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Electronic properties of CdSe nanocrystals in the absence and presence
of a dielectric medium
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We present a detailed study of the electronic properties of CdSe nanocrystals in the absence and
presence of a dielectric medium. The electronic structure of the nanocrystal is modeled within the
framework of the empirical pseudopotential method. We use a real-space grid representation of the
wave function, and obtain the eigenvalues and eigenstates of the one-electron Hamiltonian using a
slightly modified version of the filter-diagonalization method. The band gap, density of states,
charge density, multipole moments, and electronic polarizabilities are studied in detail for an
isolated nanocrystal. We discuss the implications of the results for the long range electrostatic and
dispersion interactions between two CdSe nanocrystals. To study the effects of the surroundings we
develop a self-consistent reaction field method consistent with the empirical pseudopotential
method. We use the eigenstates of the isolated nanocrystal and iterate the self-consistent equations
until converged results are obtained. The results show that the electronic properties of polar CdSe
nanocrystals are quite sensitive to the environment. ©1999 American Institute of Physics.
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I. INTRODUCTION

The interest in semiconductors which are spatially c
fined to a few tens of nanometers, and which contain h
dreds of atoms, has increased in recent years.1–9 The devel-
opment of experimental methods along with improveme
in epitaxial growth techniques,10–13 has made it possible to
study various electronic properties of semiconductor na
crystals in great detail. In particular colloidally prepar
CdSe nanocrystals have received much of the experime
attention.10,11,14–26The experimental interest in CdSe nan
crystals has raised a number of questions that require the
of electronic structure theory for a complete explanation. E
act electronic structure calculations of CdSe nanocrystals
extremely difficult in view of the large number of atoms a
electrons involved,27 and the lack of periodicity. Therefore
several approximate theoretical methods and models h
been developed in the last few years. The simplest appro
is based on the effective mass approximation,28–31which can
be extended to incorporate multiband couplings,32 i.e., band
mixing induced by the effect of finite size.23,33–36 Another
approach is based on the widely used tight binding mode37

where explicit atomic structure of the nanocrystals
considered.38–42 A third approach is based on the empiric
pseudopotential method,43 and is the one we adopt in th
present study. The pseudopotential method has been ap
to a variety of semiconductor nanocrystals at different lev
of approximation, and has provided excellent agreement w
experimental results.44–67

Most theoretical studies have focused on the absorp
spectrum of isolated nanocrystals, and neglected the inte
tion of the nanocrystals with the environment. Howev
5350021-9606/99/110(11)/5355/15/$15.00
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since CdSe nanocrystals are typically deposited on thin fi
or embedded in glassy materials, it is important to und
stand the effects of the surroundings on the electronic pr
erties. This is the main goal of the present study. Motiva
by the work of Brus29,68 who treated the solvation of nano
crystals using both a classical dielectric continuum mo
and an effective mass approximation, we develop a mo
for the electronic structure of a CdSe nanocrystal which
based on the empirical pseudopotential method,43 and study
the solvation of nanocrystals within the reaction field co
tinuum model.69–71Our treatment is different from the effec
tive mass approximation in that we explicitly consider t
molecular structure of the nanocrystal, and we describe
solvation of the nanocrystal quantum mechanically.

In Sec. II we provide the details of our model, whic
include the direct empirical pseudopotential method and
self-consistent reaction field method. We first describe
construction of the empirical pseudopotential suitable for
finite size calculations of CdSe nanocrystals along with
details of the surface passivation. Next, we describe
filter-diagonalization method72–76 and introduce some modi
fications. The filter-diagonalization method is used to obt
the eigenstates and eigenvalues of the screened one-ele
Hamiltonian, and as far as we know, this is the first study
electronic structure using this method. The last part of t
section is devoted to the development of a self-consis
reaction field method consistent with the empirical pseu
potential method.

The electronic properties of isolated CdSe nanocrys
are discussed in Sec. III. We study the density of states
the band gap of a nanocrystal in the strong confinement
5 © 1999 American Institute of Physics
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gime, with diameters ranging from 15 to 50 Å. The ele
tronic properties are then discussed in terms of electro
charge densities, multipole moments, and polarizabilit
The long range electrostatic and dispersion interaction
tween nanocrystals are directly related to these propertie

The influence of a dielectric medium outside the nan
crystal is discussed in Sec. IV for collective and single st
properties. We also discuss the effects of an excess elec
in a CdSe nanocrystal which is assumed to occupy the low
unoccupied molecular orbital~LUMO! state. A summary of
the results is given in Sec. V.

II. MODEL AND METHODS

In this section we provide the details of the numeric
calculations. First, we describe the pseudopotential for C
and the modifications needed in the study of CdSe nanoc
tals, including the passivation of the surface. Next we outl
the method we use to obtain the eigenstates and eigenv
of the screened one-electron Hamiltonian. Finally, we
velop a reaction field method consistent with the empiri
pseudopotential method. Throughout, the following notat
is used: A vector is denoted by a bold face, an operator b
hat, and a matrix by a tilde.

A. The direct pseudopotential method

The use of empirical pseudopotential methods to ca
late the electronic structure of semiconductor nanocrys
has been very fruitful. Ramakrishnaet al. have introduced
the truncated crystal method,44–50 in which the bulk empiri-
cal Hamiltonian is diagonalized using several bulk Blo
wave functions, and the energy levels of the nanocrystals
obtained by imposing appropriate boundary conditions
the wave functions. Mizel and Cohen65–67have introduced a
Wannier function approach, in which the electronic prop
ties of a nanocrystal are described in terms of several lo
ized Wannier wave functions. Unlike the truncated crys
method which imposes the boundary conditions in mom
tum space~e.g., only allowedk states which correspond t
standing waves in the sphere are used!, the Wannier function
approach uses the real space positions of the atoms to
scribe the boundary of the nanocrystal. Both methods ass
an infinite potential outside the core region, which simplifi
the numerical calculations, but this approach is not appro
ate when a continuum dielectric model of the solvent is
troduced. Zunger and collaborators have developed a d
molecular method,51–64 which is the one we adopt in th
present work. The direct method has been used to pre
quantum confinement effects, such as the size depen
band gap, and the exciton Coulomb and excha
energies.51–64

The direct molecular method starts from a microsco
one-electron Hamiltonian, however, since a fullab initio cal-
culation is impractical, the Hamiltonian is simplified, and t
exact total screened potential is replaced by a superpos
of empirical atomic pseudopotentials. The one-elect
Hamiltonian takes the form~in atomic units!

Ĥ52 1
2¹̂

21(
a

Va~ u r̂2Rau!1(
b

Vb
ligand~ u r̂2Sbu!, ~1!
-
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whereRa is the position of atoma, and the indexa runs
over all atoms.Va is the effective pseudopotential of atoma
~i.e., Cd or Se atoms!, which is adjusted to fit experimenta
or ab initio data. The last term represents the ligand pot
tials used to passivate the surface atoms, where the indeb
runs over all the ligand sites defined below.

