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Nonradiative relaxation processes in condensed phases: Quantum
versus classical baths
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We consider the problem of calculating the nonradiative multiphonon transition rate between two
electronic states of an impurity embedded in a condensed-phase environment, where all the nuclear
degrees of freedom of the bath are taken in the harmonic approximation, and the two electronic
states are coupled to the bath diagonally and off-diagonally. The diagonal coupling term includes
displacements of the equilibrium positions of the bath modes, the frequency shifts, and Duschinsky
rotations of the bath modes between the two electronic states. We consider two forms of the
off-diagonal coupling term—the first assumes that this term is independent of the nuclear degrees of
freedom, and thus the coupling between the twodiabaticelectronic states is taken to be a constant;
the second is based on the Born–Oppenheimer method in which the off-diagonal coupling term
between the twoadiabaticelectronic states is taken to be a function of the bath momenta operators.
This general model is used to examine the accuracy of several commonly used mixed
quantum-classical approximations where the two electronic states are treated quantum mechanically
while the bath modes are treated classically. We use the lowest-order perturbation theory to
calculate the transition rate between the two electronic states, which is given in terms of the Fourier
transform of the off-diagonal coupling-element time correlation function. Following the
methodology of Kubo and Toyozawa, we obtain an analytic solution for the fully quantum
mechanical time correlation function, and extend our method@S. A. Egorov, E. Rabani and B. J.
Berne,J. Chem. Phys.108, 1407~1998!# to obtain its mixed quantum–classical counterpart. It is
shown that the nonradiative transition rate between the two electronic states calculated using the
mixed quantum-classical treatment can deviate by several orders of magnitude from the exact
quantum mechanical result. However, the agreement is improved when the classical time
propagation of the bath modes is performed with the arithmetic average of the ground- and
excited-state nuclear Hamiltonians, and thermal averaging over the initialclassical distributionis
replaced with the averaging over the correspondingWigner distribution. © 1999 American
Institute of Physics.@S0021-9606~99!51811-4#
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I. INTRODUCTION

Nonradiative decay is a ubiquitous step in numero
chemical and physical processes, such as internal conver
intramolecular vibrational redistribution, and intermolecu
energy relaxation.1–4 Radiationless relaxation processes
condensed phases involve energy transfer from electronic
or vibrationally excited impurities to the host. It is often th
case that the amount of energy transferred exceeds by a
factor the typical energy associated with the thermal mot
of the solvent. Clearly, many quanta of the bath excitatio
must be created in this process, which is commonly refer
to as multiphonon relaxation~MPR!.

A generic example of such a process is provided by
nonradiative relaxation of a localized solvated electron. D
to the strong coupling to the solvent, the transitions betw
the bound states of a solvated electron lead to signific
solvent reorganizations. As such, this system serves as a
sitive probe of the effects of the solvent structure and dyna
5230021-9606/99/110(11)/5238/11/$15.00
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ics on the nonradiative transitions, and has received con
erable experimental5,6 and theoretical7–14 attention. Most
theoretical work in this field has been based on a model
quantum solute in a classical solvent, with various levels
approximations used to account for the quantum nature
the solvent. Before discussing the ramifications of su
mixed quantum–classical treatments in detail, we will brie
summarize the existing theoretical approaches to MPR
general.

Most theoretical treatments of MPR are based on
time-dependent perturbation theory. One starts by writing
total Hamiltonian as a sum of the zeroth-order Hamilton
~whose eigenstates are typically known! and the perturbation
term, which induces transitions between the zeroth-or
eigenstates. Due to some arbitrariness in defining the zer
order Hamiltonian and the coupling term, various routes
nonradiative decay are possible. The existing theories ge
ally involve one of the two approaches: the adiabatic~Born–
8 © 1999 American Institute of Physics
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Oppenheimer! or ‘‘static-coupling’’ ~crude Born–
Oppenheimer! methods. The first method is usually invoke
when discussing relaxation between electronic states, bu
be applied to high-frequency vibrations as well. The coor
nates are divided into fast~electronic or high-frequency vi
bration! and slow ~bath modes! components. One neglec
for the moment the kinetic energy of the bath, and finds
eigenstates of the Hamiltonian for fixed solvent coordina
The eigenvalues of this procedure generate the usual a
batic potential surfaces, and transitions between these
faces are due to the ‘‘nonadiabatic’’ coupling~solvent ki-
netic energy! term in the full Hamiltonian. In solid-state
theory, this approach was employed by Kubo a
Toyozawa,15 Perlin,16 Miyakawa and Dexter,17 and
others.1,18–22 Recently, this approach has become wide
used in the field of liquid phase chemistry in the context
calculating nonradiative relaxation rates of solvat
electrons.11,12,14

