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The dependence of the rate constant for isomerization on the competition
between intramolecular vibrational relaxation and energy transfer
to the bath: A stochastic model

Gidon Gershinsky and B. J. Bernea)

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

~Received 10 August 1998; accepted 6 October 1998!

A new stochastic model is introduced to emulate intramolecular vibrational relaxation in molecules
undergoing isomerization. In this model the Hamiltonian flow is punctuated at random times by an
exchange of vibrational kinetic energies. When applied to the study of the rate of barrier crossing,
this model reproduces many of the salient features of rate processes in real molecules. For example
when the mean timet between kinetic energy exchange events is short compared to the crossing
time of a well the model gives the Rice–Ramsperger–Kassel–Marcus~RRKM! rate constant. When
t is longer than the crossing time the rate constant is smaller than the RRKM value. In this paper
the stochastic kinetic energy exchange model~SKEEM! combined with the Bhatnagar–Gross–
Krook model for impulsive collisions with a bath is used to explore the dependence of the rate
constant on collision rate. This model clarifies why at low collision rates the rate constant for barrier
crossing reflects the full dimensionality of the molecule, whereas at higher collision rates the rate
constant seems to reflect a lower dimensionality. ©1999 American Institute of Physics.
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I. INTRODUCTION

This paper focuses on the role of intramolecular vib
tional relaxation~IVR! in determining the rate constant fo
activated barrier crossing in polyatomic molecules. Here
reaction coordinate can exchange energy with the other
tramolecular degrees of freedom or with the solvent. In t
oretical treatments, the coupling of the reaction coordinat
the bath is either treated stochastically through stro
collision models1–8 @such as the Bhatnagar–Gross–Kro
~BGK! model#, weak collision models9,10 ~such as the
Langevin–Kramers model!, or explicit solvent models using
molecular dynamics simulations. In the polyatomic molec
the intramolecular degrees of freedom are coupled non
early. Interesting effects have been predicted due to th
nonlinear couplings in the weak coupling regime11–14,7~low
collision rate for BGK dynamics, low friction constant fo
Langevin dynamics, or low solvent density for explicit so
vent dynamics! where the energy associated with the react
coordinate only rarely exceeds the activation energy. In
regime, energy excitation becomes the rate determining
in the kinetics. This is the so called energy diffusion~ED!
regime.9,15,10 Theoretical treatments of this regime ofte
make the tacit assumption that IVR is rapid compared
energy exchange with the bath. One can then show16,17 that
the barrier crossing rate constant will depend linearly on
collision rate~BGK! or the friction coefficient~Langevin–
Kramers!. This may be true at very low collision rate o
friction, but as these parameters are increased, IVR may
come slower than energy transfer to the bath. What happ
then? Previous studies have shown that the rate constant
becomes a nonlinear function of the collision rate or the fr

a!Electronic mail: berne@chem.columbia.edu
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tion coefficient.11–14,18Its behavior may then reflect the fu
dimensionality of the polyatomic molecule at low collisio
rates or friction and a reduced dimensionality at higher v
ues of these parameters. Similar behavior has more rece
been shown to exist in explicit solvent models. We focus
these effects in this paper. We introduce a simple stocha
model for the microcanonical dynamics of the isolated po
atomic model and combine this new stochastic model w
the BGK model for bath collisions. This stochastic mod
allows us to understand the behavior of the rate constan
terms of very simple physical principles because the mo
has very simple intramolecular dynamics with a well defin
IVR rate. Nonlinear Hamiltonian dynamical systems by co
trast have much more complicated intramolecular dynam

When a polyatomic molecule such as cyclohexane
dergoes a conformation change (Boat
Chair) the reaction
coordinate must pass over an energy barrier.7,19 The reaction
coordinate is coupled both to other intramolecular degree
freedom and to the bath. Let us consider what happens
mediately after the reaction coordinate passes over the
rier. If it is not coupled to either intramolecular modes or
the bath, it will periodically recross the barrier with a perio
T(E) depending on the total energy of the molecule~which
is conserved! and no barrier crossing rate constant wou
exist. If it is only coupled to other intramolecular modes a
not to the bath, it would exchange energy only with the oth
intramolecular modes through IVR on a time scalet IVR and,
depending on the strength of its coupling to the other mod
it would exhibit a range of behaviors.

