
i

~gi
0!2

2v i
d~v2v i !, ~11!

J1~v!5(
i

~gi
1!2

2v i
d~v2v i !. ~12!

In this work we assume for simplicity thatJ0(v) andJ1(v)
have the same functional form, and differ only by an over
system–bath coupling strength, i.e., we writeJ0(v)
5r0J(v) and J1(v)5r1J(v), whereJ(v) is taken to be
normalized according to:*0

`dvJ(v)51. We now introduce
two model spectral densitiesJ(v)—for acoustic and optica
phonons, respectively.

The conventional choice of spectral density for acous
phonons is the Debye model coupled with the deformat
potential approximation.28 This gives a spectral densit
which is proportional tov3, and has a sharp cutoff at th
Debye frequency. For numerical convenience the model
be slightly modified8 by introducing a smooth exponentia
cutoff:

Jac~v!5
a4

6
v3 exp~2av!. ~13!

Optical phonons are generally characterized by nar
dispersion. As a model for the spectral density, we h
taken the following phenomenological form:29

Jop~v!5
3

4D3 @D22~v2vop!
2#

3u@v2~vop2D!#u@~vop1D!2v#, ~14!

where u(x) is a step function. This is a parabolic spect
density peaked atvop with base linewidth 2D.

The numerical results for the electronic absorption sp
tra obtained with the two spectral densities specified ab
will be given in Sec. V.

IV. ANALYTIC CONTINUATION METHODS

Having defined a model for which the exact electron
absorption spectrum is known, we can assess the accura
the analytic continuation methods~maximum entropy and
SVD! by applying them to this model. As discussed earli
the imaginary-time correlation function data required as
put for analytic continuation methods can be generated
PIMC simulations. These data are affected both by the s
tematic errors due to the discretization of path integrals,
by the statistical uncertainties present in any simulation d
In principle, these errors can be reduced by increasing
number of time slices in the path integrals, and by runn
longer PIMC simulations. However, it is important to em
phasize that even when the exact imaginary-time data
available~as in the present case!, one cannot expect the in
J. Chem. Phys., Vol. 107, N
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version procedure to produce the exact absorption spe
due to the bias introduced by the numerical implementat
of the analytic continuation methods.

In this work, we have chosen to generate the imagin
time data by adding some random noise to the ex
Euclidean-time correlation functions. The latter were calc
lated by the same method due to Kubo and Toyozawa26 as
their real-time counterparts. By decreasing the amplitude
the artificially added noise, one can eventually arrive at
best possible numerical solution of the inverse problem.
now give a brief account of the two analytic continuatio
methods employed in the present work.

A. Maximum entropy method

The maximum entropy method is based on we
established mathematical axioms from information and pr
ability theories. In this method the inversion problem is r
duced to maximizing the entropy of the spectrum~defined in
the information theory sense! subject to a constraint on th
value of the least-square deviation from the data. T
method selects the positive spectrum to which correspo
the largest number of ways of reproducing the data; it a
allows the introduction of prior known information about th
solution through a default spectrum. When the method
applied to the PIMC data with the statistical noise in it, t
necessary Lagrange multiplier can be determined s
consistently according to the classic maximum entro
scheme.18 Since in the present work we use the exa
Euclidean-time data with artificially added random Gauss
noise, we employ the historic maximum entropy schem
where the Lagrange multiplier~the regularization parameter!
is chosen by ensuring that the least-squares deviation f
the data is equal to the number of observations. The im
mentation of the maximum entropy method has been
scribed in detail in Ref. 21. The results of its application
the present problem of calculating the vibronic spectrum o
chromophore coupled to a bath will be given in Sec. V.

B. Singular value decomposition method

While the maximum entropy method is well-define
mathematically and requires minimala priori information
about the solution, there exists a moread hocapproach to
solving the inverse problems, which is based on the sing
value decomposition method. Having the disadvantage of
ing much more problem specific in its implementation, t
SVD method is generally characterized by a higher reso
tion compared to the maximum entropy approach.25 Since
the electronic absorption spectrum of a chromophore i
condensed phase environment can have relatively fine s
ture arising from individual vibronic transitions, it would b
of interest to apply the SVD method to this problem and
compare the results with the maximum entropy solution.