The second approach can be summarized as follows:
assumes that the total Hamiltonian can be written asH
5HTLS1Hb1H1, where HTLS is the Hamiltonian for the
two relevant quantum levels of the impurity~two-level sys-
tem or TLS!, Hb is the Hamiltonian of the bath, andH1 is
the interaction between the impurity and bath degrees
freedom. Depending on the form ofH1, different routes to
multiphonon relaxation are possible; the two most comm
ones involve ‘‘shifted/distorted surfaces’’ and ‘‘high-ord
coupling’’ schemes. In the shifted/distorted surfaces
proach, the diagonal matrix elements ofH1 ~in the basis that
diagonalizesHTLS) are functions of bath coordinates. Th
produces different potential energy surfaces for each sta
the TLS, and in the lowest-order perturbation theory, o
diagonal matrix elements ofH1 yield multiphonon transi-
tions. Mathematically, this route is similar to the adiaba
approach discussed above, and it has been developed
extensively.1,23–32 In the high-order coupling approach, th
diagonal matrix elements ofH1 are taken to be constan
while the off-diagonal matrix elements are nonlinear fun
tions of the bath coordinates, which again allows for m
tiphonon processes in the lowest-order perturbation the
This is the most common and straightforward theoretical
proach to MPR, and it has been discussed by m
authors.1,31,33–46 The relative importance of the shifted
distorted surfaces versus high-order coupling approach
calculating MPR rates has been analyzed both
vibrational47,48 and electronic transitions.31 In the case of vi-
brational relaxation, the high-order coupling mechanism
been shown to dominate the rate. This result is due to the
that the change in the impurity internal vibrational state h
only a small effect on its coupling to the bath, and theref
the potential energy surfaces corresponding to differ
states of the impurity do not differ appreciably. On the oth
hand, upon electronic transition, the impurity-bath coupl
can be altered significantly, and the relaxation mechan
due to the distortion of potential energy surfaces may
come dominant.

The methods of calculating MPR rates discussed ab
are quite general, and formally apply both to crystalline a
liquid hosts. However, their practical realization differs s
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nificantly in these two cases. In particular, the low
temperature solids can be treated in the harmonic appr
mation, which allows for the fully quantum mechanic
calculation of the transition rates. At the same time,
quantum dynamics in liquid hosts is much more difficult
handle computationally, and a common approach is to e
ploy a mixed quantum–classical treatment~quantum TLS in
a classical bath!. Within this framework, one is faced with
the problem of inferring fully quantum mechanical rat
from the results of the mixed quantum–classical simulatio
The exact prescription for doing this is known only for ce
tain simple models.49 In the general case, the exact solutio
to this problem is, of course, unknown, and various appro
mate schemes for incorporating quantum effects have b
proposed.11,12,14,45,46,50

Given the approximate nature of these ‘‘correcti
schemes,’’ it is of great importance to assess their accur
by studying exactly solvable models. One such study w
recently carried out by two of us in the context of vibration
energy relaxation in condensed phases.45 It was mentioned
earlier that within the crude Born–Oppenheimer method,
high-order coupling route gives the dominant contribution
the vibrational relaxation rate. Accordingly, this particul
route was considered in Ref. 45. Specifically, the b
HamiltonianHb was taken to be harmonic, and the coupli
term H1 was written as an exponential function of the ba
coordinates. It was shown that the fully quantum relaxat
rate and the rate obtained from the mixed quantum–class
treatment can differ by several orders of magnitude for s
ficiently high vibrational frequencies of the impurity. In o
der to relate this result to the studies of vibrational relaxat
in liquids, a model based on Lennard-Jones interactions
considered, and an approximate ‘‘quantum correction’’
the relaxation rates was derived by mapping this model o
an effective harmonic bath. The quantum correction fac
was found to depend nearly exponentially on the vibratio
transition frequency of the impurity.

In view of the above findings, which illustrate the im
portance of solvent quantum effects for the relaxation ra
involving high-frequency vibrational modes, it would be
interest to perform a similar study for theelectronicnonra-
diative relaxation, where typical energy gaps exceed m
times those associated with vibrational transitions; therefo
quantizing the solvent can be expected to have an even s
ger effect on the relaxation rates. This issue is of particu
importance in view of the recent theoretical work on t
nonradiative relaxation of solvated electrons, where
quantum transition rates are often obtained from quantu
classical molecular dynamics simulations.12 The expression
for transition rates in Ref. 12 involves certain tim
correlation functions, which are evaluated in terms of t
trajectories of a purely classical solvent. In order to acco
for the quantum nature of the bath, these classical correla
functions are identified with the correspondingsymmetrized
quantum time correlation functions, thus ensuring that
transition rates obey the detailed balance condition.51 How-
ever, the study of vibrational energy relaxation based on
exactly solvable model has shown that this particular met
of building in the detailed balance is the least accur
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among the available quantum correction schemes.45,49,52 A
similar study of electronic relaxation processes would ena
one to gain some insight into the relation between the qu
tum electronic transition rates and the semiclassical appr
mations to them. This is precisely the goal of the pres
work. Since the high-order coupling mechanism has b
extensively treated in the context of vibrational relaxation45

we focus here on the other two routes to MPR: the ‘‘dist
tion dominated limit’’ of the static-coupling method, and th
Born–Oppenheimer approach, where the electronic tra
tions are induced by the nonadiabatic coupling arising fr
the nuclear kinetic energy.

The organization of the paper is as follows. In Sec. II
introduce our model Hamiltonian and give expressions
quantum and semiclassical electronic transition rates. In
III we further specify our model and calculate the transiti
rates within the static-coupling method. We consider se
rately two cases: shifted11 and shifted/distorted28,30 multidi-
mensional harmonic potential energy surfaces. In Sec.
similar calculations are performed within the Born
Oppenheimer approach. In Sec. V, we conclude.

II. MODEL HAMILTONIAN AND ELECTRONIC
RELAXATION RATES

We consider an impurity embedded in a conden
phase environment, which we model as a harmonic bath.
impurity has two relevant quantum levels—initial~excited!
and final ~ground!, which we label asu1& and u0&, respec-
tively; their energies areE1 and E0. We write a general
Hamiltonian for a TLS coupled~diagonally and off-
diagonally! to a bath

H5H0u0&^0u1H1u1&^1u1V01u0&^1u1V10u1&^0u, ~1!

where H05E01Hb81D0 and H15E11Hb81D1; Hb8 , D0

and D1 are operators in the Hilbert space of the bath va
ables. Without loss of generality we setE050.

