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We consider the problem of calculating the nonradiative multiphonon transition rate between two
electronic states of an impurity embedded in a condensed-phase environment, where all the nuclear
degrees of freedom of the bath are taken in the harmonic approximation, and the two electronic
states are coupled to the bath diagonally and off-diagonally. The diagonal coupling term includes
displacements of the equilibrium positions of the bath modes, the frequency shifts, and Duschinsky
rotations of the bath modes between the two electronic states. We consider two forms of the
off-diagonal coupling term—the first assumes that this term is independent of the nuclear degrees of
freedom, and thus the coupling between the tiabatic electronic states is taken to be a constant;

the second is based on the Born—Oppenheimer method in which the off-diagonal coupling term
between the twadiabaticelectronic states is taken to be a function of the bath momenta operators.
This general model is used to examine the accuracy of several commonly used mixed
quantum-classical approximations where the two electronic states are treated quantum mechanically
while the bath modes are treated classically. We use the lowest-order perturbation theory to
calculate the transition rate between the two electronic states, which is given in terms of the Fourier
transform of the off-diagonal coupling-element time correlation function. Following the
methodology of Kubo and Toyozawa, we obtain an analytic solution for the fully quantum
mechanical time correlation function, and extend our meft®idA. Egorov, E. Rabani and B. J.
Berne,J. Chem. Phys108 1407(1998] to obtain its mixed quantum—classical counterpart. It is
shown that the nonradiative transition rate between the two electronic states calculated using the
mixed quantum-classical treatment can deviate by several orders of magnitude from the exact
quantum mechanical result. However, the agreement is improved when the classical time
propagation of the bath modes is performed with the arithmetic average of the ground- and
excited-state nuclear Hamiltonians, and thermal averaging over the iaggical distributionis
replaced with the averaging over the correspondiliggner distribution © 1999 American
Institute of Physicg.S0021-960609)51811-4

I. INTRODUCTION ics on the nonradiative transitions, and has received consid-
erable experimentaf and theoreticdlr'* attention. Most

anrad|at|ve d_ecay Is a ubiquitous gtep n numerOL.'StheoreticaI work in this field has been based on a model of a
chemical and physical processes, such as internal conversm&janwm solute in a classical solvent, with various levels of
intramolecular vibrational redistribution, and intermolecular '

a4 . . ._approximations used to account for the quantum nature of
energy relaxation=* Radiationless relaxation processes in

. . he solvent. Before discussing the ramifications of such
condensed phases involve energy transfer from electronically 9

or vibrationally excited impurities to the host. It is often the xed guantum-classical treatments in detail, we will briefly

case that the amount of energy transferred exceeds by a largdmmarize the existing theoretical approaches to MPR in
factor the typical energy associated with the thermal motiordeneral. _
of the solvent. Clearly, many quanta of the bath excitations MOst theoretical treatments of MPR are based on the
must be created in this process, which is commonly referre§me-dependent perturbation theory. One starts by writing the
to as multiphonon relaxatiotMPR). total Hamiltonian as a sum of the zeroth-order Hamiltonian
A generic example of such a process is provided by théwhose eigenstates are typically knovamd the perturbation
nonradiative relaxation of a localized solvated electron. Duderm, which induces transitions between the zeroth-order
to the strong coupling to the solvent, the transitions betweegigenstates. Due to some arbitrariness in defining the zeroth-
the bound states of a solvated electron lead to significamrder Hamiltonian and the coupling term, various routes to
solvent reorganizations. As such, this system serves as a semnradiative decay are possible. The existing theories gener-
sitive probe of the effects of the solvent structure and dynamally involve one of the two approaches: the adiabéBiorn—
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Oppenheimer or ‘“static-coupling” (crude Born— nificantly in these two cases. In particular, the low-
Oppenheimermethods. The first method is usually invoked temperature solids can be treated in the harmonic approxi-
when discussing relaxation between electronic states, but canation, which allows for the fully quantum mechanical
be applied to high-frequency vibrations as well. The coordi-calculation of the transition rates. At the same time, the
nates are divided into fagelectronic or high-frequency vi- quantum dynamics in liquid hosts is much more difficult to
bration and slow(bath modes components. One neglects handle computationally, and a common approach is to em-
for the moment the kinetic energy of the bath, and finds theloy a mixed quantum—classical treatmémaantum TLS in
eigenstates of the Hamiltonian for fixed solvent coordinatesa classical bath Within this framework, one is faced with
The eigenvalues of this procedure generate the usual adithe problem of inferring fully quantum mechanical rates
batic potential surfaces, and transitions between these suirom the results of the mixed quantum—classical simulations.
faces are due to the “nonadiabatic” coupliigolvent ki-  The exact prescription for doing this is known only for cer-
netic energy term in the full Hamiltonian. In solid-state tain simple modelé® In the general case, the exact solution
theory, this approach was employed by Kubo andto this problem is, of course, unknown, and various approxi-
Toyozawa® Perlin’® Miyakawa and Dextet! and mate schemes for incorporating quantum effects have been
others''8-22 Recently, this approach has become widelyproposed?!1214:4546.50
used in the field of liquid phase chemistry in the context of  Given the approximate nature of these ‘correction
calculating nonradiative relaxation rates of solvatedschemes,” it is of great importance to assess their accuracy
electrongt12:14 by studying exactly solvable models. One such study was