~a! If its coupling strengths to the other intramolecul
modes are strong, the reactive coordinate will lose
ergy to the other modes in a time (t IVR) short com-
pared to its transit timeT(E) over either of the two
3 © 1999 American Institute of Physics
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potential energy basins corresponding to the Boat
Chair conformations. In this case of rapid IVR the
will be no rapid barrier recrossings and the rate co
stant will be given by the Rice–Ramsperger–Kass
Marcus~RRKM! rate theory.

~b! On the other hand, if the coupling strengths to the ot
intramolecular degrees of freedom are not stro
@t IVR@T(E)#, the reaction coordinate will rapidly re
cross the barrier one or more times before losing
ergy by IVR and the rate constant will be smaller th
the RRKM rate constant. In addition, there will be th
added complication that the phase space can be dec
posed into regular regions filled with invariant tori an
irregular regions.20,21~The invariant tori are usually de
stroyed in the limit of large coupling strength.!

In the presence of a molecular bath the molecule w
suffer random collisions leading to energy exchange betw
the molecular degrees of freedom and the bath. The t
scale for these collisions will be defined by the time betwe
collisions tcoll . The barrier crossing kinetics will thus de
pend on several time scales: the crossing time of the st
wells T(E); the time scale characterizing energy transfer
tween the reaction coordinate and the other intramolec
degrees of freedomt IVR ; and the time between collisions o
the molecule and the bathtcoll .

In general, the Hamiltonian contains nonlinear terms a
the Hamiltonian flow is complicated, requiring extensive n
merical simulation. To gain insight into reactive dynami
simple two degree of freedom systems have been studie
detail. One such system is the DeLeon–Berne Hamilton
which consists of a quartic double well, coupled to a Mo
oscillator.20 In this model the energy barrier in the quart
double well is an exponential function whose argumen
proportional to the displacement of the Morse oscillator, w
the proportionality constant being the coupling strength. I
of interest to understand how this model behaves at fi
total energy for different coupling strengths. Simulatio
showed that for strong coupling strengths the barrier cros
dynamics is well described by the RRKM theory. Th
means that for trajectories staring at the transition state w
energyE.Ea , whereEa is the activation energy, the energ
in the reactive coordinate is transferred to the other mode
enough that the molecule gets trapped in one of the wells
remains there for a long enough time for the two modes
equipartition before the reactive coordinate can be rea
vated and recross the transitions state to the other well.
lower coupling strengths the reactive dynamics are m
complicated because the phase space will now subdivide
regular and irregular parts. The model is dynamically ve
rich and has been used in other studies.22

The De Leon–Berne model has been used to probe
competition between IVR and energy transfer to a collisio
bath as a model for how solvents effect rate constants.11–14

Two different models of the collisional bath~gas or liquid!
were used. In one model the effect of the bath was mode
by random impulsive~strong! collisions during which the
velocities in the molecule are thermalized~the so-called
BGK model1–3! and in the other model the molecule expe
r
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ences a systematic frictional force and a randomly fluctu
ing force ~the so called Langevin dynamics model of we
collisions!.13 Using the reactive flux23,24 absorbing boundary
technique25,26 to calculate the rate constant for barrier cros
ing, it was found that the rate constant at very low collisi
rate increases with collision rate with a slope given by
full two dimensions of the molecule but at higher collisio
rate it behaves as though the dimensionality of the molec
is between two and one dimensions.

We wish to understand how the barrier crossing r
constant depends on these different time scales. Unfo
nately, molecular dynamics simulations of reacting m
ecules in explicit or stochastic solvents have not been abl
provide the kind of insight we seek because it is very di
cult to determinet IVR . Thus we seek guidance by devising
simple stochastic molecular model that has all of the p
cesses described above. We call this model the stoch
kinetic energy exchange model~SKEEM!. Combining this
model with the BGK model for molecular collisions with th
bath allows us to gain considerable insight into the comp
tion between IVR and bath collisions in determining the ra
constant for barrier crossing.

