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The dependence of the rate constant for isomerization on the competition
between intramolecular vibrational relaxation and energy transfer
to the bath: A stochastic model
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A new stochastic model is introduced to emulate intramolecular vibrational relaxation in molecules
undergoing isomerization. In this model the Hamiltonian flow is punctuated at random times by an
exchange of vibrational kinetic energies. When applied to the study of the rate of barrier crossing,
this model reproduces many of the salient features of rate processes in real molecules. For example
when the mean time between kinetic energy exchange events is short compared to the crossing
time of a well the model gives the Rice—Ramsperger—Kassel-MéRRIKM) rate constant. When

7 is longer than the crossing time the rate constant is smaller than the RRKM value. In this paper
the stochastic kinetic energy exchange mo@KEEM) combined with the Bhatnagar—Gross—
Krook model for impulsive collisions with a bath is used to explore the dependence of the rate
constant on collision rate. This model clarifies why at low collision rates the rate constant for barrier
crossing reflects the full dimensionality of the molecule, whereas at higher collision rates the rate
constant seems to reflect a lower dimensionality. 1899 American Institute of Physics.
[S0021-960629)50802-1

I. INTRODUCTION tion coefficientt!~1*18|ts behavior may then reflect the full
dimensionality of the polyatomic molecule at low collision
This paper focuses on the role of intramolecular vibra-rates or friction and a reduced dimensionality at higher val-
tional relaxation(IVR) in determining the rate constant for yes of these parameters. Similar behavior has more recently
activated barrier crossing in polyatomic molecules. Here thgyeen shown to exist in explicit solvent models. We focus on
reaction coordinate can exchange energy with the other inhese effects in this paper. We introduce a simple stochastic
tramolecular degrees of freedom or with the solvent. In theodel for the microcanonical dynamics of the isolated poly-
oretical treatments, the coupling of the reaction coordinate t@iomic model and combine this new stochastic model with
the bath is either treated stochastically through strongihe BGK model for bath collisions. This stochastic model
collision models™ [such as the Bhatna(?ar—Gross—KrookaHOWS us to understand the behavior of the rate constant in
(BGK) model, weak collision T",Ode&’l (such as the yormg of very simple physical principles because the model
Langevm—Krame_rs m_od)elor_ explicit solvent mod_els USINg pag very simple intramolecular dynamics with a well defined
molgcular dynamics simulations. In the polyatomic molecu'leIVR rate. Nonlinear Hamiltonian dynamical systems by con-
the mtramolegular degrees of freedom are coupled nonlln'Erast have much more complicated intramolecular dynamics.
early. Interesting effects have been predicted due to these When a polyatomic molecule such as cyclohexane un-
nonlinear couplings in the weak coupling regihié®” (low dergoes a conformation change (Bedthair) the reaction
collision rate for BGK dynamics, low friction constant for coordinate must pass over an energy bafidiThe reaction

Langevin dynamics, or low solvent density for explicit sol- : : -
vent dynamicswhere the energy associated with the reactio coordinate is coupled both to other mtr_amolecular degrees_ of
"treedom and to the bath. Let us consider what happens im-

coordinate only rarely exceeds the activation energy. In this =" . .
. S0 2 mediately after the reaction coordinate passes over the bar-
regime, energy excitation becomes the rate determining steIp

in the Kinetics. This is the so called energy diffusitiED) ier. If it is not coupled to either intramolecular modes or to
regime1510 Theoretical treatments of this regime often the bath, it will periodically recross the barrier with a period

make the tacit assumption that IVR is rapid compared toT(E) depending on the total energy of the molechinich

energy exchange with the bath. One can then $hdlthat Is conservell and no barrier crossing rate constant would

the barrier crossing rate constant will depend linearly on thé&XISt. Ifitis only coupled to other intramolecular _modes and
collision rate(BGK) or the friction coefficient(Langevin— not to the bath, it would exchange energy only with the other