In the present work we construct an empirical pseudo
tential based on the traditional Bergstresser and Cohen l
empirical pseudopotential for CdSe.77 We use a local poten
tial to minimize the computational effort required to inco
porate the effects of the surroundings~the Hamiltonian with
the local potential has a smaller energy range compare
the Hamiltonian with a nonlocal potential!. The local poten-
tial is well known to underestimate the band dispersion a
is inadequate in reproducing the shallowd-band in Cd.43

Nevertheless, it provides qualitative agreement w
experiments43 and thus is sufficient to provide a qualitativ
description of the effects of the surroundings.

In the classic empirical pseudopotential methods,43,78the
pseudopotential is defined only on the discrete bulk recip
cal lattice vectors. However, to properly describe a nanoc
tal, one needs a continuous potential because of the br
down of translational symmetry. For precisely this reas
we use the following functional form~in momentum space
q) for Cd and Se pseudopotentials

V~q!5a1~q22a2!/~a3 exp~a4q2!11!, ~2!

whereq5uqu. This form has been used in the study of t
electronic structure of semiconductor surfaces79,80and of sili-
con nanocrystals.51

We fit the parametersaj ( j 51 – 4) to the bulk band
structure obtained from the Bergstresser and Cohen em
cal pseudopotential77 for both hexagonal and zincblend
crystal structures. The results are shown in Fig. 1, and
agreement between the two calculations for the band st
ture is very good. The parameters for both crystal structu
are given in Table I. Since the fits involve only eight para
eters, it is rather straightforward to efficiently sample t
relevant range of parameters.81 Using our new pseudopoten
tial we find that the band gap for the hexagonal crystal str
ture is 1.82 eV (1.80 eV using Bergstresser and Cohen
pirical pseudopotential!, and for the zincblende crysta
structure is 1.81 eV (1.84 eV using Bergstresser and Co
empirical pseudopotential!. Both results lie near the exper
mental value of 1.7460.1 eV for the hexagonal crysta
structure.82 We note that the treatment of the spin–orbit i
teractions in our model is the same as in the work of Be
stresser and Cohen.77

The pseudopotentials are shown in Fig. 2 along with
discrete values of Bergstresser and Cohen.77 The value of the
Cd and Se potentials atq50 only determines the offset o
the bands for bulk calculations and not the spacings betw
the levels. For this reason, their values were not given in
original work of Bergstresser and Cohen.77 The results~sym-
bols! shown for q50 are obtained from the experiment
work function83 which equals the sum of the two potentia
at q50, along with the value of the difference between t
Cd and Se potentials atq50 taken from the local part of the
Wang and Zunger semiempirical potential.83
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The other ingredient needed to complete the descrip
of our Hamiltonian~which is not required for bulk calcula
tions! is the surface passivation. We adopt the ‘‘ligand p
tential’’ model of Wang and Zunger,54 which places a shor
range electrostatic potential near the surface atoms. The
fective ligand potentials are taken to be Gaussians

Vb
ligand~ u r̂2Sbu!5Vb

0 exp~2ur2Sbu2/sb
2 !. ~3!

The origin of the ligand potential,Sb, is taken to be in the
direction of the missing bonding atom, and the distance
the passivated atom equalsaRe , wherea varies depending
on the atom type and the number of missing bonds;Re is the
Cd–Se bulk bond length. For hexagonal and zincble
CdSe nanocrystals a surface atom may have 1, 2 or 3 m
ing bonds, and therefore, the same number of ligand s
respectively. The values ofVb

0 , sb anda are given in Table
II.

B. Filter diagonalization

It is not feasible to diagonalize directly the one-electr
Hamiltonian described in Eq.~1! to obtain the desired eigen

FIG. 1. The band structure of hexagonal~lower panel! and zincblende~up-
per panel! CdSe. The symbols are results obtained using Bergstresser
Cohen~BC! empirical pseudopotential~Ref. 77!, and the solid lines are the
results obtained from the nonlinear fit.

TABLE I. The values of the pseudopotential parameters defined in Eq~2!
for the hexagonal~hex! and zincblende~zb! crystals structures.

atom a1 ~a.u.! a2 ~a.u.! a3 ~a.u.! a4 ~a.u.!

Cd ~hex! 0.193 0.936 0.196 1.68
Se ~hex! 20.0291 4.40 21.20 0.318
Cd ~zb! 0.0676 1.34 0.125 0.748
Se ~zb! 20.352 3.88 23.07 0.754
n

-

ef-

o

e
s-
s,

values and eigenstates, even for relatively small nanocry
sizes, since we use a basis set of more than 32 768 func
even for the smallest nanocrystals. However, we must k
in mind that we are not interested in all eigenvalues a
eigenstates of Eq.~1!, but rather in a small set of them. We
therefore, use the filter-diagonalization method of Neuhau
and co-workers,72–76 and introduce some small modifica
tions.

We represent the wave functions on a three dimensio
grid in real space.84–86 This real-space representation of th
wave function has recently been proposed in the contex
nanocrystallite semiconductors.87 In this representation the
potential energy operator is local and is simply calculated
the grid points. Since our potential is a screened empir
pseudopotential, the long and short range Coulomb ano
lies are absent, and the real-space representation conv
rapidly outside the nanocrystal regime. The kinetic ene
operator is nonlocal in this representation, and is evalua
using the fast Fourier transform method.88,89

nd

FIG. 2. The empirical pseudopotential for Cd and Se atoms plotted in
mentum space. The symbols are the form factors of Bergstresser and C
~BC! ~Ref. 77!, and the solid and dashed lines are the results of the nonlin
fit to the bulk band structure. Note that the fits are not done directly to
form factors.

TABLE II. The values of the ligand potential parameters for Cd and
atoms taken from the work of Wang and Zunger~Ref. 54!. The numbers in
parentheses indicates the number of missing bonds.

atom Vb
0 ~a.u.! sb ~a.u.! a

Cd ~1! 0.64 1.49 0.55
Cd ~2! 0.64 1.49 0.55
Cd ~3! 0.64 1.49 0.55
Se ~1! 20.384 1.49 0.25
Se ~2! 20.384 1.49 0.30
Se ~3! 20.384 1.49 0.40
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We start with Ni initial guess wave functions,uc i&,
which contain the target energy range. In this work the ini
guess for the value of the wave function on the grid point
taken from a uniform random distribution between21 and
11, and the wave function is then normalized. This cho
ensures that each initial guess contains contributions fromall
eigenstates. We then employ a Gaussian filter on each in
guess75

uc i~El !&5 f ~Ĥ !uc i&5
1

A2p
E

2`

`

dt exp~2t2/2s t
2!