The second approach can be summarized as follows: orrecently carried out by two of us in the context of vibrational
assumes that the total Hamiltonian can be writtenHas energy relaxation in condensed pha&ek.was mentioned
=Hq st+tHp+H;, whereHy g is the Hamiltonian for the earlier that within the crude Born—Oppenheimer method, the
two relevant quantum levels of the impuritjwo-level sys-  high-order coupling route gives the dominant contribution to
tem or TLY, Hy is the Hamiltonian of the bath, and, is  the vibrational relaxation rate. Accordingly, this particular
the interaction between the impurity and bath degrees ofoute was considered in Ref. 45. Specifically, the bath
freedom. Depending on the form &f,, different routes to HamiltonianH, was taken to be harmonic, and the coupling
multiphonon relaxation are possible; the two most commorterm H, was written as an exponential function of the bath
ones involve “shifted/distorted surfaces” and “high-order coordinates. It was shown that the fully quantum relaxation
coupling” schemes. In the shifted/distorted surfaces aprate and the rate obtained from the mixed quantum—classical
proach, the diagonal matrix elementstbf (in the basis that treatment can differ by several orders of magnitude for suf-
diagonalizesH,5) are functions of bath coordinates. This ficiently high vibrational frequencies of the impurity. In or-
produces different potential energy surfaces for each state afer to relate this result to the studies of vibrational relaxation
the TLS, and in the lowest-order perturbation theory, off-in liquids, a model based on Lennard-Jones interactions was
diagonal matrix elements dfl; yield multiphonon transi- considered, and an approximate “quantum correction” for
tions. Mathematically, this route is similar to the adiabaticthe relaxation rates was derived by mapping this model onto
approach discussed above, and it has been developed quée effective harmonic bath. The quantum correction factor
extensively*?3~32|n the high-order coupling approach, the was found to depend nearly exponentially on the vibrational
diagonal matrix elements dfl; are taken to be constant, transition frequency of the impurity.
while the off-diagonal matrix elements are nonlinear func-  In view of the above findings, which illustrate the im-
tions of the bath coordinates, which again allows for mul-portance of solvent quantum effects for the relaxation rates
tiphonon processes in the lowest-order perturbation theoryinvolving high-frequency vibrational modes, it would be of
This is the most common and straightforward theoretical apinterest to perform a similar study for ttedectronicnonra-
proach to MPR, and it has been discussed by mangliative relaxation, where typical energy gaps exceed many
authorst3133-46 The relative importance of the shifted/ times those associated with vibrational transitions; therefore,
distorted surfaces versus high-order coupling approach iguantizing the solvent can be expected to have an even stron-
calculating MPR rates has been analyzed both foger effect on the relaxation rates. This issue is of particular
vibrationaf”*¢and electronic transitions.In the case of vi- importance in view of the recent theoretical work on the
brational relaxation, the high-order coupling mechanism hasonradiative relaxation of solvated electrons, where the
been shown to dominate the rate. This result is due to the facjuantum transition rates are often obtained from quantum-—
that the change in the impurity internal vibrational state haslassical molecular dynamics simulatioisThe expression
only a small effect on its coupling to the bath, and therefordfor transition rates in Ref. 12 involves certain time-
the potential energy surfaces corresponding to differentorrelation functions, which are evaluated in terms of the
states of the impurity do not differ appreciably. On the othertrajectories of a purely classical solvent. In order to account
hand, upon electronic transition, the impurity-bath couplingfor the quantum nature of the bath, these classical correlation
can be altered significantly, and the relaxation mechanisrfunctions are identified with the correspondisgmmetrized
due to the distortion of potential energy surfaces may beguantum time correlation functions, thus ensuring that the
come dominant. transition rates obey the detailed balance condtarow-

The methods of calculating MPR rates discussed abovever, the study of vibrational energy relaxation based on an
are quite general, and formally apply both to crystalline andexactly solvable model has shown that this particular method
liquid hosts. However, their practical realization differs sig- of building in the detailed balance is the least accurate
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among the available quantum correction schefré$>? A As discussed in the introduction, we use the lowest order
similar study of electronic relaxation processes would enabl@erturbation theory to calculate the transition rate between
one to gain some insight into the relation between the quarthe states of the TLS

tum electronic transition rates and the semiclassical approxi-

mations to them. This is precisely the goal of the present K :ifx dt doet( V(1)

work. Since the high-order coupling mechanism has been °~' 32)_. !

extensively treated in the context of vibrational relaxafton, -

we focus here on the other two routes to MPR: the “distor- ; : / /

tion dominated limit” of the static-coupling method, and the Xexpr[ ﬁfodt Alt )}V01(0)>' @

Born—Oppenheimer approach, where the electronic transi-

tions are induced by the nonadiabatic coupling arising fron{" the above(. - -) denotes the quantum mechanical average
the nuclear kinetic energy. over the bath coordinates performed with, (i.e., the