Kramers. This may be true at very low collision rate or intramolecular modes through IVR on a time scalg; and,
friction, but as these parameters are increased, IVR may b&epending on the strength of its coupling to the other modes,
come slower than energy transfer to the bath. What happeriswould exhibit a range of behaviors.

becomes a nonlinear function of the collision rate or the fric- modes are strong, the reactive coordinate will lose en-
ergy to the other modes in a time(g) short com-
dElectronic mail: berne@chem.columbia.edu pared to its transit tim&@ (E) over either of the two
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potential energy basins corresponding to the Boat oences a systematic frictional force and a randomly fluctuat-
Chair conformations. In this case of rapid IVR thereing force (the so called Langevin dynamics model of weak
will be no rapid barrier recrossings and the rate con-collisions.*® Using the reactive flL’>*absorbing boundary
stant will be given by the Rice—Ramsperger—Kassel-techniqué®>?to calculate the rate constant for barrier cross-
Marcus(RRKM) rate theory. ing, it was found that the rate constant at very low collision
(b) On the other hand, if the coupling strengths to the otherate increases with collision rate with a slope given by the
intramolecular degrees of freedom are not strongull two dimensions of the molecule but at higher collision
[ 7we>T(E)], the reaction coordinate will rapidly re- rate it behaves as though the dimensionality of the molecule
cross the barrier one or more times before losing enis between two and one dimensions.
ergy by IVR and the rate constant will be smaller than ~ We wish to understand how the barrier crossing rate
the RRKM rate constant. In addition, there will be the constant depends on these different time scales. Unfortu-
added complication that the phase space can be decorfiately, molecular dynamics simulations of reacting mol-
posed into regular regions filled with invariant tori and ecules in explicit or stochastic solvents have not been able to
irregular region$®?! (The invariant tori are usually de- Provide the kind of insight we seek because it is very diffi-
stroyed in the limit of large coupling strength. cult to determinerr . Thus we seek guidance by devising a
simple stochastic molecular model that has all of the pro-
In the presence of a molecular bath the molecule willcesses described above. We call this model the stochastic
suffer random collisions leading to energy exchange betweeginetic energy exchange modéSKEEM). Combining this
the molecular degrees of freedom and the bath. The timgodel with the BGK model for molecular collisions with the
scale for these collisions will be defined by the time betweerpath allows us to gain considerable insight into the competi-

collisions 7., The barrier crossing kinetics will thus de- tion between IVR and bath collisions in determining the rate
pend on several time scales: the crossing time of the stabigonstant for barrier crossing.

wells T(E); the time scale characterizing energy transfer be-

tween the reaction coordinate and the other intramolecular

degrees of freedomyr ; and the time between collisions of Il. STOCHASTIC KINETIC ENERGY EXCHANGE
the molecule and the bath,,. MODEL (SKEEM)

In general, the Hamiltonian contains nonlinear terms and  To better understand the physical behavior described
the Hamiltonian flow is complicated, requiring extensive nu-ahove, we have devised a stochastic model to describe the
merical simulation. To gain insight into reactive dynamicsmicrocanonical dynamics of the molecule, the SKEEM,
simple two degree of freedom systems have been studied inhich can be combined with BGK dynamics to account for
detail. One such system is the DeLeon—Berne Hamiltoniamath collisions. To our knowledge this is the first such sto-
which consists of a quartic double well, coupled to a Morsechastic microcanonical dynamical model. SKEEM for a two
oscillator?® In this model the energy barrier in the quartic degree of freedom system is defined by the following:
double well is an exponential function whose argument is S . .