3exp~ i t ~El2Ĥ !!uc i&, ~4!

so that the wave functionuc i(El)& is given by

uc i~El !&5 f ~Ĥ !uc i&5s t exp~2s t
2~El2Ĥ !2/2!uc i&, ~5!

andEl is the target energy. The choice of the Gaussian fi
is not unique, and other filters can be used to obtain vari
electronic properties. For example, one can replacef (Ĥ)
with the Fermi-Dirac operator (@11exp(b(Ĥ2m))#21),90

which was recently shown to provide extremely fast conv
gence for the electronic density matrix.91 Another useful
choice for the filter isf (Ĥ)5sin((El2Ĥ)t)/(El2Ĥ), which
may converge the results faster than the Gaussian filter.92

For large values ofs t , uc i(El)& approaches asymptot
cally the eigenstate closest to the target energyEl .93 The
long time propagation can be avoided by using the filt
diagonalization scheme,72–76 which benefits from the fac
that the states far from the desired energy,El , decay rapidly
even at short times. Thus,Nf states are generated from theNi

initial guess wave functions using a small value ofs t . The
number of filter states (Nf) differs from the number of initial
guess function (Ni) since we employ the filter at differen
energies on the same initial guess~this is done to save com
puter time!.72–76 Note that the filtered states are not eige
states of the Hamiltonian but are a superposition of sta
with energies that are inside the window. These states
used as a basis set to obtain the eigenvalues (En) and eigen-
states (ucn&) of the Hamiltonian in the desired energy rang

For clarity we replace the labelsi andl with m, such that
m runs from 1 toi 3 l , and the filter states are labeleducm

f &.
The eigenstates,ucn&, are then given in terms of a superp
sition of the filtered statesucm

f &

ucn&5 (
m51

Nf

cnmucm
f &, ~6!

where the expansion coefficients,cnm , are obtained from the
solution of the generalized eigenvalue equation in the
duced Hilbert space~note that the filtered states,ucm

f &, are
not necessarily orthogonal!75

H̃c̃5S̃c̃E, ~7!

where

Hmm85^cm
f uĤucm8

f & ~8!

and
l
s

e

ial

r
s

-

-

-
s
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-

Smm85^cm
f ucm8

f &. ~9!

A standard singular value decomposition method is used
solve the linear equation.75,94 This procedure resembles th
renormalization group method of Baer and Head-Gordon95

In the original filter-diagonalization method,72 and its
most recent variation,75 the propagatorf (Ĥ) is expanded in
Chebyshev polynomials. A difficulty with this choice o
polynomials is that the expansion coefficients are calcula
numerically, and various numerical tricks are introduced
converge the results for the coefficients.75 To avoid these
difficulties we use the Newton interpolation polynomi
scheme,85,96,97where the propagator,f (Ĥ), is approximated
by the interpolation polynomial

f ~Ĥ !'PN~Ĥ !5(
j 50

N

ajRj~Ĥ !, ~10!

Rj~Ĥ !5)
k50

j 21

~Ĥ2hk!, ~11!

and the coefficients take the form

a05 f ~h0!, a15
f ~h1!2 f ~h0!

h12h0
,

aj .15
f ~hj !2Pj 21~hj !

Rj~hj !
. ~12!

In the above equations,hk are the support points taken to b
the zeros of theN11 Chebyshev polynomial.98 This choice
defines the points on the interval@22,12#, and the Hamil-
tonian is rescaled so that its spectrum lies in the des
interval

Ĥs54
Ĥ2Emin

Emax2Emin
22. ~13!

Emin andEmax are the lowest and highest eigenvalues of
Hamiltonian, respectively. The operatorĤs is the one we use
in the interpolation formula. The final results for the prop
gated wave function is

ucm
f &5 (

j 50

N21

aj uf j&, ~14!

and we use the recursion relation to generate theuf j&
(uf0&5uc i&)

uf j 11&5~Ĥs2hj !uf j&. ~15!

The main advantage of the filter-diagonalization meth
is that one can use the same initial guess for different va
of El , and thus use the same interpolation polynomial~with
different expansion coefficients! to obtain many states simul
taneously. There is a balance between the propagation w
(s t) and the number of linearly independent states one
tains from propagating a single initial guess state. This b
ance is related to the energy spacing and the energy rang
the Hamiltonian. In this work we set the propagation wid
so that we obtain;20 states for each initial guess function
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Therefore, we apply the filter to several different initial gue
function to obtain all states in the desired energy range.

C. The self-consistent reaction-field method

We use the reaction field continuum model,69–71to study
the solvation of the CdSe nanocrystal. The treatment of
plicit solvent structures is left for future study. Here we d
velop a quantum mechanical approach which is consis
with the empirical pseudopotential method.

The nanocrystals studied in this work are taken to
spherical with a corrugated surface, and are arranged in
hexagonal crystal structure~unless otherwise noted!. The re-
action field continuum model requires as an input the spec
shape of the boundary of the solvated particle. In this w
we assume a spherical boundary with a given radiusRc ,29,68

and thus neglect the surface corrugation due to the mi
scopic atomic structure. Since the solution of the react
field inside the sphere for a given charge distribution
known analytically,99 there is no need to solve the Poiss
equation.100 The starting point of our derivation is the rea
tion field Hamiltonian within the Born–Oppenheime
approximation101,102

Ĥtot5 (
a51

Ne

Ĥa2(
l m

gl ^CuM̂ l muC&M̂ l m , ~16!

whereĤa is given by Eq.~1! for each electrona. The mul-
tipole moment operator forNe electrons, andNn nuclei is
given by

M̂ l m5A 4p

2l 11S (
a51

Ne

~2e! r̂ a
l Yl m~v̂a!

1 (
a51

Nn

QaRa
l Yl m~Va!D , ~17!

where r̂ a and v̂a are the position operators in polar coord
nates for electrona, Ra , andVa are the polar coordinates o
atoma, Yl m(V) are the spherical harmonics, andQa is the
nuclear charge of atoma ~which is taken to be the valenc
charge of each atom, i.e.,12 for Cd and16 for Se!. The
coupling factors,gl , are given by

gl 5
1

2Rc
2l 11

~ l 11!~e21!

~~ l 11!e1l !
, ~18!

wheree is the dielectric constant outside the sphere of rad
Rc . In the spirit of the one-electron empirical pseudopote
tial method, we take the total wave function to be a prod
of one-electron wave functions

uC&5 )
a51

Ne

uca& ~19!

and we populate only two electrons in each state similar
density functional formalism.

The many-electron Hamiltonian in Eq.~16! is separable,
and after some tedious algebra is reduced to a single-elec
Hamiltonian given by
s

x-
-
nt

e
he

c
k

o-
n
s

s
-
t

a

on

Ĥ5Ĥ2(
l

gl er̂l E dxr~x!xl Pl ~cos~g!!, ~20!

where Pl (cos(g)) are the Legendre polynomials,g is the
angle between the position vectorsr and x, and the total
charge densityr(x) is

r~x!52e(
a51

Ne

^caux&^xuca&1 (
a51

Nn

Qad~x2Ra!. ~21!