The organization of the paper is as follows. In Sec. Ii Wenuclear Hamiltonian corresponding to the initial state of the

introduce our model Hamiltonian and give expressions foimpurity); T is the time-ordering operator, and bait) and
guantum and semiclassical electronic transition rates. In Se¥.10(t) are the Heisenberg form for the diagonal and off-
Il we further specify our model and calculate the transitiondiagonal coupling terma\ and V,,, respectively, and are
rates within the static-coupling method. We consider sepadiven by

rately two cases: shiftétiand shifted/distortéd** multidi- A(t)=eMotA g iHot )
mensional harmonic potential energy surfaces. In Sec. 1V, . .'
similar calculations are performed within the Born—  V,yt)=e"blv;e o, (6)

Oppenheimer approach. In Sec. V, we conclude. . - .
PP ! bp W ! We have assumed that the TLS in the initiakcited state

reaches equilibrium with the bath prior to the occurrence of
the relaxation process.
Il. MODEL HAMILTONIAN AND ELECTRONIC So far, our treatment has been fully quantum mechani-
RELAXATION RATES cal. Since the main interest of the present work concerns the
fonsequences of the classical treatment of the solvent, we

We consider an impurity embedded in a condense : : .
: . . also provide an expression for the transition rate when the
phase environment, which we model as a harmonic bath. The

impurity has two relevant quantum levels—initi@xcited bath dynamics is treated classicafly
and final(ground, which we label ag1) and|0), respec- 1 (o . it
tively; their energies ar&, and E;. We write a general koq:—zf dt e"“e"< exq’ —%J dt’ A(t’)]
Hamiltonian for a TLS coupled(diagonally and off- o) e 0
diagonally to a bath
XV 10(t)V1(0 7
H= Hol0) (0] + ML/ 1)1+ Vo OY(1] + Vi 1)(0], (1 Aol®)] v

cl

where Ho=Eq+H{+Aq and Hy=E;+H{+ Ay Hy, Ao where(- - ), denotes a classical equilibrium average over
and A, are operators in the Hilbert space of the bath vari-nitial coordinates and momenta performed with . A(t)
ables. Without loss of generality we dg§=0. and V,(t) are no longer Heisenberg operators, but rather
As will become clear below, it is convenient to perform fynctions of dynamic classical variables, whose time depen-
the following transformation of the total Hamiltonian: we dence is governed b, (see beloy, and the time ordering
add and subtrach;|0)(0| in Eq. (1) and use the identity s no longer necessary. This semiclassical approximation has
|0)(0[+[1){1]|=1 to obtain been recently discussed by us in the context of calculating
_ vibronic absorption spectra of chromophores in condensed
H=(HyF 8)]0)(0 + (ot Hp)[1)(1] phase environment, where a similar model has been
+ Vo 0)(1] + V44 1)(0], (2 employed®*®>This approachiwhich we have termed the dy-
namical classical limit(DCL)] is one of the most widely
used semiclassical approximations. In particular, the study of
nonadiabatic transitions of solvated electrdmaentioned in
the introduction has been carried out with this method. How-
ever, this semiclassical approximation is not unique, since
the quantum result for the raf&g. (4)] can be rewritten in
Hp=3> (P3+02Q3). (3 various different(but equivalent forms leading to different
¢ semiclassical approximations, which amet equivalentto
With the above form of the total Hamiltonian, it is clear that each otheP® All these semiclassical expressions have the
the Hamiltonian corresponding to the excited state of thdorm of Eqg. (7), but the Hamiltonian used to propagate the
TLS is given byH,, while the Hamiltonian corresponding to nuclear degrees of freedom is different in each ¢as&The
the ground state is given by, + A. This form of the Hamil- DCL method represents one possible choice of the propaga-
tonian is the most convenient choice for the present problentjon scheme, where the time dependence of the classical vari-
yet it is completely general within the harmonic model. ables is governed by the initial state nuclear Hamiltonian

wherefiwg=E;—Eg, Hy,=H+A; andA=Ay—A,. Hy is
the bath Hamiltonian which we take to be a sum over har
monic mass-weighted normal mod@g with frequencieso,,
and conjugate moment,,
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(Hp in the present cageAlongside the DCL scheme, in our replace the quantum mechanical average with the classical
study of vibronic spectra we have considered another semine, neglect the time ordering, and tra4t) as a function of
classical approximation, where the dynamics of the nucleadynamic classical variables. In addition, one needs to specify
degrees of freedom is governed by the arithmetic average dhe Hamiltonian used for the propagation of the classical
the nuclear Hamiltonians corresponding to the initial and fi-degrees of freedom. Here, we will limit ourselves to the two
nal states of the impurityin the present case it i$l,  aforementioned propagation schemes, i.e., the DCL and the
+A/2) %" Accordingly, this approximation has been termed ACL approximations.

the averaged classical limiACL).>*>*This particular choice We note that the form of the diagonal coupling teAm

of the propagation scheme has been motivated by the analgiven in Eq.(8) is completely general within the harmonic
sis of the Wigner form of the quantum mechanical expresmodel. At the same time, numerous theoretical studies con-
sion for the relevant time-correlation functish®’ It has  sidered a simplified situation, wheteis taken to be a linear
been found that the ACL method gave consistently mordunction of bath coordinate's:>3°62%we will start by look-
accurate results than the DCL approximatigm a sense of ing at this simple model, and then proceed to treat a more
better agreement with the exact quantum regults the  general case of quadratic diagonal coupling.

present work, we will test the accuracy of both semiclassical

schemegDCL and ACL) for calculating nonradiative elec-
tronic transition rates.