II. STOCHASTIC KINETIC ENERGY EXCHANGE
MODEL „SKEEM…

To better understand the physical behavior descri
above, we have devised a stochastic model to describe
microcanonical dynamics of the molecule, the SKEE
which can be combined with BGK dynamics to account
bath collisions. To our knowledge this is the first such s
chastic microcanonical dynamical model. SKEEM for a tw
degree of freedom system is defined by the following:

~1! The Hamiltonian is separable into reactive and nonre
tive degrees of freedom.

~2! The dynamics generated by this separable Hamiltonia
punctuated by random intramolecular energy trans
events~a Poisson process! where the mean time betwee
these events ist5g21 and the probability that the mol
ecule will evolve for a timet without suffering an energy
transfer event is
p0~t!5e2gt. ~1!

~3! The kinetic energy after an energy transfer event~indi-
cated bya8) is related to the kinetic energy before th
energy transfer event as follows:

Tx85Ty , ~2!

Ty85Tx . ~3!

~4! The potential energies are not changed during an ene
transfer event.

~5! An energy transfer event changes the magnitude of
velocities of the two degrees of freedom according to

uvx8u5S 2

mx
Tx8D1/2

~4!

uvy8u5S 2

my
Ty8D1/2

. ~5!

but does not change the direction of the velocities.~This
can be modified if desired.! An important feature of this
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model is that the total energy is conserved during e
energy transfer event. From Eqs.~2! and~3! we see that

Tx81Ty85Tx1Ty ~6!

Thus, the total kinetic energy is conserved during the ev
and because the potential energy of each degree of free
is unchanged during the event, the total energy is conser
It is a simple matter to extend this model to higher dime
sional systems. In fact there are several possible models.
could define different mean times for the energy excha
between each pair of modes so that when the system is
vanced to each of the sampled event times the kinetic e
gies corresponding to the specific pair of modes in that ev
are transformed according to Eqs.~2! and ~3!. This would
allow for a multiplicity of mode specific IVR relaxation
times. Another possibility is to define one mean free tim
between events and to define an event to be such tha
kinetic energies of all the distinct pairs of modes are upda
~exchanged! independently.

It is worth commenting on the fact that other SKEE
type models are possible. For example in place of the t
kinetic energy exchange one can invoke the following
netic energy transformation in place of Eqs.~2! and ~3!:

~38! The kinetic energy after an energy transfer event~indi-
cated bya8) is related to the kinetic energy before th
energy transfer event as follows:

Tx85jTx1~12j!Ty , ~7!

Ty85~12j!Tx1jTy , ~8!

wherej is a number between 0 and 1. Once chosen,
number can be held fixed at 0, as above, or it can ju
between 0 and 1 with a specified probability.

~48! The values ofj for different energy transfer events a
uncorrelated.

We have tried these two variants. The model in whichj
jumps between 0 and 1 is essentially equivalent to the c
plete energy exchange model except for a transformatio
the time scale for the relaxation.

The dynamics generated by SKEEM is easily simulat
For the determination of the rate constant one must calcu
the reactive flux.23,24 This is done by sampling the position
and velocities of the molecule from a velocity weighted m
crocanonical distribution function with the reactive coord
nate constrained to be at the transition state. For eac
these initial states, the times for the energy transfer ev
are sampled from the Poisson distribution. The molec
then moves on the separable potential until the time of
first collision at which time the velocities of the two degre
of freedom are assigned according to item~5! above. Starting
with the new velocities, the molecule now moves on t
separable potential until the next event and the proces
repeated seriatim. These trajectories can be used to d
mine the reactive flux

k~ t !5
1

XAXB
^ ẏd~y!u@y~ t !#&E , ~9!
h
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where y is the reaction coordinate andXA and XB are the
equilibrium mole fractions of reactant and product, resp
tively.