. . . .. (1) The Hamiltonian is separable into reactive and nonreac-
proportional to the displacement of the Morse oscillator, with .
. . : : : tive degrees of freedom.

the proportionality constant being the coupling strength. It is he d ; d by thi bl iitonian i
of interest to understand how this model behaves at fixeéz) The dynamics generate ; y this separable Hamiltonian is
total enerav for different ling strenaths. Simulation punctuated by random intramolecular energy transfer
cr)1a edfhg¥f 0 ; ere clpup tg sthe tgh Sk; imuations events(a Poisson procegsvhere the mean time between
3 owed that for s”rodng co_gp(;n%s rter!]ng RT?KI\G/I ;}rrler Crcgrs;mg these events is=y ! and the probability that the mol-
ynamics 1S well described by ihe neory. IS ecule will evolve for a time without suffering an energy
means that for trajectories staring at the transition state with transfer event is
energyE>E,, whereE, is the activation energy, the energy st
. : i . Po(t) =€, Y
in the reactive coordinate is transferred to the other mode fast The Kineti ﬂ ¢ endi
enough that the molecule gets trapped in one of the wells an(o?') ted|get|,c gnerglytadetr a}[ﬂ euergg transter EV(f I-th
remains there for a long enough time for the two modes to cate %/a ) ;s rela et Of I? |n-e Ic energy belore the
equipartition before the reactive coordinate can be reacti- e?ergy ranster event as follows.
vated and recross the transitions state to the other well. For Tx= Ty, @
lower coupling strengths the reactive dynamics are more T/=T,. 3
Complicated because the phase space will now subdivide II’IT@_) The potentia| energies are not Changed during an energy
regular and irregular parts. The model is dynamically very  transfer event.
rich and has been used in other studfes. (5) An energy transfer event changes the magnitude of the

The De Leon—Berne model has been used to probe the velocities of the two degrees of freedom according to:
competition between IVR and energy transfer to a collisional
bath as a model for how solvents effect rate constdnt$. |v>'(|=(

2 1/2
2z @
Two different models of the collisional batigas or liquid

my

1/2
were used. In one model the effect of the bath was modeled |U,|:(£ T’) (5)
by random impulsive(strong collisions during which the oim, Y
velocities in the molecule are thermalizéthe so-called but does not change the direction of the velociti@is

BGK model ) and in the other model the molecule experi- can be modified if desiredAn important feature of this
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model is that the total energy is conserved during eachivherey is the reaction coordinate arXl, and Xy are the

energy transfer event. From Edg8) and(3) we see that equilibrium mole fractions of reactant and product, respec-

T Ty=T+ T, () fively. .

It is a simple matter to introduce the effect of solvent by

Thus, the total kinetic energy is conserved during the evenlising a BGK collisional bath in which the molecule suffers
and because the potential energy of each degree of freedaimpulsive collisions:? Then, starting with the initial state of
is unchanged during the event, the total energy is conservethe molecule, one samples the times for the energy exchange
It is a simple matter to extend this model to higher dimen-events as in SKEEM and one samples the times for colli-
sional systems. In fact there are several possible models. Omsnal events with the bath from the Poisson distribution
could define different mean times for the energy exchang®y(t)=e~* as specified by the BGK model. The mean time
between each pair of modes so that when the system is abietween collisions is. =« 1. There are now two kinds of
vanced to each of the sampled event times the kinetic enegvents: an energy exchange event and a bath collisional
gies corresponding to the specific pair of modes in that evergvent. Starting with the initial state the molecule moves on
are transformed according to Eq®) and (3). This would the separable Hamiltonian until the first event. If the first
allow for a multiplicity of mode specific IVR relaxation €ventis an energy exchange event then transform the mo-
times. Another poss|b|||ty is to define one mean free timelecular velocities aCCOfding to SKEEM. If the first event is a
between events and to define an event to be such that tf#th collisional event then transform the molecular velocities

kinetic energies of all the distinct pairs of modes are updategccording to BGK; that is, sample new velocities from the
(exchangedindependently. Maxwell distribution function. Now repeat for the next

It is worth commenting on the fact that other SKEEM event, etc. This model can also be modified to allow for

type models are possible. For example in place of the totaflifferent degrees of freedom to experience different collision
kinetic energy exchange one can invoke the following Ki-rates with the bath, thus allowing for the possibility that

netic eneray transformation in place of EG® and (3): some molecular degrees of freedom within a large poly-
i P @ ® atomic molecule may be shielded from collisions with the