It is clear from the Eqs(4) and(7) that the central quan- We consider the model of two identical mutually dis-
tities in the calculation of the transition rate are the off- placed multidimensional harmonic surfaces, where the diag-
diagonal i/, and the diagonalX) coupling terms. As dis- onal coupling term has the form
cussed in the introduction, we will consider two different
forms of the off-diagonal couplingfa) V,, is taken to be 2 1 2
constant(static-coupling scheme and (b) Vi, is the off- AZ; ©e0aQat E; 053
diagonal matrix element of the nuclear kinetic energy opera-
tor (Born—Oppenheimer methpdRegarding the diagonal The quantum mechanical transition rate for this model has
coupling term, we write it as a quadratic form in the phononpeen calculated by many authbt$!®
coordinates

A. Linear diagonal coupling

(10

1 k ZMIOO dt e'@et ex ifmdw J(w)
A:z wiaaQa—i_ EE wi‘si"'z gaa’QaQa" (8) ot ﬁz - 2h 0

a

This form of diagonal coupling arises when the two potential X w[coth Bhw/2)(cog wt) —1) i S'”(“’t)]] , (1D
energy surfaces corresponding to the two states of the TLS

can be described by two multidimensional harmonic surfaceghere the spectral densifi{w) is given by

with different equilibrium positions and different frequencies

with the additional possibility of mode mixing between the

two states. The first two terms ih are due to the displace- Hw)=2, 828(w—w,). (12
ments of the equilibrium positions of the normal modes, “
while the last term corresponds to the frequency shifts anﬁ{‘

. ; ote that in the limitt—oo, the second exponential in the
Duschinsky rotations of the normal modes between the two . L
clectronic states. integrand in Eq.11) decays to a constant valdwhich is

In the next section we will further specify our model, nonzero and real Therefore, the time integration will lead to

. . : .. ' an appearance of a delta function fog,=0. Since we are
and will perform the calculations of the electronic transition . . ! -
o . . only interested in the rates of electronic transitions for non-
rates within the static-coupling scheme both quantum me-

. ; ) ; . o zero(in fact, large) energy gaps, in performing the numeri-
chanically and with various semiclassical approximations. ; ” N
cal calculations of the transition rates below, we will simply

subtract the above constant from the second exponential in
lll. STATIC-COUPLING APPROACH the integrand in Eq(1).

Under the assumption of the constant off-diagonal cou- The dynamical classical limit of this model has also been

pling, the quantum mechanical expression for the transitioferived;****and the result reads:
rate given by Eq(4) reduces to the Fourier transfor(@valu- IVogl? (= ’ 1 (=
ated at the frequenay,) of the thermal average of the time- k0H1=—2f dt et exp| —zf do J(w)
ordered exponential he S 0
[Vid? = - it Lo
o= [ an e'we|t<expf{ e A(t’)] > X [(cos(wt) ~ 1)/f i t)]]. 13

©) The presence o in the above result stems from the semi-
As discussed in the previous section, in order to obtain &lassical nature of the DCL approach: the two electronic lev-
semiclassical approximation to the above result, one needs #is are treated quantum mechanically, while the nuclear de-
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grees of freedom are propagated classically. Note that within
the DCL approximation, the sinf) term present in the quan-
tum mechanical result is replaced by its short-time limit. As
a consequence, in the lintit->«, the second exponential in -40
the integrand in Eq(13) develops an oscillatory behavior

(rather than decaying to a real constant value as in the

2.0

quantum-mechanical caselhis makes it impossible to ob- -, 8¢
tain a converged result for the DCL transition rate within this $
model. ‘g% 0
The above drawback of the DCL approach is remedied™ '
in the ACL method. By following the procedure outlined in
Ref. 54, one obtains the following closed-form analytical 100 -
expression for the transition rate in the ACL approximation: ’
2 o - . . . N
koleMJ dt & @et exp{ i f dow J(w) _12‘02.0 40 6.0 8.0 10.0
72 J-o #2Jo oo,
Jicosun-tiip-ro simon]|. a0 7 smicam e ot torton o e g

tronic gap. The results for the WACL are not shown since this approxima-
] tion is exact for this choice of couplings.
The only difference of the above result from the quantum-

mechanical expression given by E@ll) is that the

coth(Bhw/2) is replaced by its high-temperature limit. This )

difference can be traced to the fact that the thermal averagingher than the acoustic ph(_)no‘ﬁsln order to model the
in the ACL approximation is performed with the classical cOrresponding spectral density, we have chosen a Gaussian
probability distribution. This suggests a modification of theform centered awq, W'gg the width parameter and the
ACL method, where the averaging is performed instead witf’0rmalization constant

the Wigner distribution based on the initial state nuclear

Hamiltonian>*° We will refer to this approximation as the A o o

WACL. In the present model, the latter is given by E8), J(w)= Z—Mexq_(“’_ww) [20°]. (16)

and the Wigner distribution takes a simple Gaussian frm: (2mo”)