It is a simple matter to introduce the effect of solvent
using a BGK collisional bath in which the molecule suffe
impulsive collisions.1,2 Then, starting with the initial state o
the molecule, one samples the times for the energy excha
events as in SKEEM and one samples the times for co
sional events with the bath from the Poisson distribut
P0(t)5e2a as specified by the BGK model. The mean tim
between collisions istcoll5a21. There are now two kinds o
events: an energy exchange event and a bath collisi
event. Starting with the initial state the molecule moves
the separable Hamiltonian until the first event. If the fi
event is an energy exchange event then transform the
lecular velocities according to SKEEM. If the first event is
bath collisional event then transform the molecular velocit
according to BGK; that is, sample new velocities from t
Maxwell distribution function. Now repeat for the nex
event, etc. This model can also be modified to allow
different degrees of freedom to experience different collis
rates with the bath, thus allowing for the possibility th
some molecular degrees of freedom within a large po
atomic molecule may be shielded from collisions with t
bath. For the calculation of the reactive flux, sample the
tial state of the molecule from the canonical~constant tem-
perature! ensemble with the reaction coordinate fixed at t
transition state. This can be accomplished in the manner
lined in Ref. 11–14. For each of these starting points
trajectories as just specified. This SKEEM-BGK model
very easy to implement.

III. SKEEM-BGK APPLIED TO THE DE LEON–BERNE
MODEL

The De Leon–Berne Hamiltonian20 is

H54~ ẋ21 ẏ2!14y2~y221!e2zlx1l3~12e2lx!211,
~10!

where the reaction coordinatey moves on a quartic double
well and the coordinatex moves on a Morse potential. Thi
potential can be decomposed into a separable part:

U0~x,y!5l3~12e2lx!214y2~y221!11, ~11!

and a coupling part:

Ucoup~x,y!54~e2zlx21!y2~y221!. ~12!

Thusz is the coupling strength. Forz50 the Berne–De Leon
potential is separable. It is the separable potentialU0(x,y)
that will be used in SKEEM simulations. Then the ener
exchange step in SKEEM will mimic the effect of the co
pling potential given in Eq.~12!. In the full De Leon–Berne
potential the coupling arises from the dependence of the
rier height onx, the displacement from equilibrium of th
Morse oscillator. Energy is measured in units of the barr
height corresponding tox50. l3 is the dissociation of the
Morse oscillator in these units andl is the range paramete
of the Morse potential. The quartic has two minima aty5
61/& and a maximum aty5o. These extremal points, an
therefore the saddle point (x50, y50) do not depend onx.
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We fix l3510 in order to guarantee that the dissociati
energy will be much larger than the barrier to conformat
change.

IV. SKEEM-BGK SIMULATIONS: ALL TRAJECTORIES
ARE IRREGULAR

A. SKEEM simulations of microcanonical and
canonical processes absence of the bath

The De Leon–Berne potential20 with l51.95, z52.3,
andl3510.0 was shown to be ‘‘completely’’ chaotic. More
over it was shown that the microcanonical reactive flux
hibited ‘‘no’’ rapid recrossings. The rate for activated barr
crossings for this strongly coupled case was shown to b
accord with the RRKM theory. It is of interest to app
SKEEM to this case. In applying SKEEM we remove t
coupling by settingz50. The coupling is then emulated b
the mean timet between kinetic energy exchanges. In Fig
the reactive flux is shown for different values oft. From the
oscillations of the reactive flux for very larget we can esti-

FIG. 1. Reactive flux dependence on time for differentt. SKEEM simula-
tion in microcanonical ensemble,E51.02.

