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Calculating the hopping rate for diffusion in molecular liquids: CS 5
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We extend the cage correlation function method for calculating the hopping rate in Zwanzig's model
of self-diffusion in liquids[R. Zwanzig, J. Chem. Phy39, 4507 (1983] to liquids composed of
polyatomic molecules. We find that the hopping rates defined by the cage correlation function drop
to zero below the melting transition and we obtain excellent agreement with the diffusion constants
calculated via the Einstein relation in liquids, solids, and supercooled liquids of W8 also
investigate the vibrational density of states of inherent structures in liquids which have rough
potential energy surfaces, and conclude that the normal mode density of states at the local minima
are not the correct vibrational frequencies for use in Zwanzig's model when it is applied,to CS
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I. INTRODUCTION accessible to the system, and indeed there is relatively good
) ) ) agreement between the fraction of unstable modes and the
~ In arecent series of pape]-ré,we have been investigat- iftysion constant in some limited casée., liquids of mod-
ing approaches to the calculation of hopping rates for Zwangate temperatuyeThere have been other elaborations on the
zig's model of self-diffusion in liquids. This model has its INM approach~18 which seek to correct some problems
roots in the inherent structure theory for quul”d“§,and.the. with the basic INM theory, but the underlying assumption
primary result of the model is an expression for the diffusion, ot imaginary frequencies correlate with barrier crossings is
constant, the same.
In the most recent versions of the INM thedry:® one
T 1) must first project the atomic coordinates along each of the
(1+ 0?72’ instantaneous normal modes, and then classify the modes
into three “flavors” according to the behavior of the poten-
in terms of the vibrational density of states in the inherenttia| energy surface a|0ng the projections_ Those modes which
structures on the liquid’s potential energy surfael@), and  have a double wellDW) in this projection are the ones that
a hopping time, 7, which characterizes the distribution are assumed to be correlated with barrier crossings. Addi-
[exp(~t/7)] of residence times in the inherent structures. Thejonally, in computing the density of states of the DW
primary quantity that must be obtained to make this modemodes, each mode is weighted by its projection onto center-
useful for a liquid is the hopping time. There are twWo of-mass translations of the molecules. The INM theory is
approaches that have been presented in the literature for ofen based on the assumption that the fraction of DW trans-
taining 7 from simulations. The first approach attempts to|ational modesf I3, is correlated strongly with the diffusion
calculate the hopping time from a static property—the frac-constant.
tion of imaginary frequency instantaneous normal m . We have previously argued against the INM approach
The other approaCh is to measure the decorrelation of atomigecause the imaginary frequency |NMBh|Ch may indeed
surroundings by associating the hopping rater( With the  measure anharmonicity on the potential energy suyface
long-time decay rate of the cage correlation funcfion. make up a substantial fraction of the modes in crystalline
solids of Lennard-Jones atorhsThis system cannot cross
any barriers to self-diffusion, so the imaginary frequency
Keyes and co-workers have approached the problem qfyws contain many “false barriers.” The merits of the INM
obtaining the hopping time by using instantaneous normajheory and our critique of it are still matters of intense
modes(INMs).°~** INMs are obtained by diagonalizing the genate:19-2! Interested readers should consult the original

matrix of second derivatives of the potential energy surfacepaloers since the INM debate will not be the primary concern
Since the instantaneous configurations are not necessarily gt inis paper.

the local minima, and since liquids contain anharmonicities,

some of the INM frequencies will be imaginary. Averaging

over many liquid configurations allows one to obtain a den-B. Cage correlation functions

sity of states of INM frequencies. The INM theory suggested |, response to some of the problems that we observed
by Keyeset al.interprets the fraction of imaginary frequency it the INM approach, we developed the cage-correlation
modes as an indicator of the number of barriers that arg,nction2 The rate at which this function decays is a measure
of the time it takes atoms to experience changes in their
aE|ectronic mail: berne@chem.columbia.edu surroundings.
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=W, 4@ p(w)