Since optical phonons are characterized by a narrow disper-

ow=11 Wexp{ _ 2tanfiphedl2) sion, we have limited ourselves to the cage,,<1, which,
a h ho, in addition, allows us to avoid the nonphysical contributions
p2 2 arising from the tail of the Gaussian function extending to
3| —% 4+ w“QaH (15) negative frequencies. Specifically, we have chosen the fol-

2 2 lowing values of the parametersiy,=1.0; o=0.1 (from

now on, we employ atomic unitsWith the abovel(w), we
The above form can be readily employed within our methodhave calculated the electronic relaxation rates for the inverse
of calculating the transition rate. It turns out that the combi-temperaturg8=4 and the off-diagonal coupling matrix ele-
nation of thermal averaging with the Wigner distribution andment Vy;=0.1 from the fully quantum mechanical expres-
the propagation with the average Hamiltonian produces thsion given by Eqg.(11) and from the ACL approximation
exact quantum mechanical result for the rate. It is worthgiven by Eq.(14). [As discussed earlier, the transition rate in
emphasizing that this conclusion holds only for the case othe dynamic classical limit from Eq13) does not converge
mutually displaced identical harmonic surfaces. It no longetin this case due to the nondecaying oscillatory behavior of
holds in a more general situation, when the frequency shift¢he correlation function.

and/or Duschinsky rotations ofharmoni¢ modes are The results of our calculations are shown in Fig. 1,

present. Needless to say, the above conclusion also breawdere we present a semilog plot of the transition fataled

down in the case of anharmonic surfaces. by w,,) versus the dimensionless energy gapy
We now use the results given in Eq4.l) and (14) to = we/we,. The frequencies of optical phonons typically lie

perform model calculations of the electronic transition ratesn the range of 500—800 wave numbers, while the electronic
between the identical, linearly displaced harmonic surfacesnergy gaps are generally on the order of several thousands
It is clear from the above equations that this model is com-of wave numbers. Hence, we have performed the model cal-
pletely specified by a single spectral densityw). In the  culations up to the value of the reduced energy @gp-10.

case of electronic relaxation proces$esich are character- One sees that for the largest energy gap considered, the ACL
ized by large transition gapsthe dominant contribution to approximation underestimates the transition rate by more
the relaxation rate generally comes from the coupling of thehan an order of magnitude as compared with the fully quan-
impurity to the optical phonons, whose frequencies ardum mechanicalFQM) result. As stated earlier, this differ-
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ence arises entirely from the fact that the thermal averaginbe diagonalized simultaneously. Consequently, the transfor-
in the ACL method is performed with the classical distribu- mation of the ground-state nuclear Hamiltonian withre-

tion function. When the latter is replaced by the Wigner dis-sults in a formH,+2 ,,/0,.'Q,Q.’, Which allows us to
tribution, one recovers the exact quantum mechanical resuibtain the quadratic coupling coefficierds,s in Eg. (8).

for the transition rate. Since the above conclusion rigorously  In addition, we need to specify the linear coupling coef-
holds only for the highly simplified model of the linearly ficients§,. We achieve this by shifting the equilibrium po-
displaced harmonic surfaces, it would be of interest to tesjtion of the tagged mod®; in the original(i.e., untrans-
the accuracy of the WACL method in a more general caseformed ground-state nuclear Hamiltonian by an amodgt

this will be done in the next subsection. When the unitary transformatidd is applied to the ground-
o ) state Hamiltoniar{with just one mode shifted the equilib-
B. Quadratic diagonal coupling rium positions ofall transformed mode®,, get displaced by

Here, we consider the most general case of quadratié., Which allows us to obtain the first two terms in E8).
diagonal coupling between two multidimensional harmonic ~ Admittedly, the above choice of the linear- and
surfaces, i.e., we include both frequency shifts and modguadratic-coupling coefficients may seem rather restrictive.
mixing due to the Duschinsky rotatioi%The fully quantum As an alternative, we have considered a somewhat different
mechanical result for the transition rate is given by E).  procedure, where the operatdr is written in terms of a
with the operatorA from Eq. (8). In this general case, the single collective phonon coordinate, the latter being a linear
model cannot be solved analytically, and one has to resort tgombination of the bath normal mod®swhile the relations
a numerical approach based on the Kubo—Toyozawa formabetween the quantum mechanical results and various semi-
ism. This method has been used earlier by us in the study aflassical approximations for the electronic transition rates
vibronic spectra in condensed phas&and can be applied in were similar in the two approaches, the first method proved
a similar fashion to the problem at hand; the details of thgo give faster convergence with respect to the number of bath
implementation are listed in Ref. 54. modes. Therefore, in what follows, we will restrict ourselves