As will become clear below, it is convenient to perfor
the following transformation of the total Hamiltonian: w
add and subtractD1u0&^0u in Eq. ~1! and use the identity
u0&^0u1u1&^1u51 to obtain

H5~Hb1D!u0&^0u1~\vel1Hb!u1&^1u

1V01u0&^1u1V10u1&^0u, ~2!

where\vel5E12E0, Hb5Hb81D1 andD5D02D1. Hb is
the bath Hamiltonian which we take to be a sum over h
monic mass-weighted normal modesQa with frequenciesva

and conjugate momentaPa

Hb5 1
2(

a
~Pa

21va
2Qa

2 !. ~3!

With the above form of the total Hamiltonian, it is clear th
the Hamiltonian corresponding to the excited state of
TLS is given byHb , while the Hamiltonian corresponding t
the ground state is given byHb1D. This form of the Hamil-
tonian is the most convenient choice for the present probl
yet it is completely general within the harmonic model.
le
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As discussed in the introduction, we use the lowest or
perturbation theory to calculate the transition rate betw
the states of the TLS

k0←15
1

\2E2`

`

dt eiveltK V10~ t !

3expTW H 2
i

\E0

t

dt8 D~ t8!J V01~0!L . ~4!

In the above,̂ •••& denotes the quantum mechanical avera
over the bath coordinates performed withHb ~i.e., the
nuclear Hamiltonian corresponding to the initial state of t
impurity!; TW is the time-ordering operator, and bothD(t) and
V10(t) are the Heisenberg form for the diagonal and o
diagonal coupling termsD and V10, respectively, and are
given by

D~ t !5eiH btDe2 iH bt, ~5!

V10~ t !5eiH btV10e
2 iH bt. ~6!

We have assumed that the TLS in the initial~excited! state
reaches equilibrium with the bath prior to the occurrence
the relaxation process.

So far, our treatment has been fully quantum mecha
cal. Since the main interest of the present work concerns
consequences of the classical treatment of the solvent,
also provide an expression for the transition rate when
bath dynamics is treated classically53

k0←15
1

\2E2`

`

dt eiveltK expH 2
i

\E0

t

dt8 D~ t8!J
3V10~ t !V01~0!L

cl

, ~7!

where ^•••&cl denotes a classical equilibrium average ov
initial coordinates and momenta performed withHb . D(t)
and V10(t) are no longer Heisenberg operators, but rat
functions of dynamic classical variables, whose time dep
dence is governed byHb ~see below!, and the time ordering
is no longer necessary. This semiclassical approximation
been recently discussed by us in the context of calcula
vibronic absorption spectra of chromophores in conden
phase environment, where a similar model has b
employed.54,55This approach@which we have termed the dy
namical classical limit~DCL!# is one of the most widely
used semiclassical approximations. In particular, the stud
nonadiabatic transitions of solvated electrons12 mentioned in
the introduction has been carried out with this method. Ho
ever, this semiclassical approximation is not unique, si
the quantum result for the rate@Eq. ~4!# can be rewritten in
various different~but equivalent! forms leading to different
semiclassical approximations, which arenot equivalentto
each other.53 All these semiclassical expressions have
form of Eq. ~7!, but the Hamiltonian used to propagate t
nuclear degrees of freedom is different in each case.53,56The
DCL method represents one possible choice of the propa
tion scheme, where the time dependence of the classical
ables is governed by the initial state nuclear Hamilton



r
m

le
e
fi

ed

a
es

or

ic
-

-
ff-

nt

ra
l
on

tia
TL
ce
es
e

-
s

an
tw

l,
on

e
.

ou
tio

-

n
s

ical

cify
cal
o
the

ic
on-

ore

s-
iag-

has

e

o

n-
i-
ly
l in

en

i-
ev-
de-

5241J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Egorov, Rabani, and Berne
(Hb in the present case!. Alongside the DCL scheme, in ou
study of vibronic spectra we have considered another se
classical approximation, where the dynamics of the nuc
degrees of freedom is governed by the arithmetic averag
the nuclear Hamiltonians corresponding to the initial and
nal states of the impurity~in the present case it isHb

1D/2).57 Accordingly, this approximation has been term
the averaged classical limit~ACL!.54,55This particular choice
of the propagation scheme has been motivated by the an
sis of the Wigner form of the quantum mechanical expr
sion for the relevant time-correlation function.54,57 It has
been found that the ACL method gave consistently m
accurate results than the DCL approximation~in a sense of
better agreement with the exact quantum results!. In the
present work, we will test the accuracy of both semiclass
schemes~DCL and ACL! for calculating nonradiative elec
tronic transition rates.

It is clear from the Eqs.~4! and~7! that the central quan
tities in the calculation of the transition rate are the o
diagonal (V10) and the diagonal (D) coupling terms. As dis-
cussed in the introduction, we will consider two differe
forms of the off-diagonal coupling:~a! V10 is taken to be
constant~static-coupling scheme!, and ~b! V10 is the off-
diagonal matrix element of the nuclear kinetic energy ope
tor ~Born–Oppenheimer method!. Regarding the diagona
coupling term, we write it as a quadratic form in the phon
coordinates

D5(
a

va
2daQa1

1

2(a va
2da

21(
aa8

gaa8QaQa8 . ~8!