A. Instantaneous normal modes
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O O wheref(r;) is a function of the interatomic distance;(. In
goc).oo 800 OO :cirngceti;rl?ulatlonsf(rij) is typically taken as the Heaviside
GQ -'QO OQ Iy ) 1 ifrij=<ruig
OO C)'O f(rij)) =0(ryist—rij) = 0 otherwise ’ )

FIG. 1. A sketch of the idea behind the cage correlation function. The blackvherer ,; is the neighbor list cutoff radius.
atom’s cage radius is denoted by the dotted line. The grey atom was inside  \We have chosenm, differently from how one would

the black atom’s cage at time ((eft sidg), but has exited the cage attime  hqq50 it to speed the calculation of forces. In calculating
(right side. The value of the cage correlation function is therefore 0 in the

right figure even though four of the original five atoms stayed within the /i, we _Setr nlist tf) thze location of the minimum in the pair
cage radius. correlation functiorf:

Y,
g<r>:m<2 > 6<r—rij>> @
An atom’s immediate surroundings are best described as e
those atoms immediately bonded to it, in addition to thethat separates the first and second solvation shells. This dis-
other atoms in the liquid that make up the first solvation sheltance is not necessarily the best choicerfgg;, but it pro-

of the molecule. When a diffusive barrier crossing whichvides a starting point for the calculation of neighbor list cor-
involves the molecule has taken place, the atoms in the molelation functions.

ecule have most likely left their immediate surroundings, and  There are some quite striking properties of the correla-

following the barrier crossing, they will have a slightly dif- tion function,

ferent group of atoms surrounding them. If one were able to (/1(0)-71(1)
paint identifying numbers on each of the atoms in a simula-  C (t)= AN (5)
tion, and kept track of the list of numbers that each atom (7i(0)%

could _see at any time, thgn the barrigr crpssing event WOUITjor the radial cutoff neighbor lists. In our previous wdrlye
be evident as a substantial change in this list of neighborg,, g that this function decays very slowly relative to other

This is precisely what is done when using neighbor lists inagtimates of the hopping time. When an atom has been

molecular dynamics simulations—where they are used 10 I, g\ved in a barrier crossing, many of the original members
duce the time spent on computing interatomic forces. Tradig that atom’s neighbor list persist into the atom’s new

tionally, the list of nearby atoms is updated every few timepqighnor list. What we seek is a correlation function that is a

steps, and the forces are calculated using only those atomsaasure of whether or not the cage has undergmyeeal

that are within each atom'’s list of neighbors. This can SaV@hange in timet. To compute this, we must first know the

an immense amount of CPU time, and has become an invaly, mper of atoms that have left the neighbor list since the

able technique in large smulayoﬁ%. _ _original configuration. The number of atoms that have left
The cage correlation function uses a generalized neighsiomi's original neighbor list at time is

bor list to keep track of each atom’s neighbors. If the list of

an atom’s neighbors at tintds identical to the list of neigh- nP(0t)=|71(0)]2=71(0)- 7/i(1). (6)

bors at time 0, the cage correlation function has a value of

for that atom. If any of the original neighbors aréssingat neighbor list at timet, while /;(0)-/;(t) is the number of

timet, it is assumed that the atom participated in a hOppingatoms that are i's neighbor list at both time 0 and tinte
event and the cage correlation function is 0. This is shown Next we definec. which is the number of atoms that

graphically in Fig. 1. must leave an atom’s neighbor list before we can be reason-

Averaging over all atoms n the S|mglat|o_n, and StUdyIr]gably sure that a change in surroundings has taken place. The
the decay of the cage correlation function gives us a way t%orrelation function for the cage is then

measure the hopping time directly from very short simula-
tions. Cogd)=(0(c—n*(0}))). )

We have previously investigated this function in
Lennard-Jones systerisand we now generalize the ap-
proach to molecular systems.

n this equations)/;(t)|? is the number of atoms i's

(We have chosen=1 for the calculations in this papgi

plot of a typical cage correlation function is shown in Fig. 2.
Since single atoms can leave and rejoin the neighbor list

during normal vibrational motion, there is a significant decay

of Ccagdt) at short times. In liquids, there are two competing

Il. DIFFUSION OF POLYATOMIC MOLECULES channels that contribute to the decay of the cage correlation

function. In addition to the vibrational channel, the cage can

change when the system has crossed a barrier on the poten-

tial energy surface. The phenomenological effect of the bar-

f(riy) rier crossing is a second decay of the cage correlation func-
. ) tion that happens over much longer times.
/i= : ' 2) The decay of correlation functions over multiple time
f(rin) scales is by no means a newly observed phenomenon. In the