The pseudopotential reaction-field Hamiltonian@cf. Eq. ~20!#
depends on the total electronic charge, and is therefore,
linear. The solution is obtained by iterating the Schro¨dinger
equation until convergence is achieved, i.e., until the to
energy of two iterations agree within a specified toleranc

III. ELECTRONIC PROPERTIES OF ISOLATED CDSE
NANOCRYSTALS

A. Density of states and band gap

The first set of calculations is performed on isolat
nanocrystals in order to study the dependence of the den
of states and the band gap on nanocrystal size using
pseudopotential. We use a real space grid of 32332332 for
the small nanocrystals~14 Å<d,20 Å whered is the di-
ameter!, 48348348 for the medium size nanocrysta
(20 Å<d,30 Å), and 64364364 for the large nanocrys
tals (30 Å<d,40 Å), etc. The range of the grid is large
than the nanocrystal diameter by 6 – 8 atomic units. For
the results reported in this section we use an Newton in
polation of lengthN52048 unless otherwise noted. Th
propagation width@cf. Eq. ~5!# is determined from the
relation75

s t5
N

7.7~Emax2Emin!
, ~22!

and a typical energy range isEmax2Emin'10 atomic units.
The density of states for each nanocrystal is obtained

applying the filter-diagonalization method described in t
previous section. A set of initial random trial function
which contained the desired energy range, is propagated
ing the Gaussian filter, and then used to solve the general
eigenvalue equation@cf. Eq. ~7!#. We note that our approac
is closely related to the generalized moment approach,
cently applied to nanocrystals,103 however, additional work
is done in order to obtain the eigenstates, which are t
used for other purposes~see below!. In return, the density of
states is much more accurate.

In Fig. 3 we plot the density of states for a wide range
nanocrystal sizes. For clarity of presentation the lower
lence band, which is characterized by the surface state
the Se atoms that have missing bonds, is not shown. T
are several interesting features of the density of states w
have been seen in all previous studies. As the nanocry
size increases the gap decreases~see also Fig. 4! and the
width of the upper valence band increases~the lower valence
band is not shown!. We also observe that the continuous t
of the density of states above the conduction band obse
in bulk calculations breaks into several individual peaks d
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to quantum confinement. The individual valence states fo
a continuum density of states only on the scale of the pl

In panels~c! and~d! we show the density of state for tw
nanocrystals that are identical in size, however, one is c
tered around the Se atom (Cd68Se69) and the other is cen
tered around the center of the unit cell (Cd68Se68). We refer

FIG. 3. The density of states for CdSe nanocrystals. The results are no
ized so that thetotal numberof valence states is unity.

FIG. 4. Exciton energies of CdSe nanocrystals. The results of Wang
Zunger are from Ref. 54, and the experimental results are from Ref. 11.
upper panel is the bare band gap and the lower panel is the gap includin
electron–hole Coulomb interaction.
m
.

n-

to these two types of nanocrystals as ‘‘Se-centered’’ a
‘‘cell-centered,’’ respectively. The density of states and t
band gap are very similar for these two nanocrystals, ho
ever, we find that the total number of electronic states be
the gap equals the number of paired electrons only
Cd68Se68, and there is an ‘‘excess’’ state for Cd68Se69. This
is also the case for other nanocrystals studied here, an
general we find missing states whenNCd.NSe, and excess
states whenNCd,NSe. For NCdÞNSe the total number of
states below the gap~i.e., valence states! does not equal the
total number of paired valence electrons.

The missing–excess states are artifacts of the sur
passivation of the nanocrystals. The ligand potentials@cf. Eq.
~3!# ‘‘push’’ the states of the Cd atoms~with missing bonds!
into the conduction band, and the Se atoms~with missing
bonds! into the valence band, so that the gap is free of s
face states. Physically, the Cd atoms~with missing bonds!
can be regarded as donors, and the Se atoms~with missing
bonds! as acceptors. Since the total number of states is m
larger than the number of missing–excess states~the later
depends onuNCd2NSeu) the net effect of this phenomena o
the density of states is negligibly small, as can be clea
seen in Fig. 3. Because of this artifact, our present calc
tion does not correctly yield the states localized on the s
face atoms, however, since we know exactly the numbe
missing–excess states, we can correctly predict the num
of occupied states, and thus obtain the band gap and o
electronic properties. We further discuss this point belo
when we present the results for the electronic charge ca
lations.

The exciton energies with and without the electron–h
Coulomb energy~defined below! are shown in the lower and
upper panels of Fig. 4, respectively. The results are co
pared to other calculations,42,54 and to experimenta
results.11,14,15,17,104The valence band maximum~VBM ! and
the conduction band minimum~CBM! are obtained by filter-
ing two states, one with a target energy slightly above
VBM ( Em525.4 eV!, and the other with a target energ
slightly below the CBM (Em523.8 eV!. We thus avoid the
need to compute all valence states and focus on obtai
only the highest occupied molecular orbital~HOMO! and
LUMO, a procedure that scales linearly with the system s

The propagation width (s t) is chosen to converge th
value of the gap,Eg(d)5ECBM(d)2EVBM(d), to within a
desired tolerance. Additionally, we also calculate the st
dard deviation, (dEa)25^cau(H2Ea)2uca&, for each state.
A typical value of the standard deviation is found to be b
low 1028 atomic units. Due to the higher density of stat
near the VBM, the HOMO converges more slowly than t
LUMO. We, therefore, use a larger Newton interpolati
length for the HOMO, and for similar reasons increase
Newton interpolation length with the size of the nanocryst

We follow the procedure suggested by Wang a
Zunger54 to obtain the exciton energy, which is give
by2,3,5,105,106

Eex~d!5Eg~d!2
3.572

denc~d!
. ~23!

al-
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The size dependent dielectric constant of the nanocry
enc(d), is approximated by54

1

enc~d!
5

1

e`
nc~d!

2b~d!S 1

e`
nc~d!

2
1

e`
nc~d!13.5

D , ~24!

and the electronic contribution to the total polarizability is

e`
nc~d!511

e`
bulk21

11~7.5 Å/d!1.2
. ~25!

b(d) indicates how much the ions participate in the scre
ing, and is interpolated from the results of Ref. 54. Read
who are interested in more details concerning the deriva
of Eqs. ~24! and ~25! should consult the original work o
Wang and Zunger.54

In the upper panel of Fig. 4 we compare our results
the exciton energies excluding the electron–hole Coulo
term @i.e., the bare gap energiesEg(d)], to the results ob-
tained by Wang and Zunger54 using the local density derive
semiempirical pseudopotentials.83 The agreement betwee
the two calculations is very good, albeit the fact that t
scaling with respect to the nanocrystal size is somewhat
ferent. In the lower panel of Fig. 4 we compare our resu
for the exciton energies including the electron–hole C
lomb term to the experimental results of Murrayet al.11 who
have fabricated CdSe crystallites with a remarkably narr
size dispersion (,5%). Since the experimental results o
other groups14,15,17are very close to those reported by Mu
ray et al. we do not show them here for the clarity of pr
sentation. We find good agreement between our calculat
and the experimental results for most nanocrystal sizes.
calculated confinement energy@Eex(d)2Eex(`)# follows
approximately the lawd2a, with a51.15, which is slightly
below both the results of Wang and Zunger,54 and the results
of Albe, Jouanin, and Bertho42 ~who recently developed a
tight-binding model for CdSe nanocrystals!, but is closer to
the experimental value.