Since the method is limited to a finite number of bathto the procedure based on the “tagged” mode.
modesN,,, we need to specify a procedure for choosing the = The semiclassical approximation to the transition rate is
frequenciesw,, , the linear-coupling coefficients,, and the  given by Eq.(7) (with Vo taken to be constantWhenA(t)
quadratic-coupling coefficientg),,.. The procedure we is propagated with the initial state nuclear Hamiltonky,
have adopted has been motivated by our study of vibronione obtains the DCL resuliwhich does converge in the
absorption spectra in condensed pha$é3We single out present cagewhile the propagation with the average Hamil-
one “tagged” bath mod&, and couple it to the remaining tonian Hy+A/2 corresponds to the ACL schemeOnce
bath modes O, via the bilinear term c,0,0, [« again, the practlc_al de_talls of the calculations are exactly the
~2,...N,: the tildes onQs serve to indicate that these S2Me s those given in Ref. 54n both cases, the thermal
modes are distinct from the ones which enter in Eg)]. averaging is performed with the classical probability distri-

This is done forboth electronic states. For simplicity, we bution ba?]ed On;'b' In eTn agilﬁngéie Iint(ra]agcoupling
assume that the spectral density,c2/(2e,)8(w—ny), oo e nave aiso emproyed e method.

: : : We have calculated the electronic transition rates for the
which describes the coupling between the tagged mode an|ﬁverse temperatur=4 and the off-diagonal coupling ma-
the remaining bath modes is again given by ELp). In X g Ping

- ) . rix elementVy;=0.1. The val for th her parameter
order to obtain the coupling coefficients, we follow the trix elementVo; =0 e values for the other parameters

procedure outlined in Ref. 54. The spectral density from Eq:)aovi 1bfe£1 ti\kleg )\aszgl(ljzwzigdffb ?ES 1'.r%1,ear)ésu1t.soyof
(16) is discretized evenly with an incremedw (thereby i 1 e

o e ) e our calculations are shown in Fig. 2, where we present a
giving the frequencies,), and the coupling coefficients are ggnmijog plot of the transition ratescaled bywg,) versus the
calculated according to

dimensionless energy gap;‘l:wa/wgp. One sees that for
y o~ o~ the largest energy gap considered}(=10), the DCL ap-
Co=20d(w,)dw. (17)  proximation underestimates the transition rate by nearly two
orders of magnitude, while the ACL result is nearly one or-
The values of the peak frequenay,, and the normalization der of magnitude smaller than the quantum mechanical rate.
constant\ are taken to balifferentin the two electronic The WACL method no longer produces the exact quantum
states @gp and\ for the statg0), and wép and\, for the  result, but does provide a very good approximation t@$-
state|1)). Similarly, the frequency of the tagged mode is pecially for the large energy gaps
taken to be different for the ground and for the excited elec- We remark that the quantum mechanical time correlation
tronic state—w‘f and wi, respectively. We now diagonalize function appearing in the static-coupling approdshke Eq.
the excited-state nuclear Hamiltonian with an appropriatg9)] is similar to the one considered in our study of vibronic
unitary transformatiot, thereby reducing it to the forid,  absorption spectr¥:>® We have analyzed the Wigner form
given in Eqg.(3). The same transformation is subsequentlyof this time-correlation function, and have arrived at the con-
applied to the ground-state nuclear Hamiltonian. Since thelusion that a semiclassical treatment should employ the av-
two Hamiltonians in their original form differ with respect to erage Hamiltonian for the propagation of the nuclear degrees
the frequency of the tagged mode and the coupling betweeof freedom. Therefore, the good performance of the WACL
the tagged mode and the remaining bath modes, they cannotethod is hardly surprising. However, we emphasize that the
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-1.0 —n . . . A. Linear diagonal coupling

1 . — FQM

The closed-form result for the quantum mechanical tran-
sition rate within this model has been given by Kubo and
Toyozawd®

~ k =|V10|wa dt €@t ex ifxd J(w)
gg' 0—1 ﬁ2 . 2% o w w
- X w[ coth( B w/2)(cog wt) — 1) —i sin(wt)]]
1 e
A X[ ﬁf dw Jsg(w)ow[coth Bhwl/2)(cod wt)—1)
0
-6.0 ' : . ", o 2 1 (e
2.0 40 6.0 8.0 10.0 —i sin(wt)] +—f do Jg(w)w[ coth( BAw/2)
a /o 2h Jo

FIG. 2. Semilog plots of the nonadiabatic transition rate for quadratic diag- L.

onal coupling and static off-diagonal coupling as a function of the reduced X cogwt)—i sin( wt)]] ' 19
electronic gap . Note the excellent agreement between WACL and FQM, in

particular for large electronic gaps.

where in addition to the spectral densityw), we have de-
fined two other spectral densitieskstw) andJ sg(w) as fol-
lows:

above conclusion is only valid for the static-coupling

scheme, i.e., for theonstantoff-diagonal coupling matrix B 2

elements. It no longer holds when these matrix elements de- JS(“))_EC:‘ Sedl@—wg), (20

pend on the nuclear coordinates and/or momenta, as we will

illustrate in the next section. and

IV. BORN-OPPENHEIMER METHOD Jss(@)=2 8,S,80(0—w,). (21)
a

In the Born—Oppenheimer method, the zeroth-order
Hamiltonian is written as a sum of the electronic Hamil- As in the static-coupling scheme, in the linit-o0 the time
tonian (containing the electronic energy and the electron-correlation function in the integrand of E(L9) decays to a
nuclear interactionand the nuclear potential energy opera-nonzero real constant, which we will subtract when perform-
tor. In contrast to the static-coupling approach, theing the Fourier transform to calculate the transition rate.
eigenstates of the electronic Hamiltonigd®) and |1)) de- The DCL approximation for the transition rate within
pend parametrically on the nuclear coordinates. The pertuithis model can also be obtained in a closed form, and the
bation term(which induces the transitions between the tworesult reads
electronic statesis given by the nuclear kinetic energy op-