A generalized neighbor list{;) for atomi in anN atom
system is a vector of lengtN, and is defined as
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TABLE |. Parameters of the potential energy surface for liquid carbon dis-

ulphide.
i Parameter Value
occ 335A
1 Oss 352 A
= €cc 0.1017 kcal mot*
= | €ss 0.3637 kcal mol*
L.j 6o 7 rad
= Ky 85.15 kcal mottrad ?
. Do 167.38 kcal mol?*
b 182 A1
) ro 157 A
-6 L L N
0 4 8 12 16
time (ps) In addition to the intermolecular potential, we have in-

FIG. 2. A typical center-of-mass cage correlation function. This particularCIUded terms for the intramolecular stretch and bends,

function is calculated for liquid CSat a density of 1.46 g cit, a tempera- 1 _ 2 _a—b(rip—rgh2

ture of 242 K, and a cage radius of 5.2 A. Note the fast initiihrationa) Vi 2ka( 0= 060)"+Do(1-e )

decay at<<1 ps and a slower exponential decay due to diffusional hopping + Do(l— e~ b(r23—r0))2 (11)
for t>1 ps. !

with parameters chosen to match the vibrational frequencies

for CS,.2° This form of the intramolecular potential was used
late 1970’s, Chandler, Montgomery, and Bértféobserved by Moore and Keyes in their work on the instantaneous nor-
this phenomenon in the correlation function for fluctuationsmal modes of liquid carbon disulphid®.The parameters
in the number of particles at the barrier to isomerization of aboth inter- and intramoleculaare summarized in Table I.
model double-well system. They treated the dynamics using All of our simulations were performed with 256 mol-
the reactive flux methotf =26 which has often been used to ecules in a constant-NVE ensemble. Trajectories of crystal-
study rare events in liquids. line CS, were started in the orthorhombic configuratiomit

In a molecular system like GSthere is a straightfor- cell dimensions: a=6.379 Ap=5.566 Ac=8.973 A).
ward generalization of Eq$2)—(7). Instead of using the po- Equilibration was assured by rescaling the velocities to
sitions of the constituent atoms, one can instead replacmatch the target temperature for the system every 200 fs.
atomic position with the centers-of-mass of the moleculeg-ollowing a 50 ps period of equilibration, data were col-
themselves. To measure the hopping rate for spatial diffusiokected during uninterrupted runs of 100 ps in length. Con-
in CS,, this is exactly what we have done. A typical center-figurations were saved every 500 fs from the data collection
of-mass cage correlation function for liquid £ shown in  runs.
Fig. 2. For the supercooled liquid trajectories, our quench pro-
gramming started with a liquid at a density gf
=1.46 gcm® and a temperature of 280 K. After a 200 ps
equilibration period, we quenched it to 260 K over 12 ps,
Simulations of liquid carbon disulphide were carried outwith velocity rescalings performed every 100 fs. The trajec-

using the intermolecular potential energy surface of Tildestory was allowed to stabilize at the new temperature for 6 ps,
ley and Madder?® The form of the intermolecular potential and data were collected for 100 ps after the stabilization. The
between moleculesandj is a sum of pair interactions be- 12 ps quench, 6 ps stabilization, and 100 ps data collection