FIG. 2. The reactive flux dependence on time for the original De Leo
Berne model with strong mode couplingz52.3 ~solid line! and SKEEM
simulation witht51 ~dashed line!.
-
r
in

mate the period for recrossing of the barrier to beT(E)
'10. Thus fort!10 the kinetic energy should be equipa
tioned before the reactive trajectories can recross the bar
We see that fort50.5 and 1.0 this is the case, but for larg
values oft the reactive flux starts to exhibit recrossing eve
leading to a dephasing decay to a plateau value. The recr
ing period T(E) is thus seen to be the cause of the sh
‘‘molecular time scale’’ often referred to in discussions
the reactive flux. Whent!T(E) the reactive flux predicted
by SKEEM decays exponentially and the rate constant
this decay isk(E)57.531023. The microcanonical rate
constant kRRKM(E)5(XAXB)21^ ẏd(y)u( ẏ)&E57.231023

for the uncoupled De Leon–Berne potential is easy to co
pute and we find that the decay rate of the reactive flux
identical to the RRKM rate constant as separately calcula
that isk(E)5kRRKM(E), as expected.

How well does the SKEEM model emulate molecul
dynamics of the fully coupled De Leon–Berne potential
the strong coupling limit? To answer this, in Fig. 2 we com
pare the microcanonical reactive flux forE51.02 ~only
slightly larger than the activation energyEa51.0) for the
fully coupled De Leon–Berne potential with the SKEE
simulation of the uncoupled potential witht51. Clearly, for
this case, the SKEEM model emulates the fully coupled s
tem very closely.

In the calculation of the reactive flux a set of initia
dynamical states are sampled with the reaction coordin
constrained to be at the transition statey50 and the SKEEM
rules are applied to generate the trajectory. It is of interes
study how the energy in the reaction coordinate is transfe
to the nonreactive degree of freedom. In Fig. 3, the top f
curves show how the average energy in the reaction coo
nate decays as a function of the time for four different valu
of t and the bottom four curves show how the correspond
average energy of the nonreactive mode grows. Since
potentials are anharmonic and different, they mode decays

–

FIG. 3. The dependence of internal mode energies on time in a SKE
simulation~microcanonical ensembleE51.02) for different values oft. The
initial value of they mode energy,Ey5Ty1Uy(y) is close toEa51 ~the
four curves in the upper part of the graph!. The energy for thex mode,Ex

5Tx1Ux(x), is equal toE2Ey ~the four curves in the lower part of the
graph!.
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to a different energy than thex mode. From these curves w
can conclude that the intramolecular vibrational relaxat
time t IVR is roughly double the time between kinetic ener
exchanges; that is,t IVR'2t.

So far we have presented SKEEM results in the mic
canonical ensemble. It is a simple matter to use SKEEM
compute reactive fluxes in the canonical ensemble

k~ t !5^u@y~ t !#&12^u@y~ t !#&2 , ~13!

where the subscripts1 and2 correspond to trajectories ini
tially moving from the TST towards the product side and t
reactant side respectively. One samples the initial state
the TST from a weighted canonical distribution function a
uses the SKEEM rules to generate trajectories starting f
these initial states. In Fig. 4 the canonical reactive fluxes
two different values oft are presented. Again fort51 we
do not observe recrossings but for larget516 the fast
dephasing decay is the indicator of rapid barrier recrossin
Thus there is a fast ‘‘molecular time scale’’ dephasing de
followed by a slow activated recrossing decay. In this, as
the previous microcanonical simulations, the activation
ergy Ea51. The temperature here is 0.1 so thatbEa510.

B. SKEEM-BGK simulations of the canonical reactive
flux

In the following simulations, a set of TST canonical in
tial states are sampled and the SKEEM plus BGK rules
applied to generate trajectories corresponding to each
these initial states forbEa510. Figure 5 shows a set o
reactive fluxes generated in this way for a collision ratea
51/8 along with the reactive flux calculated for the ful
coupled De Leon–Berne potential using full molecular d
namics of the molecule punctuated by BGK collisions. Aga
we see that SKEEM-BGK witht51 does a pretty good job
of emulating the fully coupled system. There is not too mu
evidence of recrossing events. The plateau values give
canonical rate constants. For the SKEEM-BGK flux,t IVR

52 and the time between collisions in the BGK model
1/a58. Thus the time between BGK collisions is longer th