We conclude that our local empirical pseudopoten
provides realistic description for the density of states and
band gap, and therefore, is adequate to use for other e
tronic properties reported below.

B. Electronic charge density

The electronic charge density,re(r ), is given in terms of
the eigenstates of the Hamiltonian@Eq. ~1!#

re~r !52e(
a51

Ne

^caur &^r uca&, ~26!

where the sum runs over all occupied states. To ensure
the nanocrystal is neutral we normalize the electronic cha
density, so that the total electronic charge equals the t
nuclear charge~in the present calculations we describe on
the valence charge, i.e., 2 Cd electrons and 6 Se electro!.
This is required due to the problem mentioned in the pre
ous subsection concerning the missing–excess states. S
the number of missing–excess states is relatively small c
pared to the total number of occupied states, their effec
the electronic charge density should be negligibly small.
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We note in passing that the electronic charge density
be obtained from the trace over the electronic density mat
which can be approximated by the Chebyshev~or Newton!
expansion of the Fermi-Dirac density matrix.90,91 For the
present problem we find that our implementation of t
filter-diagonalization method is more efficient than the on
step renormalization group method recently introduced
Baer and Head-Gordon,95 since we obtain several states s
multaneously using the same Newton interpolation poly
mial.

The integrated electronic charge density along the@100#
~x axis!, @010# ~y axis!, and@001# ~z axis which is thec axis
of the hexagonal lattice!, is shown in Figs. 5 and 6. The

FIG. 5. Integrated electronic charge density of CdSe nanocrystals.
charge density is normalized such that the integral in each direction eq
the total electronic charge. Note the differences between the two nano
tals along thex andy directions.

FIG. 6. Integrated electronic charge density of CdSe nanocrystals.
charge density is normalized such that the integral in each direction eq
the total electronic charge. The diameter is 21.2, 25, and 29.6 Å
Cd83Se81 , Cd151Se147, and Cd232Se251, respectively.
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general features common to all nanocrystals are that the e
tronic charge is centered around the Se atoms consistent
predictions of density functional calculation for bulk CdSe107

and with high resolution electron microscopy results,18 and
that the electronic charge drops rapidly outside the nanoc
tal range.

In Fig. 5 we compare the integrated electronic cha
density for nanocrystals that are identical in size, howe
one is Se-centered (Cd68Se69) and the other is cell-centere
(Cd68Se68). Even though the two nanocrystals are very sim
lar in size, their electronic properties are somewhat differe
The Cd68Se69 nanocrystal belongs to theC3v group symme-
try, which is found to be the group symmetry of highly a
nealed hexagonal CdSe nanocrystals.18 The top and bottom
surfaces along thez direction are Cd and Se terminated, r
spectively. The electronic charge density reflects mainly
symmetry of the Se atoms, so that along both thex and z
directions the electronic charge density is symmetric aro
the center~the x direction is chosen to lie in one of thesv
planes of reflection!. The Cd68Se68 is cell centered, and
therefore, belongs to a lower symmetry group. The ma
differences between the two charge densities are in thx
2y plane. We note that for both nanocrystals we remo
surface atoms with only one remaining bond.

In Fig. 6 we plot the integrated electronic charge dens
of three nanocrystals ranging fromd'20 Å to d'30 Å; all
three nanocrystals are Se-centered, and belong toC3v group
symmetry. They differ with respect to the details of the
construction of the surface geometries. The top surface a
thez direction is Cd terminated for Cd83Se81 and Cd151Se147,
and is Se terminated for Cd232Se251. The bottom surface
along thez direction is Se terminated for all three nanocry
tals. Similar to the case of the smaller nanocrys
(Cd68Se69), the electronic charge density along thex and z
directions is symmetric around the center.

C. Multipole moments

Given the electronic charge density, we calculate the
pole and higher multipole moments of several nanocryst
Our calculations are based only on the valence electronic
nuclear charge densities, within the empirical pseudopo
tial framework. The origin of the multipole expansion
taken to be the center of the total~electronic1nuclear!
charge densities, which happens to fall near the centere
atom. The results for CdSe nanocrystals that are Se-cen
are summarized in Tables III and IV.

TABLE III. The dipole moment of CdSe nanocrystals along thex, y, andz
directions, and its magnitude.

mx ~a.u.! my ~a.u.! mz ~a.u.! umu ~a.u.!

Cd20Se19 0.0 0.6 267.4 67.4
Cd41Se39 0.0 0.5 23.2 23.2
Cd68Se69 0.0 1.2 14.2 14.3
Cd83Se81 0.0 20.2 2153.6 153.6
Cd151Se147 0.0 0.1 59.4 59.4
Cd232Se251 0.0 24.4 228.1 28.4
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The dipole moments in thex2y plane are very small for
nanocrystals that are Se-centered. This is not the case
cell-centered nanocrystals which can have finite dipole m
ments in thex2y plane. Both Cd68Se69 and Cd232Se251 have
dipole moments that are comparable to the screened ex
mental values of Guyot-Sionnest and co-workers,25,26 while
Cd83Se81 has the largest~among the structures studied her!
dipole moment along thez direction. In general, we do no
find any systematic behavior of the dipole moment as
vary the nanocrystal size. The dipole moment strongly
pends on the detailed structure of the nanocrystal, and
vary significantly upon small structural changes. We a
find that there are no correlations between the surface te
nation and the direction or magnitude of the dipole mome
We also carried out calculations for a zincblende crys
structure, and found vanishing dipole moments in all th
directions.

The large value of the dipole moment can result from
lack of inversion symmetry in hexagonal nanocrystals,108 or
from charge localized on the surface~surface states!. Our
results support the classical model of Huong and Birman108

who argue that the spontaneous polarization and large di
moments in nanocrystals is due to lack of inversion symm
try in hexagonal nanocrystals. A close examination of
structure of Cd83Se81 reveals the fact that it is highly sym
metric along thez direction ~it has a plane of symmetry fo
Cd atoms and for Se atoms separately! so that the dipole of
each unit cell of the hexagonal crystal structure adds up
give a large value for the dipole moment~the same is true for
Cd20Se19). This is not the case for the other two nanocryst
(Cd68Se69 and Cd232Se251), and it appears that there are som
structural cancellations that decrease the dipole mom
along thez direction. We also modified the ligand potenti
used to model the passivation of the surface atoms and fo
that the dipole moment is almost insensitive to the value
the potential at the surface. This strongly suggests that
dipole moment is a structural property of hexagonal Cd
nanocrystals and not due to the presence of an electron
calized on the surface.

Regarding the second moment of the charge density~the
quadrupole is given in terms of the elements of the sec
moment!, the diagonal elements seem to follow a more s
tematic trend with increasing nanocrystal size, i.e., the s
ond moment of the charge density increases with size.
off-diagonal elements are smaller by at least two orders

TABLE IV. The diagonal elements of the second moment of the cha
density for CdSe nanocrystals. The off-diagonal elements are typic
smaller by more than two orders of magnitude and, therefore, are not g
in the table.uQu is the average magnitude of the diagonal elements of
second moment.