This form of diagonal coupling arises when the two poten
energy surfaces corresponding to the two states of the
can be described by two multidimensional harmonic surfa
with different equilibrium positions and different frequenci
with the additional possibility of mode mixing between th
two states. The first two terms inD are due to the displace
ments of the equilibrium positions of the normal mode
while the last term corresponds to the frequency shifts
Duschinsky rotations of the normal modes between the
electronic states.

In the next section we will further specify our mode
and will perform the calculations of the electronic transiti
rates within the static-coupling scheme both quantum m
chanically and with various semiclassical approximations

III. STATIC-COUPLING APPROACH

Under the assumption of the constant off-diagonal c
pling, the quantum mechanical expression for the transi
rate given by Eq.~4! reduces to the Fourier transform~evalu-
ated at the frequencyvel) of the thermal average of the time
ordered exponential

k0←15
uV10u2

\2 E
2`

`

dt eiveltK expTW H 2
i

\E0

t

dt8 D~ t8!J L .

~9!

As discussed in the previous section, in order to obtai
semiclassical approximation to the above result, one need
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replace the quantum mechanical average with the class
one, neglect the time ordering, and treatD(t) as a function of
dynamic classical variables. In addition, one needs to spe
the Hamiltonian used for the propagation of the classi
degrees of freedom. Here, we will limit ourselves to the tw
aforementioned propagation schemes, i.e., the DCL and
ACL approximations.

We note that the form of the diagonal coupling termD
given in Eq.~8! is completely general within the harmon
model. At the same time, numerous theoretical studies c
sidered a simplified situation, whereD is taken to be a linear
function of bath coordinates.11,53,56,29We will start by look-
ing at this simple model, and then proceed to treat a m
general case of quadratic diagonal coupling.

A. Linear diagonal coupling

We consider the model of two identical mutually di
placed multidimensional harmonic surfaces, where the d
onal coupling term has the form

D5(
a

va
2daQa1

1

2(a va
2da

2. ~10!

The quantum mechanical transition rate for this model
been calculated by many authors1,11,15

k0←15
uV01u2

\2 E
2`

`

dt eivelt expH 1

2\E0

`

dv J~v!

3v@coth~b\v/2!~cos~vt !21!2 i sin~vt !#J , ~11!

where the spectral densityJ(v) is given by

J~v!5(
a

da
2d~v2va!. ~12!

Note that in the limitt→`, the second exponential in th
integrand in Eq.~11! decays to a constant value~which is
nonzero and real!. Therefore, the time integration will lead t
an appearance of a delta function forvel50. Since we are
only interested in the rates of electronic transitions for no
zero~in fact, large!! energy gaps, in performing the numer
cal calculations of the transition rates below, we will simp
subtract the above constant from the second exponentia
the integrand in Eq.~11!.

The dynamical classical limit of this model has also be
derived,11,53,58and the result reads:

k0←15
uV01u2

\2 E
2`

`

dt eivelt expH 1

\2E0

`

dv J~v!

3[(cos(vt)21)/b2
i

2
\v2t)] J . ~13!

The presence of\ in the above result stems from the sem
classical nature of the DCL approach: the two electronic l
els are treated quantum mechanically, while the nuclear
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grees of freedom are propagated classically. Note that wi
the DCL approximation, the sin(vt) term present in the quan
tum mechanical result is replaced by its short-time limit.
a consequence, in the limitt→`, the second exponential i
the integrand in Eq.~13! develops an oscillatory behavio
~rather than decaying to a real constant value as in
quantum-mechanical case!. This makes it impossible to ob
tain a converged result for the DCL transition rate within th
model.

The above drawback of the DCL approach is remed
in the ACL method. By following the procedure outlined
Ref. 54, one obtains the following closed-form analytic
expression for the transition rate in the ACL approximatio

k0←15
uV01u2

\2 E
2`

`

dt eivelt expH 1

\2E0

`

dv J~v!

3F ~cos~vt !21!/b2
i

2
\v sin~vt !G J . ~14!

The only difference of the above result from the quantu
mechanical expression given by Eq.~11! is that the
coth(b\v/2) is replaced by its high-temperature limit. Th
difference can be traced to the fact that the thermal avera
in the ACL approximation is performed with the classic
probability distribution. This suggests a modification of t
ACL method, where the averaging is performed instead w
the Wigner distribution based on the initial state nucle
Hamiltonian.59,60 We will refer to this approximation as th
WACL. In the present model, the latter is given by Eq.~3!,
and the Wigner distribution takes a simple Gaussian form61

rW5)
a

tanh~b\va/2!

p\
expH 2

2 tanh~b\va/2!

\va

3FPa
2

2
1

va
2Qa

2

2 G J . ~15!

The above form can be readily employed within our meth
of calculating the transition rate. It turns out that the com
nation of thermal averaging with the Wigner distribution a
the propagation with the average Hamiltonian produces
exact quantum mechanical result for the rate. It is wor
emphasizing that this conclusion holds only for the case
mutually displaced identical harmonic surfaces. It no lon
holds in a more general situation, when the frequency sh
and/or Duschinsky rotations of~harmonic! modes are
present. Needless to say, the above conclusion also br
down in the case of anharmonic surfaces.

We now use the results given in Eqs.~11! and ~14! to
perform model calculations of the electronic transition ra
between the identical, linearly displaced harmonic surfac
It is clear from the above equations that this model is co
pletely specified by a single spectral densityJ(v). In the
case of electronic relaxation processes~which are character
ized by large transition gaps!, the dominant contribution to
the relaxation rate generally comes from the coupling of
impurity to the optical phonons, whose frequencies
in

e

d
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r
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ks

s
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higher than the acoustic phonons.42 In order to model the
corresponding spectral density, we have chosen a Gaus
form centered atvop with the width parameters and the
normalization constantl28

J~v!5
l

~2ps2!1/2
exp@2~v2vop!