FIG. 4. The dependence of the reactive flux on time in canonical ensem
as predicted by SKEEM witht51 and 16 for a temperature ofb2150.1.
No BGK collisions are introduced in this calculation.
n
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the time it takes for the constant energy system to equip
tion by IVR. Both of these times are shorter than the me
recrossing time. The SKEEM-BGK result fort516 gives
evidence of the dephasing decay typical of recrossing ev
and has a much smaller plateau value and correspondi
smaller rate constant than fort51. The lower curve repre-
sents the BGK simulation for they coordinate without
SKEEM. This is a purely one-dimensional calculation. W
see that the rate constant for SKEEM-BGK witht516 gives
a rate constant between the fully two-dimensional rate c
stant found usingt51 and the rate constant for the on
dimensional system.

These curves already give evidence that when the I
time scale is short compared to the time between bath c
sion so that the reaction coordinate can equipartion with
nonreactive degree of freedom before it can lose energ
the bath, the rate constant will be given by a rate cons
typical of a two-dimensional canonical rate constant. On
other hand when the time scale for IVR is close to the ti
between collisions and the reaction coordinate cannot e
partition before it can lose energy to the bath, the rate c
stant will be smaller than that predicted by the tw
dimensional system.

Performing SKEEM-BGK simulations for differen
BGK collision ratesa and determining the plateau times
the reactive flux allows us to determine the canonical r
constant as a function ofa for different values of thet IVR .
Because the rate constant decreases asa decreases and ca
become very small, we use the absorbing boundary reac
flux method,25,26 according to which the rate constant
given by

k5
T

22T
, ~14!

where T is the fraction of trajectories that become rapid
trapped in the product well. In Fig. 6 the dependence of
canonical rate constant on the BGK collision ratea is com-
pared for the fully coupled De Leon–Berne potential w
BGK collisions, the SKEEM model (t51) with BGK colli-

le,FIG. 5. An example of time dependent reactive flux in the presence
solvent ~BGK model!, collision frequencya51/8. Well defined plateau
values ofk can be determined.
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sions, and the one-dimensional model with BGK collisio
~denoted uncoupled De Leon–Berne model in the figu!.
This curve covers several decades in both the collision
and the reaction rate. It is clear from this model that
SKEEM-BGK model is in excellent agreement with the ful
coupled BGK dynamics first studied by Borkovec and Ber
It is also clear that the rate constant for the one-dimensio
system is much smaller.

A question posed long ago is the following: How do
the rate constant vary with bath collision rate? In Fig. 7
compare the dependence predicted by SKEEM-BGK fot
516, 64, and 128 with the dynamics of the fully coupled D
Leon–Berne potential with BGK collisions and with the on
dimensional De Leon–Berne potential with BGK collision
In the latter two cases, the rate constants reflect the full
mensionality of the molecule~two dimensions for the
strongly coupled De Leon potential and one dimension
the uncoupled De Leon–Berne potential!. Plate~c! gives a
comparison between the SKEEM-BGK simulation for t
case wheret5128. In this case we see that at a very lo
collision rate where the time between collisions of the m
ecule with the batha21 is much longer than the IVR time
t IVR of the molecule, the rate constant appears to be
dimensional. As the collision rate is increased until the ti
between collisions is short compared to the IVR time,
rate constant becomes one dimensional. As the collision
is made even larger, the rate constant follows the o
dimensional curve, reaches a turnover~the so called Kramers
turnover10!, and finally decreases with collision rate as p
dicted by the spatial diffusion regime. For smallert or t IVR

this transformation from two- to one-dimensional behav
occurs at a higher collision rate and becomes obscured by
turnover regime. Thus the effect should be seen in syst
with very slow IVR times. This is just the behavior predicte
a decade ago.11–14

