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We present a detailed study of the electronic properties of CdSe nanocrystals in the absence and
presence of a dielectric medium. The electronic structure of the nanocrystal is modeled within the
framework of the empirical pseudopotential method. We use a real-space grid representation of the
wave function, and obtain the eigenvalues and eigenstates of the one-electron Hamiltonian using a
slightly modified version of the filter-diagonalization method. The band gap, density of states,
charge density, multipole moments, and electronic polarizabilities are studied in detail for an
isolated nanocrystal. We discuss the implications of the results for the long range electrostatic and
dispersion interactions between two CdSe nanocrystals. To study the effects of the surroundings we
develop a self-consistent reaction field method consistent with the empirical pseudopotential
method. We use the eigenstates of the isolated nanocrystal and iterate the self-consistent equations
until converged results are obtained. The results show that the electronic properties of polar CdSe
nanocrystals are quite sensitive to the environment.1999 American Institute of Physics.
[S0021-960609)70910-4

I. INTRODUCTION since CdSe nanocrystals are typically deposited on thin films
or embedded in glassy materials, it is important to under-

The interest in semiconductors which are spatially Congyan g the effects of the surroundings on the electronic prop-

fined to a few tens of nanometers, and which contain hun- .. L . .
. N erties. This is the main goal of the present study. Motivated
dreds of atoms, has increased in recent y&ar3he devel- g P 4

_ - by the work of Brué>®® who treated the solvation of nano-
opment of experimental methods along with improvements

) o . . . crystals using both a classical dielectric continuum model
in epitaxial growth technique¥: 23 has made it possible to 9 L
: . . : and an effective mass approximation, we develop a model
study various electronic properties of semiconductor nano; . L
. . . ; for the electronic structure of a CdSe nanocrystal which is
crystals in great detail. In particular colloidally prepared

CdSe nanocrystals have received much of the experiment, sed on 'the empirical pseudopot_entlal metﬁthd .study
attention'®'4-26The experimental interest in CdSe nano- = e solvation of nanocrystals within the reaction field con-

9-71 H H
crystals has raised a number of questions that require the ugguum modef?*~" Our treatment is different from the effec-

of electronic structure theory for a complete explanation. Ex{V€ Mass approximation in that we explicitly consider the

act electronic structure calculations of CdSe nanocrystals a,rgolec_ular structure of the nanocrystal, and we describe the
extremely difficult in view of the large number of atoms and Solvation of the nanocrystal quantum mechanically.
electrons involved” and the lack of periodicity. Therefore, N Sec. Il we provide the details of our model, which
several approximate theoretical methods and models hayBclude the direct empirical pseudopotential method and the
been developed in the last few years. The simplest approadglf-consistent reaction field method. We first describe the
is based on the effective mass approximafiditwhich can  construction of the empirical pseudopotential suitable for the
be extended to incorporate multiband couplifgse., band  finite size calculations of CdSe nanocrystals along with the
mixing induced by the effect of finite siZé:3~*¢ Another ~ details of the surface passivation. Next, we describe the
approach is based on the widely used tight binding mddel, filter-diagonalization methdd"®and introduce some modi-
where explicit atomic structure of the nanocrystals isfications. The filter-diagonalization method is used to obtain
considered®*2 A third approach is based on the empirical the eigenstates and eigenvalues of the screened one-electron
pseudopotential methdd,and is the one we adopt in the Hamiltonian, and as far as we know, this is the first study of
present study. The pseudopotential method has been appli€tectronic structure using this method. The last part of this
to a variety of semiconductor nanocrystals at different levelsection is devoted to the development of a self-consistent
of approximation, and has provided excellent agreement witheaction field method consistent with the empirical pseudo-
experimental result& =57 potential method.