One immediate difficulty in applying the SVD method
the present problem is due to the fact that the method
itself does not guarantee the positivity of the calculated sp
trum. While certain regularization procedures have be
proposed23 which would restrict the SVD solution to positiv
o. 22, 8 December 1997
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9315Egorov, Gallicchio, and Berne: Simulation of electronic absorption
values only, these procedures concomitantly reduce the r
lution of the method, thus making its use as an alternativ
maximum entropy much less justified. In order to avoid t
problem, we use the SVD method to reconstruct not the
sorption spectrum itself, but rather the difference betwe
the fully quantum mechanical spectrum and the one ca
lated within the classical Franck–Condon approximati
i.e., whenall the nuclear degrees of freedom~diatomic plus
bath! are held fixed.26,30,31 The calculation of the classica
Franck–Condon spectrum reduces to a simple configura
space average; for the present all-harmonic model, this a
age can be performed analytically~analogously to the fully
quantum mechanical case! by doing Gaussian integrals. Th
corresponding Euclidean-time correlation function can a
be calculated, the differenceDG(t) between the classica
Franck–Condon function and the one obtained in the fu
quantum mechanical treatment is related via the two-si
Laplace transform@cf. Eq. ~6!# to the differenceDI (v) be-
tween the classical Franck–Condon spectrum and the f
quantum mechanical spectrum:

DG~t!5
1

2p E
2`

`

dvDI ~v!e2vt. ~15!

In general, the sign ofDI (v) alternates, and one can app
the SVD method in its original form~i.e., without the posi-
tivity constraint! to reconstructDI (v) from DG(t). Adding
DI (v) to the classical Franck–Condon spectrum, one
tains the fully quantum mechanical spectrum. The appli
bility of this approach to a more realistically anharmon
system relies on the assumption that the classical Fran
Condon spectrum for such a system can still be calculate
a relatively straightforward way.

The starting point for applying the SVD approach is
write Eq. ~15! in the discretized form:

DG~t i !5(
j

Ki j DI ~v j !, ~16!

with

Ki j 5
1

2p
xj exp~2t iv j !, ~17!

where the summation indexj ~going from 1 toN! labels the
frequency pointsv j at which the solution is calculated,xj

are the suitably chosen quadrature weights, and the indi
~going from 1 toM ! labels the data pointst i .

Introducing the transposeKT of the matrixK, Eq. ~16!
can be written in the following matrix form:

DI ~v!5~KTK !21KTDG~t! ~18!

The ill-posed nature of the inverse Laplace problem ma
fests itself in the fact that the matrixKTK is nearly singular,
and the solution of Eq.~18! is extremely unstable: sma
statistical noise inDG(t) is greatly amplified in the recon
structed spectrumDI (v). A common method for calculating
the inverse of a nearly singular matrix is the singular va
decomposition.32 The singular eigenvectors associated w
the smallest singular eigenvalues are highly irregular, and
J. Chem. Phys., Vol. 107, N
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SVD has to be combined with some smoothing procedu
e.g., Tikhonov regularization.33 The latter amounts to solving
Eq. ~18! under a constraint of minimizing the norm of th
solution or the norm of its derivative~possibly, a high-order
one!. This procedure smoothes out irregular features ass
ated with the small singular eigenvalues, but can also smo
out the essential features present in the true~unknown! solu-
tion ~this situation is analogous to the one mentioned ear
in the context of imposing the positivity constraint on th
SVD algorithm!. In order to circumvent this problem, th
following approach24,34,35has been proposed: instead of e
panding the solution in the singular eigenvectors of the m
tric KTK @as is suggested by Eq.~18!#, one expandsDI (v)
in a set of some known basis functionsf i ( i 51,2,...,n):

DI ~v j !5(
i

ciF i j , ~19!

whereF i j 5f i(v j ), andci are the~unknown! expansion co-
efficients. With the above, Eq.~16! takes the form:

DI ~v!5F~MTM !21MTDG~t!, ~20!

where M5KF. Of course, the matrixM is also ill-
conditioned, and solving Eq.~20! again requires using SVD
combined with a smoothing procedure. However, in this c
Tikhonov regularization has a very different effect from t
case when it is combined with the standard SVD metho24

On the basis of certaina priori knowledge about the quali
tative features of the solution, one can construct the matriF
in such a way, that increasing the regularization param
accentuates the desirable features of the solution, rather
simply making the solution smoother.24