It is of interest to determine whether simple connect

FIG. 6. The dependence of the canonical rate constant~from the reactive
flux plateau! on the BGK frequency. The solid line corresponds to the ori
nal De Leon–Berne model, with a large value of coupling coefficienz
52.3. The dotted line corresponds to the same model, but with switche
mode coupling,z50. The dashed line is the result of SKEEM simulatio
with t51.
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formulas can be used to infer the full collision rate depe
dence of the rate constant.10,27 Borkovec and Berne have
shown28,11 that for the strong collision models the depe
dence of the rate constant on collision rate at low collis
rate energy diffusion limit can be approximated by

kED5ak̃~0!~a!, ~15!

where k̃ (0)(a) is the Laplace transform of the time depe
dent canonical reactive flux of the isolated molecule~no
BGK collisions! evaluated for the Laplace variable equal
the collision rate (s5a). Here the subscript ED indicates th
energy diffusion limit. In the high collision or spatial diffu
sion ~SD! limit the transmission coefficient is known to de
pend on collision ratea as2

kSD5
vB

a
, ~16!

wherevB is the imaginary frequency of the barrier. A con
nection formula that appears to be valid when there is
long memory friction time in the system~a condition satis-
fied here! is

1

k
5

1

kED
1

1

kSD
11, ~17!

ff

FIG. 7. The dependence of the canonical rate constant on the BGK colli
frequency, for different values of the SKEEM parametert:t516, 64, and
128 @dashed lines in panels~a! ~b!, and ~c! respectively#. The solid line
corresponds to the original De Leon–Berne model, with a large value
coupling coefficientz52.3. The dotted line corresponds to the same mod
but with switched off mode coupling,z50.
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where unity comes from the TST rate constant. According
this formula, the smallest transmission coefficient is rate l
iting and dominates the overall rate constant.

In Fig. 8 we compare the predictions of this connecti
formula with the full SKEEM-BGK simulations for three
cases:t516, 64, and 128 in panels~a!, ~b!, and~c!, respec-
tively. It should be clear from this comparison that the co
nection formula, while approximate, does a very reasona
job in predicting the change in apparent dimensionality w
increasinga as well as the Kramers turnover region.

V. SKEEM-BGK SIMULATIONS: REGULAR AND
IRREGULAR TRAJECTORIES

Berne and De Leon20 have shown that when the couplin
strength is not strong, the phase space decomposes into
lar and irregular regions, the regular region being filled w
invariant tori. Clearly, SKEEM, being an entirely stochas
model, will destroy all invariant tori given by the separab
potential. SKEEM will thus not be able to model this aspe
of weakly coupled systems. Nevertheless, one can mo
SKEEM to model some of the features of the weak
coupled De Leon–Berne system. For a given value of c
pling strengthz the measure of the phase space contain
invariant tori will bem reg and the measure of the phase spa
containing irregular trajectories will be 12m reg. Thus when
sampling initial phase points for the trajectories one c
sample a random number and assign the labels irreg or re
the given initial state in accordance with the value ofm reg.
Then one applies the SKEEM rules to generate trajecto
only for the irregular initial states. The trajectories for t
regular initial states do not have any kinetic energy
changes and will thus be quasiperiodic because they are

FIG. 8. Comparison of the dependence of the canonical rate constan
BGK collision frequency for the SKEEM-BGK simulation results~solid
line! with theoretical predictions from Eq.~17! ~dashed line!: panels~a!, ~b!,
and ~c! correspond, respectively, tot516, 64, and 128.
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erated on a separable potential. This procedure does not
serve the important feature of Hamiltonian dynamics t
two distinct trajectories cannot cross.

To see what happens when some of the trajectories
regular, SKEEM-BGK simulations are performed on t
separable (z50) De Leon–Berne potential20 with l51.95
and l3510.0, where the fraction of regular trajectories
taken to bem reg50.50 for the three SKEEM timest516, 64,
and 128, the same cases studied above. The dependen
the transmission coefficient ona for these three cases i
shown in Fig. 9. Figure 9 shows three panels with fo
curves in each. Two of the curves represent the one-
two-dimensional results, one of the curves represent w
happens when there are no regular trajectories (m reg50),
and the remaining curve shows the behavior when half
trajectories are regular (m reg50.5). This behavior is consis
tent with the above analysis. We see that when there
regular trajectories, the low collision rate behavior ofk is
different from the case when there are no regular trajecto
(m reg50). Instead of showing the full dimensionality~two
dimensions! of the De Leon–Berne potential, the low coll
sion rate behavior appears to be between the curves c
sponding to one- and two-dimensional behavior. This w
also seen in our previous simulations of the weakly coup
De Leon–Berne potential using BGK stochas
dynamics.11–14 This observation can be understood easily
terms of the SKEEM-BGK model. Since the regular and
regular trajectories are completely independent of each o
the reactive flux, when there are no collisions with the ba
can be expressed as