Most theoretical studies have focused on the absorption The electronic properties of isolated CdSe nanocrystals
spectrum of isolated nanocrystals, and neglected the interaefe discussed in Sec. Ill. We study the density of states and
tion of the nanocrystals with the environment. However,the band gap of a nanocrystal in the strong confinement re-

0021-9606/99/110(11)/5355/15/$15.00 5355 © 1999 American Institute of Physics



5356 J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Rabani et al.

gime, with diameters ranging from 15 to 50 A. The elec-whereR,, is the position of atomw, and the indexa runs
tronic properties are then discussed in terms of electroniover all atomsV,, is the effective pseudopotential of atam
charge densities, multipole moments, and polarizabilities(i.e., Cd or Se atomswhich is adjusted to fit experimental
The long range electrostatic and dispersion interaction besr ab initio data. The last term represents the ligand poten-
tween nanocrystals are directly related to these properties.tials used to passivate the surface atoms, where the igdex
The influence of a dielectric medium outside the nano-uns over all the ligand sites defined below.
crystal is discussed in Sec. IV for collective and single state  In the present work we construct an empirical pseudopo-
properties. We also discuss the effects of an excess electraential based on the traditional Bergstresser and Cohen local
in a CdSe nanocrystal which is assumed to occupy the lowesimpirical pseudopotential for Cd$eWe use a local poten-
unoccupied molecular orbitdLUMO) state. A summary of tial to minimize the computational effort required to incor-

the results is given in Sec. V. porate the effects of the surrounding@kse Hamiltonian with
the local potential has a smaller energy range compared to
Il. MODEL AND METHODS the Hamiltonian with a nonlocal potentjalThe local poten-

tial is well known to underestimate the band dispersion and

and the modifications needed in the study of CdSe nanocrygsxperiment&® and thus is sufficient to provide a qualitative
tals, including the passivation of the surface. Next we OUt””E‘description of the effects of the surroundings.

the method we use to obtain the eigenstates and eigenvalues |, the classic empirical pseudopotential methttiSthe

of the screened one-electron Hamiltonian. Finally, we depseudopotential is defined only on the discrete bulk recipro-
velop a reaction field method consistent with the empiricaley) |attice vectors. However, to properly describe a nanocrys-
pseudopotential method. Throughout, the following notationg| one needs a continuous potential because of the break-
is used: A vector is denoted by a bold face, an operator by gown of translational symmetry. For precisely this reason,

hat, and a matrix by a tilde. we use the following functional fornin momentum space
A. The direct pseudopotential method q) for Cd and Se pseudopotentials
The use of empirical pseudopotential methods to calcu-  V(q)=a,(q%—a,)/(agexpa,q?) +1), 2

late the electronic structure of semiconductor nanocrystals ) .

has been very fruitful. Ramakrishret al. have introduced Whereq=|g|. This form has been used in the study of the
the truncated crystal methd&;in which the bulk empiri- €lectronic structure of semiconductor surfdé8and of sili-

cal Hamiltonian is diagonalized using several bulk Bloch®On nano_crystalil. _

wave functions, and the energy levels of the nanocrystals are We fit the parameters; (j=1-4) to the bulk band
obtained by imposing appropriate boundary conditions orstructure obtained from the Bergstresser and Cohen empiri-
the wave functions. Mizel and CoHSn®” have introduced a @l pseudopotentill for both hexagonal and zincblende
Wannier function approach, in which the electronic proper_cry:stal structures. The results are shown in Fig. 1, and the
ties of a nanocrystal are described in terms of several locaRgreement between the two calculations for the band struc-
ized Wannier wave functions. Unlike the truncated crystalfure is very good. The parameters for both crystal structures
method which imposes the boundary conditions in momen&'e given in Table I. Since the fits involve only eight param-
tum space(e.g., only allowedk states which correspond to eters, it is rather straightforward to efficiently sample the
standing waves in the sphere are yséite Wannier function elevant range of parametéf'sUsing our new pseudopoten-
approach uses the real space positions of the atoms to gtial we find that the band gap for the hexagonal crystal struc-
scribe the boundary of the nanocrystal. Both methods assunigre is 1.82 eV (1.80 eV using Bergstresser and Cohen em-
an infinite potential outside the core region, which simplifiesPirical pseudopotentigl and for the zincblende crystal
the numerical calculations, but this approach is not appropristructure is 1.81 eV (1.84 eV using Bergstresser and Cohen
ate when a continuum dielectric model of the solvent is in-€mpirical pseudopotentialBoth results lie near the experi-
troduced. Zunger and collaborators have developed a direffental value of 1.740.1 eV for the hexagonal crystal
molecular method!% which is the one we adopt in the Structure’? We note that the treatment of the spin—orbit in-
present work. The direct method has been used to prediégractions in our model is the same as in the work of Berg-
quantum confinement effects, such as the size dependedffésser and Cohéfh.