Qxx ~a.u.! Qyy ~a.u.! Qzz ~a.u.! uQu ~a.u.!

Cd20Se19 2110.5 2114.5 223.4 82.8
Cd41Se39 2597.7 2578.9 595.0 590.5
Cd68Se69 2671.0 2655.7 20.5 442.4
Cd83Se81 2540.2 2633.7 2430.9 535.0
Cd151Se147 583.4 779.7 22184.0 1182.3
Cd232Se251 23226.5 23283.2 23986.3 3498.7
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magnitude~except for the case of Cd68Se69 which has a van-
ishing Qzz term!, and therefore, are not given in the tab
The values of the second moment of the charge density a
the different directions are similar in most cases, reflect
the spherical shape of the nanocrystals. Nevertheless, t
particles are highly anisotropic due to the large dipole m
ment along thec axis.

D. Electronic polarizabilities

The electronic polarizabilities of the CdSe nanocryst
are calculated using a finite-field method.109–111We add an
external electrical field into the Hamiltonian by adding o
term to the effective empirical potential

ĤF5Ĥ2eF•r , ~27!

whereĤ is the empirical pseudopotential Hamiltonian giv
by Eq. ~1!, andF is the applied electric field. The polariz
ability is defined by

a i j 5
]m i

]F j
, i , j 5$x,y,z%, ~28!

wherem i are the dipole moments along thei 5$x,y,z% axes.
The different elements of the polarizability tensor a

obtained by applying a finite field in thex, y, and z direc-
tions. In Fig. 7 we plot the value of the dipole moment a
function of the applied external field for three nanocrysta
It is clear that the results are well inside the linear respo
regime, and that the direction of the induced dipole is in
direction of the applied external field. We must point out th
we did not relax the ionic positions in the finite field calc
lations, and thus obtain only the electronic polarizabili
Unlike the results for Si and GaAs,111 which indicate that the
ionic relaxation affects the calculated polarizabilities on

FIG. 7. Plots of the dipole moment as a function of the applied exte
field. The direction of the field in each calculation is taken along the dir
tion of the observed dipole moment. The response of the system is linea
fields smaller than 1023 atomic units.
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within 2% to 3%, we expect that the ionic polarizability o
CdSe will definitely contribute to the total polarizability.

The diagonal elements of the polarizability tensor a
then calculated from the slopes of a linear fit to the resu
shown in the Fig. 7. The values are summarized in Table
along with the averaged polarizability,̂a&5 1

3(axx1ayy

1azz), which is the property measured in experiments. W
also include the electronic polarizability of the bulk es
mated from the Clausius–Mossotti relation, usinge`

bulk

56.2. Surprisingly, the polarizabilities are very similar alon
the three direction, and it seems that the large dipole al
the c axis does not influence the polarizability along th
direction ~this reflects the spherical shape of the nanocr
tals!. The electronic polarizability per atom slightly increas
with increasing nanocrystal size concomitant by the decre
in the energy gap. Our results are consistent with those
Wang and Zunger54 for the dielectric constant of CdS
nanocrystals~for Cd83Se81, which is a nanocrystal commo
to both studies, we obtain a dielectric constant of 4.86 us
the Clausius–Mossotti relation, which is in excellent agre
ment with the direct calculation of Wang and Zunge!.
Hence, the total electronic polarizability increases appro
mately with the volume of the nanocrystal. The off diagon
elements of the polarizability tensor are typically smaller
at least two orders of magnitude than the diagonal eleme
and therefore, are not given in the table.

E. Long range electrostatic and dispersion
interactions

An interesting spinoff of the current results is direct
related to the long range interactions between two nanoc
tals. Since hexagonal CdSe nanocrystal may have a l
dipole moment, it is possible that the dominant interact
term between two CdSe nanocrystals is given by the elec
static interaction and not by the dispersion interaction
pected for large particles.112 Indeed we find that for neutra
CdSe nanocrystals with hexagonal crystal structure
dipole–dipole electrostatic interaction term, which depen
on R23 ~whereR is the distance between the centers of t
two nanocrystals! is the dominant interaction term at larg
interparticle separations ('5 times the size of the particles!
for all nanocrystals studied in this work. It is by far larg
than the dispersion interactions~van der Waals interactions!,
which scale asR26 and depend on the total polarizability o
the nanocrystals at large separations. We also find tha
separations which are on the order of the nanocrystal size
dipole–quadrupole (R24), and dipole–octupole, and
quadrupole–quadrupole (R25) interaction terms are compa

l
-
for

TABLE V. The diagonal elements of the electronic polarizability tensor~in
units of Å3/atom! obtained from the finite field method. The result for th
bulk is obtained from the Clausius–Mossotti relation usinge`

bulk56.2.

axx ayy azz ^a&

Cd68Se69 3.504 3.396 3.528 3.476
Cd83Se81 3.678 3.692 3.963 3.778
Cd151Se147 4.197 4.754 4.347 4.433
bulk 4.25
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rable in size to the dipole-dipole interaction term. This si
ation in which the electrostatic interactions are stronger t
the dispersion interactions is very similar to the case of wa
which also has a large dipole moment. Hence, the inte
tions between hexagonal CdSe nanocrystals are typica
molecular type interaction and not of the Hamaker112 ~dis-
persion! interactions expected for large particles.

Our current picture is only valid for large separatio
between the nanocrystals compared to the size of the
ticles. However, understanding various collective propert
such as the self-assembly of nanocrystals113,114or the forma-
tion of crystals of nanoparticles,115 requires a more rigorou
study of the interactions between nearby~or almost touch-
ing! nanocrystals. At this point it is still an open questio
whether the electrostatic will dominate over the dispers
also at short separations.

IV. THE EFFECT OF THE SURROUNDINGS

We study the effects of the surroundings on various e
tronic properties of CdSe nanocrystals using the reac
field continuum model.69,70 We diagonalize the one electro
pseudopotential reaction field Hamiltonian@Eq. ~20!# itera-
tively using the eigenstates of the isolated nanocrystal, u
the convergence of the eigenvalues is within 1024 of their
initial values. This requires at most 3 to 4 iterations. F
nanocrystals with diameter above 20 Å we carried out o
three iterations that converge the eigenvalues to within 123

of their initial value. The use of the isolated eigenstates a
basis set to study the effects of the surroundings is adva
geous for the size of nanocrystals studied in this work, si
the direct diagonalization of the Hamiltonian within this su
space is faster than performing the filter-diagonalization s
in each iteration. However, since this procedure scales w
the cube of the number of basis functions, for larger na
crystals a direct filter-diagonalization procedure at each ite
tion will be faster. The number of Legendre polynomia
used in the one-electron pseudopotential reaction fi
Hamiltonian@Eq. ~20!#, depends on the particular grid poin
(r ), and is chosen to converge the value of the potentia
that given grid point to within 1028 of its initial value. For
grid points near the edge of the sphere we use more
5000 Legendre polynomials, however a more typical valu
below 50.