onFIG. 9. The dependence of the transmission coefficient on BGK collis
frequency for an equal mixture of regular and irregular trajectories~dotted-
dashed line!. The solid line corresponds to the original De Leon–Ber
model, with a large value of coupling coefficientz52.3. The dotted line
corresponds to the same model, but with switched off mode couplinz
50. The dashed lines in panels~a!, ~b!, and~c!, correspond, respectively, to
different values of the SKEEM parametert:t516, 64, and 128.
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k~0!~ t !5m regk reg
~0!~ t !1m irregk irreg

~0! ~ t !. ~18!

Equation~18! can then be combined with the Eq.~15! so that

kED5a@m regk̃ reg~a!1m irregk̃ irreg~a!#. ~19!

Since at a low collision rate~low a! k̃ reg(a50) is essentially
one dimensional~zero coupling with no SKEEM! and
k̃ irreg(a50) is essentially two dimensional, the weighted a
erage of these two transmission coefficients will be boun
from above by the two-dimensional rate constant and fr
below by the one-dimensional result. Since the diffus
controlled limit at higha does not depend on dimensionalit
Eq. ~19! can be combined with the connection formula giv
by Eq. ~17! to predict the dependence ofk on a from a low
to a high collision rate for the case when regular trajecto
are present.

VI. SUMMARY

In order to better understand the effect of IVR on barr
crossing kinetics, a new microcanonical stochastic dynam
model called SKEEM, in which at random times the kine
energies of different pairs of intramolecular modes are
changed, was applied to a ‘‘molecule’’ interacting throu
the two-dimensional uncoupled De Leon–Berne potent
For isolated molecules, SKEEM was shown to generate
active dynamics qualitatively similar to what is observed
the Hamiltonian dynamics~nonstochastic! of the fully
coupled De Leon–Berne potential. The rate constant ge
ated by SKEEM was shown to depend on the mean timt
between kinetic energy exchanges. This time also determ
the IVR time and it was found for the system simulated h
that t IVR'2t. For small t or t IVR the rate constant wa
shown to be equal to the RRKM rate constant and ast or
t IVR was increased the rate constant monotonically
creased.

The reaction dynamics of the ‘‘molecule’’ in solvent wa
modeled by the thermalizing impulsive collisons occuring
random times, this is the BGK model of collisions with co
lision ratea. SKEEM was combined with BGK collisions in
order to model the reacting molecule in solvent. The r
constant predicted by this model as a function ofa displays
many of the features observed in the full nonlinear dynam
of the fully coupled De Leon–Berne potential. Asa was
increased from zero, the rate constant increased first lin
with a with a slope given by RRKM theory with the ful
dimensionality of the molecule. Whena'1/t the slope of
the curve switched to a smaller slope typical of a molec
with fewer degrees of freedom. At still largera the rate
constant exhibited a Kramers turnover and thereafter
creased with increasinga consistent with diffusion control
-
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This dependence of the rate constant on collision rate
well described by a connection formula relating the rate c
stant to rate constants for the energy diffusion regime@ap-
proximated by Eq.~15!# for the the spatial diffusion regime
and for the transition state approximation.29 A simple
scheme for using SKEEM-BGK to model Hamiltonian sy
tems with regular and irregular trajectories was discus
and analyzed. It was shown that when the fraction of regu
trajectories is large~'50%! the rate constant at very low
collision rate falls between the two- and one-dimensio
limits.
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