(3") The kineti<’: energy after an energy transfer evémdi-  path, For the calculation of the reactive flux, sample the ini-
cated bya’) is related to the kinetic energy before the {j5| state of the molecule from the canoni¢abnstant tem-
energy transfer event as follows: peratur¢ ensemble with the reaction coordinate fixed at the
T,=E&T,+H(1-4T,, (7) transition state. This can be accomplished in the manner out-
T§=(1—§)Tx+§Ty, (8) lined in Ref. 11-14. For each of these starting points run

whereé is a number between 0 and 1. Once chosen, thi%r::ecézgestoaismjulztmse[?ﬁcmed. This SKEEM-BGK model is
number can be held fixed at 0, as above, or it can jump y y P '

between 0 and 1 with a specified probability.

. Ill. SKEEM-BGK APPLIED TO THE DE LEON-BERNE
(4') The values oft for different energy transfer events are MO%EL G © ©

uncorrelated.

We have tried these two variants. The model in whigh The De Leon-Berme Hamiltonidhis

jumps between 0 and 1 is essentially equivalent to the com- H=4(x?+y?)+4y?(y?—1)e M+ N z(1—e M)2+1,
plete energy exchange model except for a transformation of (10

the time scale for the relaxation. _ o where the reaction coordinagemoves on a quartic double
The dynamics generated by SKEEM is easily simulatedye|| and the coordinat& moves on a Morse potential. This
For the determination of the rate constant one must calculatgstential can be decomposed into a separable part:

the reactive flux>2*This is done by sampling the positions NV
and velocities of the molecule from a velocity weighted mi- ~ Yo(XY)=As(1—e *)7+4y*(y*=1)+1, (1D
crocanonical distribution function with the reactive coordi- and a coupling part:
nate constrained to be at the transition state. For each of
these initial states, the times for the energy transfer events UcoudX,y)=4(e M-1yHy D). (12
are sampled from the Poisson distribution. The moleculérhuszis the coupling strength. Fa= 0 the Berne—De Leon
then moves on the separable potential until the time of thgotential is separable. It is the separable poteriglx,y)
first collision at which time the velocities of the two degreesthat will be used in SKEEM simulations. Then the energy
of freedom are assigned according to itéGhabove. Starting exchange step in SKEEM will mimic the effect of the cou-
with the new velocities, the molecule now moves on thepling potential given in Eq(12). In the full De Leon—Berne
separable potential until the next event and the process @gotential the coupling arises from the dependence of the bar-
repeated seriatim. These trajectories can be used to detdier height onx, the displacement from equilibrium of the
mine the reactive flux Morse oscillator. Energy is measured in units of the barrier
height corresponding ta=0. A3 is the dissociation of the
Morse oscillator in these units andis the range parameter
1 of the Morse potential. The quartic has two minimayat
N +1W2 and a maximum ay=o0. These extremal points, and
k() XaXg (yay)etym e, ® therefore the saddle poink€0, y=0) do not depend or.
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FIG. 3. The dependence of internal mode energies on time in a SKEEM
simulation(microcanonical ensemble= 1.02) for different values of. The
initial value of they mode energyE,=T,+U,(y) is close toE,=1 (the
four curves in the upper part of the grapfihe energy for thex mode,E,

We fix A3=10 in order to guarantee that the dissociation=T,+U,(x), is equal toE—E, (the four curves in the lower part of the
energy will be much larger than the barrier to conformationdrarh-

change.