A. Collective state properties

The changes in the total electronic charge density
very small with increasing dielectric constante, and cannot
be seen on the scale of Figs. 5 and 6. The individual state
mix, however, and as expected, the largest effect on the
ergy shifts are obtained for states that are near the surf
We did not find any states well inside the band gap, but so
surface states do appear near the valence band maxim
These surface states may leak into the gap, depending o
magnitude of the dielectric constant outside the nanocrys
and on the magnitude of the interaction between the na
crystal and its surroundings. We believe that the appeara
of these surface states depends strongly on the details o
surface passivation, and for other passivation potentials
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nature of these states may change. We return to this p
below when we discuss the absorption spectrum.

In Figs. 8 and 9 we show the dependence of the first
second moments of the charge density on the dielectric c
stant (e) outside the nanocrystal sphere for two differe
cutoff radii (Rc). The results are shown for three nanocry
tals that are Se-centered, and thus have dipole moments
along thez direction. These values are chosen to cover
range of dipoles from relatively small values (Cd68Se69) to
large values (Cd83Se81), and a range of sizes. We use cuto
radii in the reaction field calculations which are larger th
the nanocrystal radii to incorporate the effect of the liga

FIG. 8. Plots of the dipole moments along thez direction vs the dielectric
constant outside the nanocrystal for two values of the cutoff radii.

FIG. 9. Plots of the diagonal elements of the second moment of the ch
density vs the dielectric constant outside the nanocrystal for two value
the cutoff radii.
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passivation layer. Since the exact passivation width is
known, we study the solvation as a function of this width
changing the cutoff radius (Rc).

Even though the change in the electronic charge den
is extremely small ('1% – 3%), weobserve a change of u
to 15% in the dipole moments~Fig. 8!. The absolute value o
the dipole moment increases with increasing dielectric c
stant for all the nanocrystals studied here. The relativ
large change in the dipole moment is directly related to
large size of the nanocrystals. The dipole moment is given
m5*dxr(x)x, wherer(x) is the total charge density@cf. Eq.
~21!#. The small changes in the electronic charge density
amplified in the dipole calculations due to the large values
x. Moreover, these nanocrystals have a large surface a
and thus even very small changes in the charge at the su
give rise to fairly large changes in the dipole moment. Sim
lar arguments also apply in explaining the behavior of
second moment of the charge density shown in Fig. 9.

The effect of the width of the passivation layer on t
first and second moments of the charge density is also
dent in Figs. 8 and 9. For simplicity we assume that
dielectric constant in the passivation layer ise51. This im-
plies that the change in the passivation layer is modeled
change in the cutoff radius used in the reaction field cal
lations. The smaller the width of the passivation layer,
larger is the interaction of the nanocrystals with its surrou
ings, and hence the larger are the changes in the multi
moments.

Despite the large dipole moments of hexagonal Cd
nanocrystals, the total ground state is not very polariza
~for comparison, the dipole moments of water changes fr
1.85 D in the gas phase to 2.5 D in liquid phase!. In general
we find two major effects that influence the change in
multipole moments with the dielectric constant outside
nanocrystal — the variation in the nanocrystal size and
magnitude of its multipoles. The variation in size gives r
to variations in the surface area. Large nanocrystals h
large surface area, and thus larger contributions to
changes in the multipole moments due to changes in
surface charge. The other effect is related to the interac
potential between the nanocrystal and its surroundings w
is directly proportional to the multipole moments@cf. Eq.
~16!#. Hence, nanocrystals with larger multipoles will ha
larger changes in the electronic charge density, and
larger changes in the multipole moments as one variese.

B. Single state properties

So far we have discussed the solvation effects on
total ground state electronic properties, and also descr
qualitatively the effects of the surroundings on single v
lence states which are localized near the surface. In this
section we focus on single excited states, such as the LU
which can be much more polarizable, and the results sh
in this subsection support this prediction.

In Fig. 10 we plot the energy shifts@DE5ELUMO(e)
2ELUMO(e51)# of the LUMO as a function of the dielectri
constant outside the nanocrystal. The magnitude of the
ergy shifts increases with increasing dielectric constant
all four nanocrystals shown in the figure. We also calcul
-

ty

-
ly
e
y

re
f

ea,
ce
-
e

i-
e

a
-

e
-
le

e
le
m

e
e
e

ve
e
e
n
h

us

e
ed
-
b-

O,
n

n-
r
e

the average energy shifts for the valence states, which
different from the energy shifts observed for the LUM
state. Therefore, we can conclude that the energy shifts o
LUMO are a combination of the solvation of the nanocrys
and the changes observed in the single electronic LUM
wave function.

The smallest energy shifts are observed for Cd68Se69,
due to the relatively small dipole moment of this nanocrys
On the other hand, we find large energy shifts ('1 eV! for
Cd83Se81 which has the largest dipole moment among t
nanocrystals studied here. The screening effect of the pa
vation layer is also evident in the lower panel of Fig. 1
where we plot the energy shifts of Cd20Se19 for two different
values of the cutoff radius. The screening due to the pa
vation layer increases with increasing cutoff radius result
in a decrease in the energy shift. We note that the ene
shifts observed for the LUMO are comparable in size to
quantum confinement effect.

An even more dramatic effect occurs for the integra
LUMO probability along thez direction, which is shown in
Fig. 11 for the three larger nanocrystals. The unpertur
LUMO is delocalized over the nanocrystal. The changes
the integrated LUMO probability along thez direction are
relatively small for Cd68Se69. However, we find that the
LUMO of Cd83Se81 has a tendency to localize on the surfac
on the side opposite to the direction of the dipole mome
This occurs only for large enough dielectric constants, a
for e52 the LUMO is still a very delocalized state. We no
that similar qualitative effects have been observed for se
conductor quantum dots within the effective ma
approximation.31 However, there are quantitative differenc

FIG. 10. Plots of the energy shifts,DE5Eex(e)2Eex(e51), vs the dielec-
tric constant outside the nanocrystal. Note the small shifts for Cd68Se69 and
the large shifts for Cd83Se81 .
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between our molecular model and the predictions m
based on the effective mass approximation, mainly with
spect to the extension of the LUMO outside the nanocry
radius, and with respect to the direction in which the LUM
moves.

We also examine the effects of the surroundings on
properties of an excess electron in CdSe nanocrystals.
simplicity we assume that the excess electron occupies
LUMO state, and we carry out similar calculations for t
resultant charged nanocrystal. These calculations differ f
those of the neutral system in that the total charge den
entering the reaction field Hamiltonian includes a contrib
tion from a single electron in the LUMO. Although the re
sults for the charged system are essentially the same as
for the neutral system, the effects of the surroundings
somewhat more pronounced. We find that the multipole m
ments of the charged system are somewhat larger than t
of the neutral system. This leads to slightly larger localiz
tion of the excess electron on one side of the nanocrys
Furthermore, the energy shifts of the excess electronic s
are larger than those of the LUMO state, due to the solva
effect of the extra charge. We do not show the results for
excess charge here since they are qualitatively the sam
those for the neutral system.