Unfortunately, in contrast to the classic maximum e
tropy method, there is no well-defined prescription f
choosing the regularization parameter. The prescripti
commonly used in the literature34,35 are based on thex2 cri-
terion similar to the one used in the historic Maximum E
tropy scheme. Denoting bys i the uncertainties in the
Euclidean-time data,x2 can be written as

x25(
i 51

M
@DG~t i !2( jKi j DI reg~v j !#

2

s i
2 , ~21!

where DI reg(v j ) is the spectrum obtained from Eq.~20!
combined with the Tikhonov regularization procedure. In t
present work we have found empirically thatx2 has a pro-
nounced minimum as a function of the regularization para
eter; the value ofx2 at this minimum is generally close to th
number of observationsM . In all cases studied, we hav
used the value of the regularization parameter correspon
to this minimum.

It follows from the above discussion that in order
apply the SVD analytic continuation method to the pres
problem we need to specify the set of basis functionsf i .
These functions have to be chosen in such a way that
can reproduce the essential qualitative features of the~ex-
pected! solution. Since the electronic absorption spectrum
o. 22, 8 December 1997
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9316 Egorov, Gallicchio, and Berne: Simulation of electronic absorption
a chromophore in a bath is generally characterized by s
vibrational fine structure, we have chosen as our basis se
functions of Lorentzian form:

f i~v!5
g i

~v2v i !
21g i

2 . ~22!

The peak positionsv i are chosen randomly within the fre
quency range supporting the classical Franck–Condon s
trum, and the widthsg i are also chosen randomly withi
‘‘reasonable’’ limits. In fact, for the present all-harmon
model, both the peak positions and the widths can be ca
lated analytically.36 However, for an anharmonic syste
such a calculation is generally not possible, and therefore
do not use the analytic results in constructing the basis fu
tions. At the same time, by considering a harmonic Ham
tonian which approximates the anharmonic Hamiltonian
interest, one can at least obtain a rough estimate of the
rameters referred to above, and thus impose certain limit
the range of these parameters. This is what we mean
reasonable limits in choosing randomly the widths of in
vidual Lorentzian basis set functions.

Alternatively, one can choose other basis sets. For
ample with a Gaussian basis, a slightly larger number
basis functions are found to be needed to get the same
of agreement with the exact spectrum.

V. NUMERICAL RESULTS

In performing the numerical calculations presented
low we have used the following values for the parameters
Eqs.~9! and~10!: Q050, Q152, v05v151. For simplicity,
we have takenm5mi51.

As mentioned earlier, the numerical calculations are li
ited to a finite numberNb of bath modes. In order to obtai
the coupling coefficients which would mimic the appropria
continuous spectral density, the following procedure37 was
utilized: J(v) was discretized evenly with an incrementDv,
and the coupling coefficients were calculated according

~gi
0!252v ir0J~v i !Dv,~gi

1!252v ir1J~v i !Dv. ~23!

In performing the calculations, we have checked for the c
vergence with respect to the number of modes by increa
Nb until no further change in the calculated spectra was
served. Typically,Nb530 was found to be sufficient to
achieve convergence.

To test the applicability of the analytic continuatio
methods, we have performed the calculations of the e
tronic absorption spectra for a variety of temperatures
coupling strength parameters both for acoustic and for o
cal phonons.

A. Acoustic phonons

The spectral density for acoustic phonons is given by
~13!; in performing the calculations we have takena55. We
further assume the overall system–bath coupling strengt
be larger in the ground electronic state of the chromoph
than in its excited state. Takingr050.125 andr150.05, we
perform the calculations at the temperatureb50.5. The exact
J. Chem. Phys., Vol. 107, N
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result for the fully quantum mechanical electronic absorpt
spectrum is shown in Fig. 1 together with the correspond
classical Franck–Condon absorption spectrum. The for
spectrum has a pronounced fine vibronic structure, while
latter is a featureless single band. Nevertheless, the ov
shapes of the two spectra are quite similar.

The absorption spectra obtained by the maximum
tropy and SVD analytic continuation methods as describe
Sec. IV are also shown in Fig. 1~the magnitude of random
Gaussian noise added to the exact Euclidean-time data
taken to be 0.1%!. The maximum entropy method repro
duces well the overall shape of the absorption band, but d
not capture the vibrational fine structure. The SVD method
characterized by a higher resolution, although not all po
tions and widths of individual peaks are reproduced qua
tatively.