IV. SKEEM-BGK SIMULATIONS: ALL TRAJECTORIES

ARE IRREGULAR

A. SKEEM simulations of microcanonical and
canonical processes absence of the bath

The De Leon—Berne potentflwith A\=1.95, z=2.3,
and\3=10.0 was shown to be “completely” chaotic. More-
over it was shown that the microcanonical reactive flux ex-.

mate the period for recrossing of the barrier to BEE)

~10. Thus forr<10 the kinetic energy should be equipar-
tioned before the reactive trajectories can recross the barrier.
We see that for=0.5 and 1.0 this is the case, but for larger
values ofr the reactive flux starts to exhibit recrossing events
leading to a dephasing decay to a plateau value. The recross-
ing period T(E) is thus seen to be the cause of the short
molecular time scale” often referred to in discussions of

hibited “no” rapid recrossings. The rate for activated barrier.the reactive flux. Whemr<T(E) the reactive flux predicted

crossings for this strongly coupled case was shown to be gy SKEEM decays exponentially and the rate constant for
accord with the RRKM theory. It is of interest to apply ipis decay isk(E)=7.5x10"3. The microcanonical rate

SKEE_M to this case. In applying _SKI_EEM we remove the onstant Kerim(E) = (XaXg) ~ Xy 8(y) 6(¥))e=T7.2¢ 1073
coupling by setting=0. The coupling is then emulated by for the uncoupled De Leon—Berne potential is easy to com-
the mean timer between kinetic energy exchanges. In Fig. 1pte and we find that the decay rate of the reactive flux is

the reactive flux is shown for different values ofFrom the
oscillations of the reactive flux for very largewe can esti-

\
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——- SKEEM simulation =1
08 \
\
06 \
N
= N\
1 \\
N
04t N\
N
N
AN
~
~
~
~
0.2 S
0 . 1 1 1 L
0 100 200 300 400 500

FIG. 2. The reactive flux dependence on time for the original De Leon—
Berne model with strong mode couplirg=2.3 (solid line) and SKEEM

simulation with7=1

(dashed ling

identical to the RRKM rate constant as separately calculated;
that isk(E) =kgrrkm(E), as expected.

How well does the SKEEM model emulate molecular
dynamics of the fully coupled De Leon—Berne potential in
the strong coupling limit? To answer this, in Fig. 2 we com-
pare the microcanonical reactive flux fd&=1.02 (only
slightly larger than the activation enerdy,=1.0) for the
fully coupled De Leon—Berne potential with the SKEEM
simulation of the uncoupled potential with= 1. Clearly, for
this case, the SKEEM model emulates the fully coupled sys-
tem very closely.

In the calculation of the reactive flux a set of initial
dynamical states are sampled with the reaction coordinate
constrained to be at the transition state0 and the SKEEM
rules are applied to generate the trajectory. It is of interest to
study how the energy in the reaction coordinate is transferred
to the nonreactive degree of freedom. In Fig. 3, the top four
curves show how the average energy in the reaction coordi-
nate decays as a function of the time for four different values
of 7and the bottom four curves show how the corresponding
average energy of the nonreactive mode grows. Since the
potentials are anharmonic and different, thenode decays
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FIG. 4. The dependence of the reactive flux on time in canonical ensembl
as predicted by SKEEM withr=1 and 16 for a temperature ¢ 1=0.1.
No BGK collisions are introduced in this calculation.

%G, 5. An example of time dependent reactive flux in the presence of
solvent (BGK mode), collision frequencya=1/8. Well defined plateau
values ofx can be determined.

to a different energy than themode. From these Curves we o time it takes for the constant energy system to equipar-

can conclude that the intramolecular vibrational relaxationtiOn by IVR. Both of these times are shorter than the mean
time 7yg is roughly double the time between kinetic e”ergyrecrossing time. The SKEEM-BGK result far=16 gives

exchanges; that isyg~2. evidence of the dephasing decay typical of recrossing events