2/2s2#. ~16!

Since optical phonons are characterized by a narrow dis
sion, we have limited ourselves to the cases/vop!1, which,
in addition, allows us to avoid the nonphysical contributio
arising from the tail of the Gaussian function extending
negative frequencies. Specifically, we have chosen the
lowing values of the parameters:vop51.0; s50.1 ~from
now on, we employ atomic units!. With the aboveJ(v), we
have calculated the electronic relaxation rates for the inve
temperatureb54 and the off-diagonal coupling matrix ele
ment V0150.1 from the fully quantum mechanical expre
sion given by Eq.~11! and from the ACL approximation
given by Eq.~14!. @As discussed earlier, the transition rate
the dynamic classical limit from Eq.~13! does not converge
in this case due to the nondecaying oscillatory behavior
the correlation function.#

The results of our calculations are shown in Fig.
where we present a semilog plot of the transition rate~scaled
by vop) versus the dimensionless energy gapvel*
5vel /vop. The frequencies of optical phonons typically l
in the range of 500–800 wave numbers, while the electro
energy gaps are generally on the order of several thous
of wave numbers. Hence, we have performed the model
culations up to the value of the reduced energy gapvel* 510.
One sees that for the largest energy gap considered, the
approximation underestimates the transition rate by m
than an order of magnitude as compared with the fully qu
tum mechanical~FQM! result. As stated earlier, this differ

FIG. 1. Semilog plots of the nonadiabatic transition rate for linear diago
coupling and static off-diagonal coupling as a function of the reduced e
tronic gap. The results for the WACL are not shown since this approxim
tion is exact for this choice of couplings.
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ence arises entirely from the fact that the thermal averag
in the ACL method is performed with the classical distrib
tion function. When the latter is replaced by the Wigner d
tribution, one recovers the exact quantum mechanical re
for the transition rate. Since the above conclusion rigorou
holds only for the highly simplified model of the linearl
displaced harmonic surfaces, it would be of interest to
the accuracy of the WACL method in a more general ca
this will be done in the next subsection.

B. Quadratic diagonal coupling

Here, we consider the most general case of quadr
diagonal coupling between two multidimensional harmo
surfaces, i.e., we include both frequency shifts and m
mixing due to the Duschinsky rotations.30 The fully quantum
mechanical result for the transition rate is given by Eq.~9!
with the operatorD from Eq. ~8!. In this general case, th
model cannot be solved analytically, and one has to reso
a numerical approach based on the Kubo–Toyozawa form
ism. This method has been used earlier by us in the stud
vibronic spectra in condensed phases,54 and can be applied in
a similar fashion to the problem at hand; the details of
implementation are listed in Ref. 54.

Since the method is limited to a finite number of ba
modesNb , we need to specify a procedure for choosing
frequenciesva , the linear-coupling coefficientsda , and the
quadratic-coupling coefficientsgaa8 . The procedure we
have adopted has been motivated by our study of vibro
absorption spectra in condensed phases.54,55 We single out
one ‘‘tagged’’ bath modeQ̃1 and couple it to the remaining
bath modes Q̃a via the bilinear term caQ̃1Q̃a @a
52,...,Nb ; the tildes onQs serve to indicate that thes
modes are distinct from the ones which enter in Eq.~3!#.
This is done forboth electronic states. For simplicity, w
assume that the spectral density,(aca

2/(2ṽa)d(v2ṽa),
which describes the coupling between the tagged mode
the remaining bath modes is again given by Eq.~16!. In
order to obtain the coupling coefficientsca , we follow the
procedure outlined in Ref. 54. The spectral density from
~16! is discretized evenly with an incrementdv ~thereby
giving the frequenciesṽa), and the coupling coefficients ar
calculated according to

ca
252ṽaJ~ṽa!dv. ~17!

The values of the peak frequencyvop and the normalization
constantl are taken to bedifferent in the two electronic
states (vop

0 andl0 for the stateu0&, andvop
1 andl1 for the

state u1&). Similarly, the frequency of the tagged mode
taken to be different for the ground and for the excited el
tronic state—v1

0 andv1
1, respectively. We now diagonaliz

the excited-state nuclear Hamiltonian with an appropri
unitary transformationU, thereby reducing it to the formHb

given in Eq. ~3!. The same transformation is subsequen
applied to the ground-state nuclear Hamiltonian. Since
two Hamiltonians in their original form differ with respect t
the frequency of the tagged mode and the coupling betw
the tagged mode and the remaining bath modes, they ca
g
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be diagonalized simultaneously. Consequently, the trans
mation of the ground-state nuclear Hamiltonian withU re-
sults in a formHb1(aa8gaa8QaQa8 , which allows us to
obtain the quadratic coupling coefficientsgaa8 in Eq. ~8!.

In addition, we need to specify the linear coupling coe
ficientsda . We achieve this by shifting the equilibrium po

sition of the tagged modeQ̃1 in the original ~i.e., untrans-
formed! ground-state nuclear Hamiltonian by an amountd0.
When the unitary transformationU is applied to the ground-
state Hamiltonian~with just one mode shifted!, the equilib-
rium positions ofall transformed modesQa get displaced by
da , which allows us to obtain the first two terms in Eq.~8!.