erator, and its off-diagonal matrix element re&ds Vod? (= . 1 (=
OHl:?f dte'@et ex —f do J(w)
— 0
Vig=2 (1|P,|0)P,+3> (1|P%|0)
i
N N _ . 2
—&.B+1(1/F?0), (18) X[(cos(wt)—1)/B Zﬁw t)]]
where we have defined two vectofsand S with compo- 1 e 2
nentsP, and S,=(1|P,|0), respectively. Following Kubo x{ _ZJ' dw Jﬁs(w)(cog(wt)—l)>
and Toyozawd? we neglect the second term in the above phJo
equation and assum8, to be independent of the nuclear 1 fo
coordinates. _ _ _ +—| dwlg(w)cogwt)}. (22)
The quantum mechanical result for the electronic transi- Bh?Jo

tion rate in the Born—Oppenheimer method is thus given by

Eq. (4) with V=S P. The corresponding semiclassical ap- In the long-time limit, the time-correlation function in the
proximations are obtained in exactly the same way as in thintegrand of Eq(22) develops an oscillatory behavior, which
static-coupling approach. Once again, we will consider sepgprecludes us from obtaining a converged result for the tran-
rately two cases: linear and quadratic diagonal coupling. sition rate.



J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Egorov, Rabani, and Berne 5245

Turning to the ACL approximation, we have employed the procedure outlined in Ref. 54 to obtain the following expres-
sion for the transition rate:

V 2 0 . 1 )
| ﬁl;" f, dt e""eltexp{ﬁfo dw J(w)

1 (= 21 (- BE
X[ (,@fo do J(gs(w)(cosiwt)—l)) +ﬁf0 dw Jg(w)cog wt) + ,@fo do Jsg(w)w sin(wt)

kO<—1:

(coq wt)— 1)/B—%hw sin(wt)

xrdwaés(w)(l—cos(wt))}. (23)
0

Finally, the WACL method yields:

k —MJM dt €“ef ex ide J(w) w[ coth Bh w/2) t)—1)—i sin(wt)]
0e1= rea I evele 7 ) o J(w)ow[coth Bhw/2)(cog w sin(w

|

X

2

ifocda) Jss(w)w coth Bhiw/2)(cofwt)—1) | + o7 fxdw Jss(w)w Siﬂ(wt))
0

2% Jo

+ %f;dw Js(w)w COﬂ‘(Bﬁw/Z)COE(wt)] . (29

fwdw Jss(w)w coth Bhw/2)(1—cog wt))
0

the coordinate representatibhThe resulting expression for

Even though the diagonal-coupling term is linear in the he transition rate is given in Ref. 15; it is more cumbersome

nuclear coordinates, the above result does not coincide wit ; . . : X
han in the case of linear diagonal coupling, and will not be

the quantum mechanical one because of the dependence rhroduced here. The DCL approximation for the (atbich

tmhgnc;;f-dlagonal coupling matrix element on the nuclear MO the present case convergesd the two variants of the

We now use the results given in Eq$9), (23), and(24) ACL result are equally straightforward to obtain by using the

to perform model calculations of the electronic transitionmethOdOIOgy similar to the one introduced by us in the study

rates between the identical, linearly displaced harmonic surc-)f vibronic absorption spectr.

faces coupled by the nuclear kinetic energy operator. In ad-

dition to J(w), we need to specify functional forms for the

two other spectral densitiesdg(w) and Jsg(w). For sim- -0 — ' ' '
plicity, we takeJ(w) =Jg(w) =Js5(w), with J(w) given by
Eqg. (16). Settingwq,=1.0; 0=0.1, we have calculated the
electronic relaxation rates for the inverse temperagiret
from the fully quantum mechanical expression given by Eq.
(190 and from the two levels of the ACL approximation
given by Egs.(23) and(24). The results of our calculations ~ ~
are shown in Fig. 3, where we present a semilog plot of the§
transition rate(scaled byw,,) versus the dimensionless en-
ergy gapwg = we/ wop. One sees that for the largest energy
gap considereddy;=10), the ACL approximation from Eq.
(23) with the classical thermal averaging underestimates the
transition rate by nearly an order of magnitude, while the one
from Eq. (24) overestimates the rate by about the same fac-
tor. In other words, the combination of the ACL propagation  _;;, ) ‘
scheme and the Wigner distribution-based averaging is nc 20 40 6.0 80 100
longer sufficient to obtain satisfactory results. Ol

log,(

L . FIG. 3. Semilog plots of the nonadiabatic transition rate for linear diagonal

B. Quadratic diagonal coupling coupling and momenta-dependent off-diagonal coupling as a function of the
o 2 =2 . . reduced electronic gap. Note that unlike the static off-diagonal coupling
SUbSt|tUt|ngY10: S-P andA [given by Eq.(8)] ”:‘to Eq. case, the WACL is no longer exact, and in fact deviates for the FQM result