So far we have presented SKEEM results in the micro, 4 nas 3 much smaller plateau value and correspondingly

canonical ensemble. It is a simple matter to use SKEEM tQjer rate constant than for=1. The lower curve repre-
compute reactive fluxes in the canonical ensemble sents the BGK simulation for thg coordinate without
k()=(Oly() 1)+ —(O[y()])_, (13y  SKEEM. This is a purely one-dimensional calculation. We
: . ... see that the rate constant for SKEEM-BGK with 16 gives
where the subscripts and — correspond to trajectories ini-

tially moving from the TST towards the product side and theit ;ittefggzztir;tint;t\gf egnz]i;g"?/ a:g%g;ggﬁ?gf Iﬂ:gt%rc]:g-n-
reactant side respectively. One samples the initial states %ﬁmensional system.

the TST from a weighted canonical distribution function and These curves already give evidence that when the IVR
uses the SKEEM rules to generate trajectories starting frorﬂm

th initial states. In Fia. 4 th ical tive fl f e scale is short compared to the time between bath colli-
ese Initial states. in ™1g. € canonical reactive Tuxes 10, 54 that the reaction coordinate can equipartion with the
two different values ofr are presented. Again far=1 we

. nonreactive degree of freedom before it can lose energy to
do not observe recrossings but for large-16 the fast 9 od

dephasing d is the indicator of rapid barrier recrossin the bath, the rate constant will be given by a rate constant
ephasing decay S“ N cator ot rap ”a €r recross g%ypical of a two-dimensional canonical rate constant. On the
Thus there is a fast “molecular time scale” dephasing deca

Bther hand when the time scale for IVR is close to the time

followed by a slow activated recrossing decay. In this, as i . . . . .
oy . ) . ng y- In this "hetween collisions and the reaction coordinate cannot equi-
the previous microcanonical simulations, the activation en-

a . N partition before it can lose energy to the bath, the rate con-
ergy E,=1. The temperature here is 0.1 so tjfi,= 10. stant will be smaller than that predicted by the two-

dimensional system.

B. SKEEM-BGK simulations of the canonical reactive Performing SKEEM-BGK simulations for different
flux BGK collision ratesae and determining the plateau times of

In the following simulations, a set of TST canonical ini- the reactive flux allows us to determine the canonical rate
tial states are sampled and the SKEEM plus BGK rules argonstant as a function af for different values of theryg .
applied to generate trajectories corresponding to each d#ecause the rate constant decreasea dscreases and can
these initial states foBE,=10. Figure 5 shows a set of become very small, we use the absorbing boundary reactive
reactive fluxes generated in this way for a collision rate flux method?>?® according to which the rate constant is
=1/8 along with the reactive flux calculated for the fully given by
coupled De Leon—Berne potential using full molecular dy- T
namics of the molecule punctuated by BGK collisions. Again k= 5T
we see that SKEEM-BGK withr=1 does a pretty good job
of emulating the fully coupled system. There is not too muchwhere T is the fraction of trajectories that become rapidly
evidence of recrossing events. The plateau values give theapped in the product well. In Fig. 6 the dependence of the
canonical rate constants. For the SKEEM-BGK fluxyr canonical rate constant on the BGK collision ratés com-
=2 and the time between collisions in the BGK model ispared for the fully coupled De Leon—Berne potential with
1/a=8. Thus the time between BGK collisions is longer thanBGK collisions, the SKEEM model#=1) with BGK colli-

(14)
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FIG. 6. The dependence of the canonical rate congfamin the reactive o
flux plateay on the BGK frequency. The solid line corresponds to the origi-
nal De Leon—Berne model, with a large value of coupling coefficent c
=2.3. The dotted line corresponds to the same model, but with switched off
mode couplingz=0. The dashed line is the result of SKEEM simulation ¢ 102 |
with 7=1. o
4 1 1 L L Il
sions, and the one-dimensional model with BGK collisions '° 10~ 107 107 10 10° 10’ 10