Admittedly, the above choice of the linear- an
quadratic-coupling coefficients may seem rather restrict
As an alternative, we have considered a somewhat diffe
procedure, where the operatorD is written in terms of a
single collective phonon coordinate, the latter being a lin
combination of the bath normal modes.62 While the relations
between the quantum mechanical results and various s
classical approximations for the electronic transition ra
were similar in the two approaches, the first method prov
to give faster convergence with respect to the number of b
modes. Therefore, in what follows, we will restrict ourselv
to the procedure based on the ‘‘tagged’’ mode.

The semiclassical approximation to the transition rate
given by Eq.~7! ~with V10 taken to be constant!. WhenD(t)
is propagated with the initial state nuclear HamiltonianHb ,
one obtains the DCL result~which does converge in the
present case!, while the propagation with the average Ham
tonian Hb1D/2 corresponds to the ACL scheme.~Once
again, the practical details of the calculations are exactly
same as those given in Ref. 54.! In both cases, the therma
averaging is performed with the classical probability dist
bution based onHb . In an analogy to the linear-couplin
case, we have also employed the WACL method.

We have calculated the electronic transition rates for
inverse temperatureb54 and the off-diagonal coupling ma
trix elementV0150.1. The values for the other paramete
have been taken as follows:d052.0, v1

051.1, v1
151.0,

vop
0 51.1,vop

1 51.0,l050.05, andl150.125. The results of
our calculations are shown in Fig. 2, where we presen
semilog plot of the transition rate~scaled byvop

1 ) versus the
dimensionless energy gapvel* 5vel /vop

1 . One sees that for
the largest energy gap considered (vel* 510!, the DCL ap-
proximation underestimates the transition rate by nearly
orders of magnitude, while the ACL result is nearly one o
der of magnitude smaller than the quantum mechanical r
The WACL method no longer produces the exact quant
result, but does provide a very good approximation to it~es-
pecially for the large energy gaps!.

We remark that the quantum mechanical time correlat
function appearing in the static-coupling approach@see Eq.
~9!# is similar to the one considered in our study of vibron
absorption spectra.54,55 We have analyzed the Wigner form
of this time-correlation function, and have arrived at the co
clusion that a semiclassical treatment should employ the
erage Hamiltonian for the propagation of the nuclear degr
of freedom. Therefore, the good performance of the WA
method is hardly surprising. However, we emphasize that
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above conclusion is only valid for the static-couplin
scheme, i.e., for theconstantoff-diagonal coupling matrix
elements. It no longer holds when these matrix elements
pend on the nuclear coordinates and/or momenta, as we
illustrate in the next section.

IV. BORN–OPPENHEIMER METHOD

In the Born–Oppenheimer method, the zeroth-or
Hamiltonian is written as a sum of the electronic Ham
tonian ~containing the electronic energy and the electro
nuclear interaction! and the nuclear potential energy oper
tor. In contrast to the static-coupling approach, t
eigenstates of the electronic Hamiltonian (u0& and u1&) de-
pend parametrically on the nuclear coordinates. The per
bation term~which induces the transitions between the tw
electronic states! is given by the nuclear kinetic energy op
erator, and its off-diagonal matrix element reads15

V105(
a

^1uPau0&Pa1 1
2(

a
^1uPa

2 u0&

[SW •PW 1 1
2 ^1uPW 2u0&, ~18!

where we have defined two vectorsPW and SW with compo-
nentsPa and Sa5^1uPau0&, respectively. Following Kubo
and Toyozawa,15 we neglect the second term in the abo
equation and assumeSa to be independent of the nuclea
coordinates.

The quantum mechanical result for the electronic tran
tion rate in the Born–Oppenheimer method is thus given
Eq. ~4! with V105SW •PW . The corresponding semiclassical a
proximations are obtained in exactly the same way as in
static-coupling approach. Once again, we will consider se
rately two cases: linear and quadratic diagonal coupling.

FIG. 2. Semilog plots of the nonadiabatic transition rate for quadratic d
onal coupling and static off-diagonal coupling as a function of the redu
electronic gap . Note the excellent agreement between WACL and FQM
particular for large electronic gaps.
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A. Linear diagonal coupling

The closed-form result for the quantum mechanical tr
sition rate within this model has been given by Kubo a
Toyozawa15

k0←15
uV10u2

\2 E
2`

`

dt eivelt expH 1

2\E0

`

dv J~v!

3v@coth~b\v/2!~cos~vt !21!2 i sin~vt !#J
3H U 1

2\E0

`

dv JdS~v!v@coth~b\v/2!~cos~vt !21!

2 i sin~vt !#U2

1
1

2\E0

`

dv JS~v!v@coth~b\v/2!

3cos~vt !2 i sin~vt !#J , ~19!

where in addition to the spectral densityJ(v), we have de-
fined two other spectral densities—JS(v) andJdS(v) as fol-
lows:

JS~v!5(
a

Sa
2d~v2va!, ~20!

and

JdS~v!5(
a

daSad~v2va!. ~21!

As in the static-coupling scheme, in the limitt→` the time
correlation function in the integrand of Eq.~19! decays to a
nonzero real constant, which we will subtract when perfor
ing the Fourier transform to calculate the transition rate.

The DCL approximation for the transition rate withi
this model can also be obtained in a closed form, and
result reads

k0←15
uV01u2

\2 E
2`

`

dteivelt expH 1

\2E0

`

dv J(v)

3[(cos(vt)21)/b2
i

2
\v2t)] J

3H S 1

b\2E0

`

dv JdS~v!~cos~vt !21!D 2

1
1

b\2E0

`

dvJS~v!cos~vt !J . ~22!