Ill. COMPUTATIONAL DETAILS

tween sites on the two molecules, process were repeated for temperatures at 20 K intervals
3 3 down to 100 K.
_ The higher density £=1.5875 gcm?3) supercooled
1 Z‘l ,32‘1 ap(lap) ® liquid trajectories were obtained in the same manner, but

starting from an initial temperature of 400 K. The super-
cooled liquid trajectories utilized cubic box periodic bound-
(aaﬁ) 12 Ua3)6 ary conditions to prevent crystallization.
E E ' © The integrator used for the simulations was a reversible-
RESPAintegrator with the forces for the inner loop obtained
and e, and o, are the usual Lennard-Jones energy andyqm he intramolecular potential functions, while the forces
length parameters. The cross termegdandocg) are taken o e quter loop came from the intermolecular poteriial.
from the traditional mixing rules for crossed interactions: This integrator lets us run a trajectory4x faster than one
(Taat opp) which uses the standard velocity verlet integrator with forces
Tab=" 5 computed using all atoms in the simulation. Minimum-image
(10) periodic boundary conditions were enforced using an orth_o-
€ab= V €aa€bb- rhombic box with the same length ratios as the unit cell in

where the site—site potentials are given by

Vaﬁ(raﬁ) = 46&,8
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the solid, but which had been scaled to give the correct den
sity. The cutoff radius was chosen to be smaller than 1/2 of 0101
the length of the shortest of the simulation box dimensions.

Translational diffusion constants were computed from g L
the stored trajectories using the standard Einstein relafion:

0.05

0.04

1 “; 0.06 - 003 ¢
D:“m§<|ri(t)_ri(0)|2>a (12 < '
o : 0.04 - 0.02
and were compared to the predictions of the Zwanzig model
(using estimates of the hopping rate from both INM theory oo L o0l
and from the cage correlation functjon ' '
Center-of-mass cage correlation functions are computec Y
using a cage radius that is set to be the location in the secon 0% - A 200 5,000
minimum in the pair correlation functiofEg. (4)]. Due to TK)

the anisotropy of the system around a single molecule of o
CS, the first solvation shell is split into two eaks@:@r) FIG. 3. Plots of the temperature dependence of the diffusion constant for
’ . . p \ P ’ equilibrium CS near the melting transition fgs=1.46 gcm3: (O) the

Both peaks are included in that molecule’s cage for the purgiffusion constants calculated via the Einstein relafigg. (12, and ()

poses of the cage correlation function calculation. calculated via the center-of-mass cage correlation fundin (7)] com-
bined with the modified Zwanzig formulgEq. (15)]. The fraction of un-

stable pure-translation instantaneous normal moij€sis plotted (V), and
the scale for the fraction of unstable modes is along the left side of the

IV. RESULTS figure.

A. Liquids and crystals
ptant energy trajectories, so the largest uncertainties are
along the temperature axis. The data points each have a stan-
dard error of less thm5 K along this axis.

The present theory does quite well at predicting the
translational diffusion constant in moderate and high density
fluids for a wide range of temperatures. We know from our

Using the hopping rates calculated from the decay o
Cecagdt), we can apply Zwanzig’'s model and calculate the
self-diffusion constant. When the hopping timeis very
long, the rate k,,=1/7) is very small. If we rewrite Eq(1)
with this substitution,

KT (= Ky previous workk and from the work of Mohanf§ and
D= Vf dop(®) ———-, (13)  Bagch?* that the hopping mechanism for self-diffusion in
0 (kht+ @) liquids breaks down when the hopping rate becomes too

then we can see that to a very good approximation, the ratg'9€- Therefore, the Zwanzig hopping model should be con-
can come outside of the integral, leaving sidered relevant only for moderate to high density liquids.

The cage correlation function results begin to deviate from
keT (= p(w) the Einstein relation when the hopping rate rises above 0.2
D~knp | do—F5 . (14 ps 1, which is well into the liquid regime. We have two
0 @ explanations for this deviation:

To a good approximation, the integral is temperature inde(l) either the hopping mechanism begins to break down as
pendent, so the diffusion constant should scale linearly with ~ {he dominant mechanism for diffusion. or

the product of the temperature and hopping rate,

kgT
D~kn37-0, s " Joos

012 |

whereg can be determined from integrating a known density

of states, or by matchinD to the experimentally determined 0.10
diffusion constant at a single temperature. In the results pre:
sented below, we have used this approximation, and have; 008
determinedg by matching the Einstein diffusion constant .
[Eq. (12)] to the right hand side of Eq15) at a temperature & 00
just above the melting transition. Our reasons for making this
approximation are covered in greater detail in Sec. V. Re-
sults for liquids and crystalline solids at temperatures neat
the melting transition are show in Figs. 3 and 4.