(denoted uncoupled De Leon—Berne model in the figure i
This curve covers several decades in both the collision ratgig. 7. The dependence of the canonical rate constant on the BGK collision
and the reaction rate. It is clear from this model that thetrequency, for different values of the SKEEM parameter= 16, 64, and
SKEEM-BGK model is in excellent agreement with the fully 128 [dashed lines in panel&@) (b), and (c) respectively. The solid line
. . . corresponds to the original De Leon—Berne model, with a large value of
CO_Upled BGK dynamics first studied by Borkovec a_nd Be_me'coupling coefficienz=2.3. The dotted line corresponds to the same model,
It is alsq clear that the rate constant for the one-dimensiong};; with switched off mode coupling=0.
system is much smaller.
A question posed long ago is the following: How does
the rate constant vary with bath collision rate? In Fig. 7 we . o
compare the dependence predicted by SKEEM-BGK #for formulas can be used to infer the full collision rate depen-
. . 2
=16, 64, and 128 with the dynamics of the fully coupled Dedence 801“1 the rate constafft?’ Borkovec and Berne have
Leon—Berne potential with BGK collisions and with the one- Showrf®** that for the strong collision models the depen-
dimensional De Leon—Berne potential with BGK collisions. dence of the rate constant on collision rate at low collision
In the latter two cases, the rate constants reflect the full ditate energy diffusion limit can be approximated by
mensionality of the moleculgtwo dimensions for the ~(0)
strongly coupled De Leon potential and one dimension for  Kep™ &K (@), (15
the uncoupled De Leon—Berne potentidPlate (c) gives a

comparison between the SKEEM-BGK simulation for the Where®(®)(a) is the Laplace transform of the time depen-
case wherer=128. In this case we see that at a very |0Wdent canonical reactive flux of the isolated molect®

collision rate where the time between collisions of the mol-BGK collisions evaluated for the Laplace variable equal to
ecule with the bathe~! is much longer than the IVR time the collision rate $= «). Here the subscript ED indicates the

7w Of the molecule, the rate constant appears to be tw&neray diffusion limit. In the high collision or spatial diffu-

dimensional. As the collision rate is increased until the time>'°" (SD) limit the transmission coefficient is known to de-

between collisions is short compared to the IVR time, thePend on collision ratex as

rate constant becomes one dimensional. As the collision rate

is made even larger, the rate constant follows the one- KSD:@, (16)
dimensional curve, reaches a turnoythie so called Kramers a

turnover®), and finally decreases with collision rate as pre- ) ) ] )

dicted by the spatial diffusion regime. For smalieor r,z ~ Wheréws is the imaginary frequency of the barrier. A con-
this transformation from two- to one-dimensional behaviorn€ction formula that appears to be valid when there is no
occurs at a higher collision rate and becomes obscured by tH@"9 memory friction time in the systera condition satis-
turnover regime. Thus the effect should be seen in systenfi€d herg is

with very slow IVR times. This is just the behavior predicted

a decade agt.™* 1 i L 1, (17)

It is of interest to determine whether simple connection K Kep Ksp
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FIG. 8. Comparison of the dependence of the canonical rate constant dﬁ|G 9. The dependence of the transmission coefficient on BGK collision
BGK collision frequency for the SKEEM-BGK simulation resuitsolid frequency for an equal mixture of regular and irregular trajectddested-
line) with theoretical predictions from E17) (dashed ling panels(a), (b), dashed ling The solid line corresponds to the original De Leon—Berne
and(c) correspond, respectively, to=16, 64, and 128. model, with a large value of coupling coefficient2.3. The dotted line

corresponds to the same model, but with switched off mode coupting,
=0. The dashed lines in pané®, (b), and(c), correspond, respectively, to
different values of the SKEEM parameterr=16, 64, and 128.

where unity comes from the TST rate constant. According to

this formula, the smallest transmission coefficient is rate lim-
iting and dominates the overall rate constant.