(4), one can easily carry out the quantum mechanical trace iby almost an order of magnitude for the largest electronic gap considered.
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tions for the semiclassical calculations of vibronic absorption
spectra considered in our earlier wofic® In that work, the
spectra were calculated within the Franck—Condon approxi-
mation, and the ACL method was generally found to give
highly accurate results. However, if one goes beyond the
Franck—Condon approximation, the off-diagonal matrix ele-
ments of the dipole operator acquire a dependence on the
bath coordinates, and the analysis of the Wigner form of the
corresponding time-correlation function would no longer
100 - . . N suggest classical propagation with the average Hamiltonian.
: AN N In other words, the ACL method can then no longer be ex-
N pected to provide accurate results.
-120 N b
AN V. CONCLUSIONS

log (K ®,)

-140 : : ' - In this work, we have considered the problem of calcu-
2.0 4.0 6.0 8.0 10.0 . .. L. .
o o, lating the radiationless transition rates between the electronic
states of a TLS coupled diagonally and off-diagonally to a
FIG. 4. Semilog plots of the nonadiabatic transition rate for quadratifc diagcondensed phase environment, with all the nuclear degrees
e e B oo o P feecom teated in the harmonic approximation. Two par-
result by several orders of magnitude. The WACL is in much better agreeficUlar routes to the nonradiative relaxation were studied:
ment with the FQM result; however, it is not exact. The noise at largestatic-coupling schemg@vhere the coupling between the two
electronic gaps i; due to numerical difficulties in performing the Fourierdigbhatic electronic states was taken to be a constamtd the
transform to obtain the rate. Born—Oppenheimer metho@vhere the off-diagonal cou-
pling term between the twadiabatic electronic states was
taken to be a function of the bath momenta operators
In practice, the calculations of both quantum mechanicaiyithin each method, the diagonal coupling term was written
and semiclassical rates are limited to a finite numidgof 35 a general quadratic form in the bath coordinates, thereby
bath modes. We select the frequencigs, the linear cou- including the displacements of the equilibrium positions of
pling coefficientss,, , and the quadratic coupling coefficients the path modes, the frequency shifts, and Duschinsky rota-
Jaar in exactly the same way as was described in the previtions of the bath modes between the two electronic states.
ous section. In addition, we need to specify the components The major goal of the present work has been to examine
of the vectorS. As in the case of linear coupling coefficients the accuracy of several commonly used mixed quantum-—
é,, we start by ascribing a particular valsgto the tagged classical approximations in calculating the nonradiative tran-
mode in the untransformed ground-state nuclear Hamilsition rates, where the two electronic states are treated quan-
tonian. Upon transforming the latter with the unitary trans-tum mechanically while the bath modes are treated
formation which diagonalizes the excited-state Hamiltoniangclassically. We employed the lowest-order perturbation
one obtains the coefficienss, for each of the bath modes. theory in the form of Fermi’'s Golden Rule to calculate the
The semiclassical approximation to the transition rate igransition rate between the two electronic states. The rate was
given by Eq.(7). WhenA(t) andV(t) are propagated with written in terms of the Fourier transform of the time-
the initial state nuclear Hamiltoniahl,, one obtains the correlation function for the off-diagonal coupling matrix el-
DCL result, while the propagation with the average Hamil-ement. Following the methodology of Kubo and Toyozawa,
tonian H,+A/2 corresponds to the ACL approximation we have obtained an analytic result for the fully quantum
(with two options for performing the thermal averaging mechanical time correlation function, and have extended our
We have calculated the electronic transition rates for thenethod@*>° to calculate its mixed quantum—classical coun-
inverse temperatur@=4. The values for the other param- terpart. We have assumed that the nonradiative relaxation
eters have been taken as followdy;=2.0, sp=2.0, w(l) process is dominated by the coupling of the electronic degree
=11, 01=1.0, 03,=1.1, wg,=1.0, Ag=0.05, and\;  of freedom to the optical phonons. Having introduced a
=0.125. The results of our calculations are shown in Fig. 4model spectral density for the latter, we have calculated the
where we present a semilog plot of the transition fataled  transition rates both quantum mechanically and semiclassi-
by w,,) versus the dimensionless energy gapj cally. Our model calculations have shown that the mixed
=we/ wqp. For the largest energy gap considered;&10), quantum-—classical treatment can underestimate the transition
the DCL approximation underestimates the transition rate byate by several orders of magnitude when the electronic gap
several orders of magnitude, while the ACL result is abouis larger than the optical bath frequency. The agreement with
two orders of magnitude smaller than the quantum mechanthe quantum result was improved when the classical time
cal rate. The WACL method still provides the best approxi-propagation of the bath modes was performed with the arith-
mation to the exact quantum result, although in the presenhetic average of the ground- and excited-state nuclear
case it is less accurate compared to the static-couplinglamiltonians and thermal averaging over the initial classical
scheme. distribution was replaced with the averaging over the corre-
We remark that the latter finding has certain ramifica-sponding Wigner distribution. Nevertheless, even the latter
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