In contrast to the instantaneous normal mode thedries, 4, b
the diffusion constants calculated via the cage correlation 250 25 300 - 325 330 375
function are effectively zero for crystalline solids. Note that
the data presented in Figs. 3 and 4 are obtained from con- FIG. 4. The same as Fig. 3 but at a densityef1.5875 gcm®.

0.04

0.02

0.00
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FIG. 5. The temperature dependence of the diffusion constant for regular FIG. 6. The same as Fig. 5, but at a densitypef1.5875 gcm?®.
and supercooled liquid GSor p=1.46 gcm3: (O) diffusion constants

calculated via the Einstein relatidieg. (12)], and (¢) calculated via the

center-of-mass cage correlation funct{éy. (7)] combined with the modi-

fied Zwanzig formuldEq. (15)]. The temperature of the melting transitionis A The quenched density of states

shown by the vertical dashed line.

Vijayadamodar and Nitzan have postulated thgtw),
. L. . the normal mode frequencies at tipgenchedtonfigurations,
(2) the small rate approximation in Eq13) is invalid at  gnoyid be used in Eq1).1 This idea builds on the inherent
higher temperatures. structure model since it associates the vibrational frequencies
A hopping model of diffusion is of greatest interest in physi-at the nearest local miniméthe quenched configurations
cal systems(membranes, supercooled liquids and glasseswith the vibrational frequencies of the liquid itself. In our
where the hopping rate is much smaller than the ceiling weriginal paper where we derived hopping rates from the
report here, so methods based on the Zwanzig model are stipge-correlation function in a Lennard-Jones systene

of great utility. used the quenched density of states in @9.and obtained
excellent agreement with the diffusion constant and with the
B. Supercooled liquids velocity correlation function.

We h | lculated diffusi tants in th Given the success of using the quenched density of
€ have also calculated ditfusion constants In the SUpelgiaiag for atomic liquids, we were surprised to find that the

cooled liquid regime using the center-of-mass cage correlz‘;l,s—‘,ime density of states does not work in liquid,C8Ne
tion functions. We show comparisons of the current work to

. S -, assume here that the cage correlation function gives an ac-
the Einstein diffusion constants in Figs. 5 anq 6. curate measure of the hopping times in this liquid — a rea-
: Note that as the tempgratu_(mnd the d'foSI.O.n and hop.- sonable assumption given the accuracy of this method in
ping rate falls, the approximation in the modified Zwanzig Lennard-Jones systemsTo compute the pure-translation

formula[Eq. (15] becomes more gorrect, so there is Increasfdensity of state’s p;R(w) for CS, we constructed Hessians,
ing agreement between the diffusion constants calculated v

the cage correlation function and the results from the Ein hich consisted of the second derivates of the potential en-
toi gl tion Eq. (12)] ergy surface with respect to tlimass-weightedcoordinates
stein retation £. : of the molecular centers-of-mass:

V. DISCUSSION 2V
ix,jx" = (17)

In Zwanzig's original work on an inherent structure 30 jx '

model for diffusion, he used the Debye spectrum for the

vibrational density of statésThis was an approximation to where the center-of-mass coordinates are obtained trivially

the density of harmonic states in the liquid, and more recenftrom the atomic coordinates
3

elaborations on Zwanzig's model have attempted to provide m,a
more realistic vibrational densities of states around the lig-  Qix= 21 M (18
uid’s inherent structures. “
Keyes approximated the vibrational density of statesThe Hessian is then diagonalizédr a number of quenched
with the functional form configurationsto give the normal mode vibrational frequen-
(@)= (209~ 1—cos malwy)]. (16) ;:ifr?éla(jrl:ngi]g/sgff;?;qtl::ues are used to construct the transla
where wg is taken from the maximum in the distribution of The low-frequency behavior op(w) is most important
the stable branch of the instantaneous normal mode densifgr accurate estimates of the diffusion coefficiéot. Egs.
of states’!! (13) and (14) which weight the low frequency part of the
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0.03 T T T T T

0.02

p(w)

1l

0.01 Local Minima

FIG. 8. A sketch of a “rough” potential energy surface which has a distri-
bution of small barriers superimposed on the real barriers to diffusion which
separate the basins from one another.