band gap, and the exciton Coulomb and exchange The pseudopotentials are shown in Fig. 2 along with the
energies! 6 discrete values of Bergstresser and CoffeFhe value of the

The direct molecular method starts from a microscopicCd and Se potentials =0 only determines the offset of
one-electron Hamiltonian, however, since a alinitiocal-  the bands for bulk calculations and not the spacings between
culation is impractical, the Hamiltonian is simplified, and the the levels. For this reason, their values were not given in the
exact total screened potential is replaced by a superpositig#figinal work of Bergstresser and CohEfiThe resultgsym-

of empirical atomic pseudopotentials. The one-electrorP0lS) shown fg)rq:.O are obtained from the experimental
Hamiltonian takes the forrtin atomic unit$ work functior?® which equals the sum of the two potentials

at q=0, along with the value of the difference between the
A=— w2+ v (IF=R D+ Vigand |f_g @ Cd and Se potentials gt=0 taken from the local part of the
2 ; ol o) 2,3: 7 Ur=S. @ Wang and Zunger semiempirical potenfial.
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FIG. 2. The empirical pseudopotential for Cd and Se atoms plotted in mo-

FIG. 1. The band structure of hexagoriwer panel and zincblendéup- mentum space. The symbols are the form factors of Bergstresser and Cohen
per panel CdSe. The symbols are results obtained using Bergstresser arl®C) (Ref. 77, and the solid and dashed lines are the results of the nonlinear
Cohen(BC) empirical pseudopotenti@Ref. 77, and the solid lines are the fit to the bulk band structure. Note that the fits are not done directly to the
results obtained from the nonlinear fit. form factors.

The other ingredient needed to complete the descriptionalues and eigenstates, even for relatively small nanocrystal
of our Hamiltonian(which is not required for bulk calcula- sizes, since we use a basis set of more than 32 768 functions
tions) is the surface passivation. We adopt the “ligand po-even for the smallest nanocrystals. However, we must keep
tential” model of Wang and Zungef, which places a short in mind that we are not interested in all eigenvalues and
range electrostatic potential near the surface atoms. The e¢igenstates of Edq1), but rather in a small set of them. We,
fective ligand potentials are taken to be Gaussians therefore, use the filter-diagonalization method of Neuhauser

lgand, 12 e 1\ 0 a2 2 and co-worker€?="® and introduce some small modifica-

Vi — Sgl) = V3 exp( —|r — Sgl%/ 05). 3  tions.

The origin of the ligand potentiaBg, is taken to be in the We represent the wave functions on a three dimensional
direction of the missing bonding atom, and the distance td@rid in real spac&?~® This real-space representation of the
the passivated atom equal®R,, wherea varies depending Wave function has recently been proposed in the context of
on the atom type and the number of missing bom]sis the nanocrystallite semiconductd?s.In this representation the
Cd-Se bulk bond length. For hexagonal and zinchlend®otential energy operator is local and is simply calculated on
CdSe nanocrystals a surface atom may have 1, 2 or 3 mis§€ grid points. Since our potential is a screened empirical
ing bonds, and therefore, the same number of ligand siteseudopotential, the long and short range Coulomb anoma-

respectively. The values &%, o s anda are given in Table lies are absent, and the real-space representation converges
Il. rapidly outside the nanocrystal regime. The kinetic energy

operator is nonlocal in this representation, and is evaluated

B. Filter diagonalization using the fast Fourier transform meth®&°

It is not feasible to diagonalize directly the one-electron
Hamiltonian described in Edq1) to obtain the desired eigen- TABLE II. The values of the ligand potential parameters for Cd and Se
atoms taken from the work of Wang and ZungRef. 54. The numbers in
parentheses indicates the number of missing bonds.