Similar calculations have been performed for other v
ues of temperature and coupling strengths. As one wo
expect, raising the temperature and increasing the coup
strength produce the same qualitative effect: the real-t
dipole autocorrelation function is damped faster, and the
bronic structure of the spectrum becomes less pronoun
For all sets of parameters studied, the performance of the
analytic continuation methods is similar to the case presen
in Fig. 1, and we do not reproduce these results here.

B. Optical phonons

The spectral density for optical phonons is given by E
~14!; in performing the calculations we have takenvop51

FIG. 1. The electronic absorption spectrum of the chromophore couple
acoustic phonons. The solid line in all three panels is the fully quan
result. The dashed lines from top to bottom are as follows:~1! the classical
Franck–Condon spectrum;~2! the spectrum reconstructed by the maximu
entropy method;~3! the spectrum reconstructed by the singular value
composition method.
o. 22, 8 December 1997
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9317Egorov, Gallicchio, and Berne: Simulation of electronic absorption
andD50.5. Generally, one would expect the coupling of t
chromophore to the optical phonons to be stronger as c
pared to the acoustic ones. Hence, we taker050.25 and
r150.10. Settingb50.5, we calculate the same quantities
described in Sec. V A, and show the results in Fig. 2. T
general qualitative features are very similar to the case
acoustic phonons, although the fine structure of the quan
mechanical spectrum is somewhat less pronounced du
the enhanced chromophore–bath coupling. Once again
maximum entropy method reproduces well the overall ba
shape, while the SVD method, in addition to that, captu
the individual vibronic features~albeit not quantitatively!.

VI. CONCLUDING REMARKS

In this paper we have considered the problem of cal
lating the electronic absorption spectrum of a chromoph
with intramolecular degrees of freedom coupled to a c
densed phase environment. The central quantity required
calculating this spectrum is the dipole time autocorrelat
function, which can be obtained from path integral Mon
Carlo simulations. While the real-time path integral calcu
tions are extremely difficult, the imaginary-time correlatio
functions can be simulated in a straightforward way. Hen
the main focus of the present work has been the ana
continuation of the imaginary-time data to the real-time ax

We have considered two alternative methods for p
forming the analytic continuation: the maximum entro
method and the singular value decomposition. The fi

FIG. 2. The electronic absorption spectrum of the chromophore couple
optical phonons. The solid line in all three panels is the fully quantum res
The dashed lines from top to bottom are as follows:~1! the classical
Franck–Condon spectrum;~2! the spectrum reconstructed by the maximu
entropy method;~3! the spectrum reconstructed by the singular value
composition method.
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method has a well-defined mathematical foundation in
information theory, while the second one is somewhat m
ad hocand problem specific. In order to assess the accur
of these methods, we have studied an exactly solvable
harmonic model, for which the absorption spectrum can
calculated exactly~numerically!. For the purpose of testing
the analytic continuation methods, we have used the e
imaginary-time data with artificially added random Gauss
noise. Two model spectral densities were introduced
model the effect of the environment on the chromophor
absorption spectrum: one appropriate for acoustic phon
and the other—for optical ones. The calculations have b
performed for a variety of temperatures and chromopho
bath coupling strengths. In all the cases studied, both ana
continuation methods reproduced well the overall shape
the absorption spectrum. The singular value decomposi
method gives systematically higher resolution than the ma
mum entropy method, and is thus capable of reproducing
some extent the fine vibronic structure of the absorpt
spectrum.

The main focus of the present work has been to test
accuracy of two alternative analytic continuation methods
the problem of calculating the absorption spectra from
Euclidean-time correlation functions. As such, the ex
imaginary-time data with artificially added random Gauss
noise have been used as input for the analytic continua
stage. A more stringent test of the above methods wo
involve ‘‘real’’ Euclidean-time data obtained from PIMC
simulations, in which case a certain amount of cross co
lations between different imaginary-time data points wou
be present.21 As long as the condensed phase environmen
modeled with a harmonic bath, in calculating the dipole tim
autocorrelation function the bath degrees of freedom can
integrated out analytically to give the Feynman–Vernon ty
influence functional.38,36 The imaginary-time PIMC simula-
tions can then be performed for an arbitrary~not necessarily
harmonic! form of the chromophore’s intramolecular pote
tial energy. Carrying out such simulations and applying
analytic continuation methods to the simulated Euclide
time correlation functions will be the subject of futur
investigations.36
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