In the long-time limit, the time-correlation function in th
integrand of Eq.~22! develops an oscillatory behavior, whic
precludes us from obtaining a converged result for the tr
sition rate.

-
d
in
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Turning to the ACL approximation, we have employed the procedure outlined in Ref. 54 to obtain the following e
sion for the transition rate:

k0←15
uV10u2

\2 E
2`

`

dt eivelt expH 1

\2E0

`

dv J~v!F ~cos~vt !21!/b2
i

2
\v sin~vt !G J

3H S 1

b\2E0

`

dv JdS~v!~cos~vt !21!D 2

1
1

b\2E0

`

dv JS~v!cos~vt !1
i

b\2E0

`

dv JdS~v!v sin~vt !

3E
0

`

dvJdS~v!~12cos~vt !!J . ~23!

Finally, the WACL method yields:

k0←15
uV10u2

\2 E
2`

`

dt eivelt expH 1

2\E0

`

dv J~v!v@coth~b\v/2!~cos~vt !21!2 i sin~vt !#J
3H S 1

2\E0

`

dv JdS~v!v coth~b\v/2!~cos~vt !21! D 2

1
i

2\S E
0

`

dv JdS~v!v sin~vt ! D
3S E

0

`

dv JdS~v!v coth~b\v/2!~12cos~vt !! D 1
1

2\E0

`

dv JS~v!v coth~b\v/2!cos~vt !J . ~24!
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Even though the diagonal-coupling term is linear in t
nuclear coordinates, the above result does not coincide
the quantum mechanical one because of the dependen
the off-diagonal coupling matrix element on the nuclear m
menta.

We now use the results given in Eqs.~19!, ~23!, and~24!
to perform model calculations of the electronic transiti
rates between the identical, linearly displaced harmonic
faces coupled by the nuclear kinetic energy operator. In
dition to J(v), we need to specify functional forms for th
two other spectral densities—JS(v) and JdS(v). For sim-
plicity, we takeJ(v)5JS(v)5JdS(v), with J(v) given by
Eq. ~16!. Settingvop51.0; s50.1, we have calculated th
electronic relaxation rates for the inverse temperatureb54
from the fully quantum mechanical expression given by E
~19! and from the two levels of the ACL approximatio
given by Eqs.~23! and ~24!. The results of our calculation
are shown in Fig. 3, where we present a semilog plot of
transition rate~scaled byvop) versus the dimensionless e
ergy gapvel* 5vel /vop. One sees that for the largest ener
gap considered (vel* 510!, the ACL approximation from Eq
~23! with the classical thermal averaging underestimates
transition rate by nearly an order of magnitude, while the o
from Eq. ~24! overestimates the rate by about the same f
tor. In other words, the combination of the ACL propagati
scheme and the Wigner distribution-based averaging is
longer sufficient to obtain satisfactory results.

B. Quadratic diagonal coupling

SubstitutingV105SW •PW andD @given by Eq.~8!# into Eq.
~4!, one can easily carry out the quantum mechanical trac
ith
of

-

r-
d-

.

e

e
e
-

o

in

the coordinate representation.15 The resulting expression fo
the transition rate is given in Ref. 15; it is more cumberso
than in the case of linear diagonal coupling, and will not
reproduced here. The DCL approximation for the rate~which
in the present case converges! and the two variants of the
ACL result are equally straightforward to obtain by using t
methodology similar to the one introduced by us in the stu
of vibronic absorption spectra.54

FIG. 3. Semilog plots of the nonadiabatic transition rate for linear diago
coupling and momenta-dependent off-diagonal coupling as a function o
reduced electronic gap. Note that unlike the static off-diagonal coup
case, the WACL is no longer exact, and in fact deviates for the FQM re
by almost an order of magnitude for the largest electronic gap conside
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In practice, the calculations of both quantum mechan
and semiclassical rates are limited to a finite numberNb of
bath modes. We select the frequenciesva , the linear cou-
pling coefficientsda , and the quadratic coupling coefficien
gaa8 in exactly the same way as was described in the pr
ous section. In addition, we need to specify the compone
of the vectorSW . As in the case of linear coupling coefficien
da , we start by ascribing a particular values0 to the tagged
mode in the untransformed ground-state nuclear Ham
tonian. Upon transforming the latter with the unitary tran
formation which diagonalizes the excited-state Hamiltoni
one obtains the coefficientssa for each of the bath modes.

The semiclassical approximation to the transition rate
given by Eq.~7!. WhenD(t) andV10(t) are propagated with
the initial state nuclear HamiltonianHb , one obtains the
DCL result, while the propagation with the average Ham
tonian Hb1D/2 corresponds to the ACL approximatio
~with two options for performing the thermal averaging!.

We have calculated the electronic transition rates for
inverse temperatureb54. The values for the other param
eters have been taken as follows:d052.0, s052.0, v1

0

51.1, v1
151.0, vop

0 51.1, vop
1 51.0, l050.05, and l1

50.125. The results of our calculations are shown in Fig
where we present a semilog plot of the transition rate~scaled
by vop) versus the dimensionless energy gapvel*
5vel /vop. For the largest energy gap considered (vel* 510!,
the DCL approximation underestimates the transition rate
several orders of magnitude, while the ACL result is ab
two orders of magnitude smaller than the quantum mech
cal rate. The WACL method still provides the best appro
mation to the exact quantum result, although in the pres
case it is less accurate compared to the static-coup
scheme.