@ (em ™)

FIG. 7. The different candidates for the vibrational density of states for . ) o
liquid CS, at a density of 1.46 g cfi?: (O) from the quenched configura- basin, then the overall correlation function is a product of the

tions[pg(w)], (O) obtained from Eq(16), (¢) arep®(w), and the thin  zeroth-order part and the survival probability in the basins,
solid line is p{’(«). which is taken to be exponential:

C(t)=CO(t)e (19

spectrum by 1b?]. The observed quenched density of statesSlnce (within the Zwanzig modglhopping over the barrier

. . — will destroy any correlations that may exist prior to the hop.

(see Fig. 7 displays a low-frequencf0—10 cm ) gap and The decay ofC(®)(t) can be understood simply as the
thus predicts a diffusion coefficient much smaller than thE1oss of correlation due to vibrational motion within a basin
correct one. It is easy to understand why a low-frequency '
gap should occur in systems with very rough energy land-
scapes. From the schematic given in Fig. 8 we note that the
system quenches into local minima with high frequencies— ©) ) ©) _
thus the gap. For such systems it would be a mistake to usiherep (o) is the power spectrum d&™(t), which we
the quenched density of states in the Zwanzig theory. call the der_13|ty of V|br_at|onal state_s m_the basin. In the origi-

It would seem then that the vibrations which are most"@ Zwanzig formulation, the motion is assumed to be har-
relevant to Zwanzig's model are those that involve the sysmMonic. We stress that(o)(F”) is not identical to the power
tem as it moves from one end of a large basin to anditeer spectrum of the full velocity autoqorrelguon fgnctlon, but is
from one diffusive barrier to anotherThe normal mode fre- the power spectrum for those trajectories which do not hop
quencies in each of the individual local minima may haveOVver diffusive barriers. - . .
little relation to frequencies of the basin vibratiotdén ex- Z_Wélf?Zlg’S model writes th_e full veIocny autocorrglaﬂon
treme form of this would be the hard-sphere liquid, for whichfunction in terms of the V|brat|ona_l modes in the ba3|_ns a_nd
there are no vibrational frequencies at the quenched configdh®n uses the Green—Kubo relation to extract the diffusion
rations) constant{cf. Eq. (1)]. Since we already have a method for

In atomic Lennard-Jones systems, the quenched densigptai!'“”g the hopping time, we can attempt to extract the
of states appears to mimic the density of states of these larg@€nsity of states in the basin by following the logic of the
scale “basin” vibration This indicates to us that there is ZWanzig model. We simply write the correlation function in
very little roughness on the atomic liquid’s potential energy!®ms of the basin modgp ()],
surface. One possible explanation for this is that the o
Lennard-Jones potential energy surface has only one well C(t)=f do p'%(w)cogwt)e ", (21)
depth while the Cgsurface has three different wellS-S, 0
C-C, and C-$ Slight deviations in molecular orientations and then use a singular value decompositievp)* to back
can therefore lead to small barriers between nearby locaiut a discrete representation @)(w) from values for the
minima. velocity autocorrelation function determined from molecular
dynamics. Note that we are simply finding th€&)(w) that
gives the best fit to the velocity autocorrelation function at a

The spirit of the Zwanzig model is to recognize that thesingle temperature. The density of staje§(w), so ob-
velocity autocorrelation functio€(t) =(v(t)-v(0)) decays tained(and shown in Fig. )} does not display a gap as does
due to hopping over diffusive barriers in addition to the de-the quenched density of states. Interestingly, when we deter-
cay from vibrational motion that occurs inside the basin. Ifminedp(®)(w) for a wide range of temperatures fronsep
we define a zeroth-order velocity autocorrelation functionanalysis of Eq.(21) using the values ofr at the different
[CO)(t)] for those trajectories which remain in the initial temperatures we obtained from the cage correlation function,

cO)= f:dw p 9 (w)cog wt), (20

B. Estimating p(w) from power spectra
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we found thatp(®)(w) is not sensitive to the temperature.
Our observegh(®(w) (calculated at a temperature of 280 K
is displayed in Fig. 7.