In Fig. 8 we compare the predictions of this connectionerated on a separable potential. This procedure does not pre-
formula with the full SKEEM-BGK simulations for three serve the important feature of Hamiltonian dynamics that
cases:r=16, 64, and 128 in panel8), (b), and(c), respec-  two distinct trajectories cannot cross.
tively. It should be clear from this comparison that the con-  To see what happens when some of the trajectories are
nection formula, while approximate, does a very reasonablgeqular, SKEEM-BGK simulations are performed on the
job in predicting the change in apparent dimensionality withseparable £=0) De Leon—Berne potentflwith A =1.95
increasinge as well as the Kramers turnover region. and A 3=10.0, where the fraction of regular trajectories is
taken to beu.g=0.50 for the three SKEEM times= 16, 64,
and 128, the same cases studied above. The dependence of
the transmission coefficient oa for these three cases is
shown in Fig. 9. Figure 9 shows three panels with four

Berne and De Ledf{ have shown that when the coupling curves in each. Two of the curves represent the one- and
strength is not strong, the phase space decomposes into regqwo-dimensional results, one of the curves represent what
lar and irregular regions, the regular region being filled withhappens when there are no regular trajectoriegq€0),
invariant tori. Clearly, SKEEM, being an entirely stochasticand the remaining curve shows the behavior when half the
model, will destroy all invariant tori given by the separable trajectories are regulan.,=0.5). This behavior is consis-
potential. SKEEM will thus not be able to model this aspecttent with the above analysis. We see that when there are
of weakly coupled systems. Nevertheless, one can modifyegular trajectories, the low collision rate behavior wofs
SKEEM to model some of the features of the weaklydifferent from the case when there are no regular trajectories
coupled De Leon—Berne system. For a given value of coufue4=0). Instead of showing the full dimensionalitywo
pling strengthz the measure of the phase space containinglimension$ of the De Leon—Berne potential, the low colli-
invariant tori will be g and the measure of the phase spacesion rate behavior appears to be between the curves corre-
containing irregular trajectories will be-1ue4. Thus when  sponding to one- and two-dimensional behavior. This was
sampling initial phase points for the trajectories one caralso seen in our previous simulations of the weakly coupled
sample a random number and assign the labels irreg or reg fde  Leon—-Berne potential using BGK stochastic
the given initial state in accordance with the valuewugfy. dynamicst'~* This observation can be understood easily in
Then one applies the SKEEM rules to generate trajectorieierms of the SKEEM-BGK model. Since the regular and ir-
only for the irregular initial states. The trajectories for the regular trajectories are completely independent of each other
regular initial states do not have any kinetic energy exthe reactive flux, when there are no collisions with the bath,
changes and will thus be quasiperiodic because they are gecan be expressed as

V. SKEEM-BGK SIMULATIONS: REGULAR AND
IRREGULAR TRAJECTORIES
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K(O)(t):/-LregK(rgz;(t)+/LirregKi(r(r)e)39(t)- (18  This depe_ndence of the rate constant on qollision rate was
) . ) well described by a connection formula relating the rate con-

Equation(18) can then be combined with the HA5) so that  ¢iant to rate constants for the energy diffusion regjaye-

Kep= & Mreghred @)+ MinegRimed @) - (19 proximated by Eq(1_5)] for the the spat.ial d.iffusion .regime
and for the transition state approximatioh.A simple
scheme for using SKEEM-BGK to model Hamiltonian sys-
tems with regular and irregular trajectories was discussed
@nd analyzed. It was shown that when the fraction of regular

Since at a low collision ratdow a) & a=0) is essentially
one dimensional(zero coupling with no SKEEM and
Kireg(a=0) is essentially two dimensional, the weighted av-
erage of these two transmissiop coefficients will be bounde ajectories is largg~50%) the rate constant at very low
from above by the tvyo-dmensmnal rate ponstant apd fr_on}:ollision rate falls between the two- and one-dimensional
below by the one-dimensional result. Since the dlfoSIon”mitS.

controlled limit at higha does not depend on dimensionality,

Eq. (19) can be combined with the connection formula given ACKNOWLEDGMENT

by Eq.(17) to predict the dependence gfon a from a low
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