C. Absorption spectrum

The absorption spectrum of the nanocrystal is prop
tional to the imaginary part of the dielectric constant and
given in terms of the dipole transition matrix elements (M f i)

FIG. 11. Plots of the normalized integrated probability of the LUMO alo
the z axis. The solid, dotted, and dashed lines are fore51, e52, ande
58, respectively. The cutoff radii used in the reaction field calculations
12.7, 13.2, and 15.9 Å for increasing nanocrystal size. Note the localiza
of the integrated probability for Cd83Se81 and for Cd151Se147 whene58.
e
-

al

e
or
he

m
ty
-

ose
re
-
se
-
l.
te
n
e
as

r-
s

I ~E!}(
f i

uM f i
2 u

Ef i
2

d~E2Ef i !, ~29!

whereEf i5Ef2Ei is the transition energy, the dipole tran
sition matrix elements take the formM f i5^ f up̂u i &, and p̂ is
the momentum operator. In the above equationf andi denote
final and initial states, respectively.

In Fig. 12 we show the absorption spectra of Cd68Se69

and Cd151Se147 for three values of the dielectric constant ou
side the nanocrystals. The dominant feature of the absorp
spectrum in the absence of a dielectric medium outside
nanocrystal is the presence of a few absorption peaks
the band gap energy~solid line in both panels! characteristic
of molecular spectra. These peaks were also observed in
vious studies,11,54 and are absent from nanocrystals ma
from indirect-gap materials such as Si.52

There are two main features that are due to the inte
tion between the nanocrystal and the environment. The
is related to the broadening and overlap of these individ
peaks. As the dielectric constant outside the nanocrysta
creases the overlap between the peaks increases unti
peaks disappear. This broadening is not associated with
lifetime of the states, but its origin is in changes observed
the oscillator strength due to the coupling to the surrou
ings. The other feature is the appearance of states inside
band gap. These are not ‘‘pure’’ surface states, howe
they are localized near the surface along the preferredz di-
rection, and thus are referred to as ‘‘quasi surface state

e
n

FIG. 12. Plots of the optical absorption spectra~in arbitrary units!. The
solid, dotted, and dashed lines are fore51, e52, ande58, respectively.
The cutoff radii used in the reaction field calculations are 12.7 Å
Cd68Se69 and 15.9 Å for Cd151Se147. The vertical arrow marks the position
of the bare band gap. Note the appearance of states inside the gap
dielectric constant outside the nanocrystals is increased.
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Since the LUMO is also localized along thez direction, the
overlap of these quasi surface states with the LUMO is str
ger and can be detected by absorption spectroscopy.
presence of surface states in the gap depends strongly o
passivation of the surface and on the interactions with
environment as clearly can be seen in the figure. We n
that surface states have been reported for CdSe qua
films116 and for CdSe nanocrystals117 using conductance
spectroscopy and other complementary methods.118 The ap-
pearance of surface states inside the gap for CdSe nano
tals was shown to strongly depend on the wetting of
surface.119

V. CONCLUDING REMARKS

We have carried out a detailed study of the electro
properties of CdSe nanocrystals in the absence and pres
of a dielectric medium outside the nanocrystal. Our calcu
tions were based on the empirical pseudopotential meth
which was modified to describe the finite nanocrystal syst
We developed a self-consistent reaction field method to
used with the empirical pseudopotential Hamiltonian. To
duce the computational cost of the calculations, we have
stricted our pseudopotential to be a local one, such that
corresponding Hamiltonian has a relatively small ene
range.

The solution of the one-electron effective pseudopot
tial Hamiltonian was made possible by the implementat
of the filter-diagonalization method~as far as we know this is
the first electronic structure study using this method!. We
have modified the method by using a Newton interpolat
polynomial instead of the Chebyshev polynomial for the
ter operator, and as a results of this change, the method
become more flexible in terms of changing the filter fun
tion. Of course, the Newton interpolation polynomial h
other advantages such as treating non-Hermitian Ham
nians, in which case the interpolation points have to be c
sen to reside in the complex plane.120 The filter-
diagonalization method was shown to provide an excel
framework to carry out the electronic structure calculation
particular if one is interested in a narrow set of eigensta
such as the HOMO and the LUMO which specify the ba
gap.

The first set of calculations was performed on isola
CdSe nanocrystals. The electronic properties of the na
crystals were characterized in terms of the charge den
the multipole moments and the electronic polarizability. T
valence electronic charge was found to be mainly locali
near the Se atoms in agreement with predictions of den
functional calculations on bulk CdSe. We find very lar
dipole moments for hexagonal CdSe nanocrystals along tc
axis, which strongly depend on the exact structure of
nanocrystal and may vary significantly upon small structu
changes. We have shown that the large dipole momen
present due to the lack of inversion symmetry and not du
the presence of a surface charge. For some structure
obtained rough agreement with the experimental scree
values of the dipole moment measured by Guyot-Sionn
and co-workers.25,26The second moments of the charge de
sity as well as the polarizabilities seem to follow a mo
-
he
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systematic trend with changing nanocrystal size. In the c
text of long range interactions between nanocrystals, our
sults provide, for the first time, a quantitative description
the electrostatic and dispersion interactions between C
nanocrystals, which are important in understanding coll
tive properties of CdSe nanocrystals. An important conc
sion is that for hexagonal CdSe nanocrystals the multip
interactions are more important than the dispersion inte
tions for large interparticle separation.

We next developed a self-consistent reaction fi
method and applied it to study the effects of the surround
on collective and single state properties of CdSe nanoc
tals. The interaction of the nanocrystals with the dielect
environment increases with the magnitude of its multip
moments, and in particular the dipole moment. The vale
electronic charge density depends weakly on the dielec
constant outside the nanocrystal, however, due to the la
size of the particles, the multipole moments vary in a mo
pronounced way. Single state such as the LUMO tends
strongly localize at the surface of the nanocrystal opposit
the direction of the dipole moment when the nanocryst
were embedded in a moderate dielectric medium. We fo
that there is a correlation between the size of the dipole m
ments and the localization effect, i.e., for nanocrystals w
small dipole moments, the LUMO remained delocalized o
the hole nanocrystal range. Similar effects were observed
an excess electron which was assumed to occupy the LU
of the neutral system. We have also showed the effects o
dielectric medium on the absorption spectra. The individ
absorption peaks near the band gap were broadened b
dielectric medium, and quasi surface states that can be
tected by absorption spectra appear inside the band gap

This work presents a first attempt to study the effects
a surrounding polar environment on electronic properties
CdSe nanocrystals using a detailed molecular model for
nanocrystal. Our results indicate the importance of includ
the surroundings in the study of hexagonal CdSe nanoc
tals, which have a finite dipole moment along thec axis.
They also imply that other nanocrystals~such as GaP, CdS
and Si! with crystal structures that belong to a higher sy
metry point group will not interact strongly with their env
ronment. Further work along the directions presented in
work is currently in progress.
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