Thus p®(w) need only be determined at one tempera
ture for each liquid density. This information together with

the Green—Kubo relation for the translational diffusion coef-

ficient, using Eqs(20) and(21), allows determination ob,

T

0’?+1 2

kBT *
= (0)
D M fo do p'(w)

If pO(w) is really the density of states for motion in a

basin, we should be able to observe it as the power spectrufﬁ' c

of C(t) for trajectories whichdo nothop over the large dif-
fusive barriers. Given the observations tHaj:the quenched
density of statep,(w) has a frequency gap bpt®(w) does

Gezelter, Rabani, and Berne

TABLE II. Relative errors,((Dpregictes— D)/D) in the self-diffusion con-
stants computed using E€l) and the four proposed methods for obtaining
the vibrational density of states. Results for two different liquid densities are
shown.

% error in D

Liquid density

Method for estimating(w) 1.46 gem® 1.5875 gcm?®
p(©) —88% —88%
pinm(w) (Eg. (16) ~75% —80%
pO(w) +11% —23%
pP(w) ~63% ~55%

omputational cost

If one wishes to calculate diffusion coefficients in high-
temperature liquids, the traditional method of using the mean
square displacemerfEq. (12)] is usually quite efficient.

not, and(b) p{®(w) appears to be independent of tempera-However, at lower temperatures and in the supercooled re-
ture, we have tried the following experiment: We computedgime, the simulation time required to converge the slope of
velocity correlation functions for an ensemble of trajectoriesthe mean square displacement becomes prohibitive. The
that was generated by starting at the quenched configur@wanzig hopping model allows one to avoid these long
tions, giving each configuration just enough thermal energgimulations if the characteristic time of residence between
(~5K) so that they were not able to cross the large diffusivehops is short relative to the convergence time for the slope of
barriers. Fourier transforming these velocity correlationthe mean square displacement. In Sec. Ill, we have given
functions enabled us to extract the density of states easilyetails of an efficient way of obtaining the hopping time
from short low-temperature simulations. This average denfrom short simulations, and now the issue of computational
sity of states, which we capi’(w), is also plotted in Fig. 7. cost rests on estimating the density of states in the liquid.

As expected, we see that®(w) and p{?(w) are very
similar (except at very low frequencies where thed ap-
proach is slightly larger and both are quite different from
the quenched density of statgs'”(w) and p{*(w) both

The simplest approach to this estimate is to avoid it al-
together by making the small rate approximation. One sim-
ply computes the diffusion coefficient using mean square
displacements at a relatively high temperat@ndere the

contain more low-frequency vibrations than we have ob-standard approach is not computationally prohibjtivend
served in the quenched density of states, so even the smalien uses this diffusion coefficient to scale the results from

amount of thermal motion in the systerh&K recovers the
low-frequency motions related to anharmoniciti€Similar

the hopping times as in Eq15). The slow step in this
method is the calculation of the mean square displacement at

experiments at 10 and 15 K show similar results, so we exthe high temperature, which does require a fairly long simu-

pect thatp{?)(w) is also independent of temperature.

lation, but needs to be done only once for each liquid den-

We do not mean to suggest that either of these two apsity.

proachegcalculatingp(®)(w) or pgo)(w)] are good ways of

Using the quenched density of stajggw) requires the

calculating diffusion constants or testing the Zwanzig modelcollection of quenched configurationdocal minima by
(The svp approach is circular in that it assumes that both thesteepest descent from a set of statistically independent liquid
Zwanzig model and a particular method of computing hop-configurations. This can be very time consuming, particu-
ping times are corregtindeed, when these two methods arelarly when the liquid contains a mixture of high- and low-

used to calculate diffusion constants in Eg). the diffusion

frequency vibrational degrees of freeddas is the case in

constants differ from each other by almost a factor of 2.CS;). Obtaining the normal mode frequencies at these con-
Since the two densities of states are so similar except for thigurations is simply a matter of diagonalizing the mass-

very lowest frequencies<(1 cm 1), this suggests that Eq.