We remark that the latter finding has certain ramific

FIG. 4. Semilog plots of the nonadiabatic transition rate for quadratic d
onal coupling and momenta-dependent off-diagonal coupling as a func
of the reduced electronic gap. Both DCL and ACL deviate from the FQ
result by several orders of magnitude. The WACL is in much better ag
ment with the FQM result; however, it is not exact. The noise at la
electronic gaps is due to numerical difficulties in performing the Fou
transform to obtain the rate.
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tions for the semiclassical calculations of vibronic absorpt
spectra considered in our earlier work.54,55 In that work, the
spectra were calculated within the Franck–Condon appr
mation, and the ACL method was generally found to gi
highly accurate results. However, if one goes beyond
Franck–Condon approximation, the off-diagonal matrix e
ments of the dipole operator acquire a dependence on
bath coordinates, and the analysis of the Wigner form of
corresponding time-correlation function would no long
suggest classical propagation with the average Hamilton
In other words, the ACL method can then no longer be
pected to provide accurate results.

V. CONCLUSIONS

In this work, we have considered the problem of calc
lating the radiationless transition rates between the electr
states of a TLS coupled diagonally and off-diagonally to
condensed phase environment, with all the nuclear deg
of freedom treated in the harmonic approximation. Two p
ticular routes to the nonradiative relaxation were studi
static-coupling scheme~where the coupling between the tw
diabaticelectronic states was taken to be a constant!, and the
Born–Oppenheimer method~where the off-diagonal cou
pling term between the twoadiabatic electronic states was
taken to be a function of the bath momenta operato!.
Within each method, the diagonal coupling term was writt
as a general quadratic form in the bath coordinates, ther
including the displacements of the equilibrium positions
the bath modes, the frequency shifts, and Duschinsky r
tions of the bath modes between the two electronic state

The major goal of the present work has been to exam
the accuracy of several commonly used mixed quantu
classical approximations in calculating the nonradiative tr
sition rates, where the two electronic states are treated q
tum mechanically while the bath modes are trea
classically. We employed the lowest-order perturbat
theory in the form of Fermi’s Golden Rule to calculate t
transition rate between the two electronic states. The rate
written in terms of the Fourier transform of the time
correlation function for the off-diagonal coupling matrix e
ement. Following the methodology of Kubo and Toyozaw
we have obtained an analytic result for the fully quantu
mechanical time correlation function, and have extended
method54,55 to calculate its mixed quantum–classical cou
terpart. We have assumed that the nonradiative relaxa
process is dominated by the coupling of the electronic deg
of freedom to the optical phonons. Having introduced
model spectral density for the latter, we have calculated
transition rates both quantum mechanically and semicla
cally. Our model calculations have shown that the mix
quantum–classical treatment can underestimate the trans
rate by several orders of magnitude when the electronic
is larger than the optical bath frequency. The agreement w
the quantum result was improved when the classical t
propagation of the bath modes was performed with the ar
metic average of the ground- and excited-state nuc
Hamiltonians and thermal averaging over the initial classi
distribution was replaced with the averaging over the cor
sponding Wigner distribution. Nevertheless, even the la
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approach provided satisfactory results for the relaxation r
only within the static-coupling scheme, and was found
deviate from the quantum result appreciably in the Bor
Oppenheimer method. Moreover, our study was limited
quadratic potential energy surfaces, and it is likely that
anharmonic systems the average propagation scheme w
Wigner initial distribution would fail.

It is worth noting the difference between the ‘‘mixe
state propagation’’ method discussed above and the m
field approach~also known as the time-dependent se
consistent field!.63 In the latter method, the potential energ
surfaces corresponding to different states of the quan
subsystem are combined to form a ‘‘mean surface’’ with
weights determined by the populations of the correspond
quantum states. On the other hand, in the approach discu
herein, the prescription for constructing a ‘‘mixed propag
tion scheme’’ follows from the analysis of the Wigner for
of the exact quantum time kernel and its subsequent ex
sion in powers of the Planck’s constant. As already m
tioned, the conclusion that the optimal results~for the set of
systems studied here! are obtained by propagating classic
degrees of freedom on the average of the ground-
excited-state potential energy surfaces, holds rigorously o
for the static-coupling scheme, and is not accurate in
Born–Oppenheimer method.

Regarding the sampling of the initial conditions from t
Wigner distribution function, we note that it can be pe
formed in a straightforward fashion only for harmonic mo
els. For more realistic anharmonic systems this distribut
can become negative, and thus cannot be sampled in a s
lation using a conventional method. One therefore need
resort to approximations such as local harmonic treatmen
potential energy surfaces, or perform an expansion of
Wigner distribution function in powers of the Planck’s co
stant~the latter approach can be expected to work only
sufficiently high temperatures!. Obviously these approxima
tions have limited range of validity and their accuracy
mains to be tested.

Finally, we remark that the present study has been ba
entirely on the Fermi Golden Rule. One possible way to
beyond the lowest-order perturbation theory is provided
the surface-hopping technique.64 However, similarly to the
semiclassical treatments considered in this work, the sur
hopping method also relies on the mixed quantum–class
~MQC! description of the system. When the coupling b
tween the quantum states involved is weak, the perturba
theory is valid, and therefore the results from the surfa
hopping calculations are expected to be similar to those
tained from the MQC perturbative approach taken in t
work. The methods for improving these results~i.e., mixed
state propagation and thermal averaging with the Wigner
tribution! can be readily incorporated into a surface-hopp
method, although the same limitations as discussed in
previous paragraphs would also apply. We also note
surface hopping breaks down for strongly avoided cross
in an anharmonic isolated system, and for this any of
above improvements are likely to fail.65
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