weighted Hessian, which rises in computational cost with the

(1) is extremelysensitive to the lowest part of the frequency cube of the number of molecules in the simulation. More
range. One can make very small errors in the lowest frequerimportantly, the quenched density of states does not give

cies(i.e., within the error bars for the density of statadich
result in very large changes in the diffusion constants.

good diffusion coefficients.
Slightly cheaper than the quenched density of states is

What these investigations do tell us is that one wouldthe calculation ofpgo)(w) via a Fourier transform of short-
need exceedingly accurate estimates of the density of statéisne trajectories carried out at5 K above the quenched
at the very lowest frequencies to compute diffusion constantsonfigurations. The short trajectories and the Fourier trans-

using Eq.(1) when the potential energy surface is rough.

forms are both inexpensive, but one must still start from the

Table Il compares the errors one obtains in diffusionquenched configurations, and obtaining these can be expen-

constants using the above estimatesiay).

sive.
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The cheapest method of obtaining an estimate of théures” of the liquid. This has usually been taken to mean the
density of states is the calculation pf)(w) via svD of the  normal mode density of states at the nearest local minimum
velocity autocorrelation function at a temperature for whichon the potential energy surface. This works quite well in
the hopping time is known. Th&vD procedure that produced atomic Lennard-Jones systems, which have relatively simple
p©O(w) in Fig. 7 involved a 2008 2000 matrix diagonaliza- potential energy surfaces. We now know that when the po-
tion, but sincep®)(w) is largely independent of temperature, tential energy surface is roudhs in CS) these vibrational

this is done only once for each liquid density. frequencies can be quite different from those the liquid ex-
periences when it can traverse the small nondiffusive barri-
D. Summary ers. Our evidence for this is shown quite graphically in Fig.

. ) 7 where the normal mode density of states is missing the
We now know that neithepq(w) nor pjum(w) gives & jmportant low-frequency modes that are present when one

good estimate of the density of states in this liquid. Howevergypseryes vibrational frequencies from a supercooled liquid at
we do not know which of the power-spectrum methods for,qn-erg temperature. If one were to apply the Zwanzig

estimating it is “correct.” We can make plausible arguments o qel to this system naivelfi.e., usingpq(w) in Eq. (1)]

for both of them, and since they result in different vibrationalihere would be substantial errors in the predicted diffusion

densities of states, they give rise to different diffusion con-.qnstants.

stants in Zwanzig's model. As stated at the beginning of Sec. Although we can eliminate some methods of estimating

I\_/, we have used the small rate_ approximation t(_) calculatep(w) from consideration, we do not yet have a satisfying
diffusion constants in G5 matching the constarg in Eq.  \yay of arriving at a density of states for the basins on a
(15) to obtain agreement just above melting. It is not satisq,gh potential energy surface, so there is still a free param-
fying to leave a free parameter in the theory, but without anyer i the current method for determining the diffusion con-
accurate means of obtaining the vibrational density of statesi;nt. Even with this caveat, the cage correlation function
for a liquid, and in systems for which the hopping rate isyqyides an efficient way to measure the hopping time for
small, this is a reasonable approach. It would therefore be Qfittsive motion, and gives excellent agreement with the dif-
great interest to have a method for estimating the true vibrag,sjon constants obtained with more computationally expen-
tional density of stategparticularly at the lowest frequen- ;e methods.
cies on a rough potential energy surface. We must also entertain the possibility that a model built
on interrupted basin vibrations in what is an essentially an-
VI. CONCLUSION harmonic system will not be able to predict diffusion accu-

In the preceding sections, we have extended to molecJ—ately' Alternative hopping que(ﬁke the one propqsed k.)y
lar liquids a method for using molecular dynamics simula-|_|""rtm"’Inn and Heermayifl which accumulate hopping dis-

tions to estimate the hopping rate for the Zwanzig model ofances as well as hopping F|mes may be more useful in some
self-diffusion[Eq. (1)]. We associate the hopping rate with systems where the Zwanzig model breaks down.
the slow decay of the cage correlation functideg. (7)],
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