TABLE I. The values of the pseudopotential parameters defined ifZqg.

for the hexagonalhex and zinchlendézb) crystals structures. atom V% (a.u) ag (@a.u) a
Cd (1) 0.64 1.49 0.55
atom a; (a.u) a, (a.u) az (a.u) a, (a.u) Cd @ 0.64 149 0.55
Cd (hex 0.193 0.936 0.196 1.68 Cd (3 0.64 1.49 0.55
Se(hex —0.0291 4.40 —1.20 0.318 Se(1) —-0.384 1.49 0.25
Cd (zb) 0.0676 1.34 0.125 0.748 Se(2) —0.384 1.49 0.30
Se(zb) —0.352 3.88 -3.07 0.754 Se(3) -0.384 1.49 0.40
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We start with N; initial guess wave functions|;), S = (0] ,p{fn,>_ 9
which contain the target energy range. In this work the initial
guess for the value of the wave function on the grid points isA standard singular value decomposition method is used to
taken from a uniform random distribution betweerl and  solve the linear equatiof?:®* This procedure resembles the
+1, and the wave function is then normalized. This choicerenormalization group method of Baer and Head-Gorton.

ensures that each initial guess contains contributions &ibm In the original filter-diagonalization methdd,and its
eigenstates. We then employ a Gaussian filter on each initighost recent variatioft, the propagatof (H) is expanded in
gues$® Chebyshev polynomials. A difficulty with this choice of
L polynomials is that the expansion coefficients are calculated
—gD _ ” 219 2 numerically, and various numerical tricks are introduced to
(B =F(F)lyi)= 2= drexp(— 2o converge i/he results for the coefficieAtsTo avoid these
R difficulties we use the Newton interpolation polynomial
X exp(it(E;—H))| ), (4 schemé®29where the propagatof(H), is approximated

so that the wave functiohy;(E,)) is given by by the interpolation polynomial

N
[ i(EN)=f(H)| )= o exp( — o (B, = H)2) ), (5) f(A)~Py(F)=2, aR;(A), (10)
i=0
andE, is the target energy. The choice of the Gaussian filter _
is not unique, and other filters can be used to obtain various !
electronic properties. For example, one can repléde) j K

with the Fermi-Dirac operator [{+expB(H—w))]™,% o
which was recently shown to provide extremely fast conver-2nd the coefficients take the form

(H—hy), (11)

gence for the electronic density matfix.Another useful f(hy)—f(hy)
choice for the filter isf(H)= sin(E —H)t)/(E,—H), which ao="f(ho), ay=——p—,
may converge the results faster than the Gaussian Hiter. ro
For large values ofr, |;(E,)) approaches asymptoti- f(h))—P;_1(h;)
cally the eigenstate closest to the target eneEgy’> The aj>1zw- (12)

long time propagation can be avoided by using the filter-

diagonalization schem@; ’® which benefits from the fact In the above equationd, are the support points taken to be

that the states far from the desired eneffgy, decay rapidly  the zeros of thé\+ 1 Chebyshev polynomidf This choice

even at short times. Thull; states are generated from tNg ~ defines the points on the interval-2,+ 2], and the Hamil-

initial guess wave functions using a small valueogf The  tonian is rescaled so that its spectrum lies in the desired

number of filter statesN;) differs from the number of initial  interval

guess function I{;) since we employ the filter at different .

energies on the same initial gueg$sis is done to save com- H.—4 H—Emin PN (19

puter time.”>~"® Note that the filtered states are not eigen- S "Emax—Emin

states of the Hamiltonian but are a superposition of stateI% . .

with energies that are inside the window. These states arg™n f”md !Emax are thg lowest and hlghAes.t eigenvalues of the

used as a basis set to obtain the eigenvaldgs4nd eigen- Hamiltonian, respectively. The operatdg is the one we use

states [i4,)) of the Hamiltonian in the desired energy range. i the mterpolatlo_n fqrmula. The final results for the propa-
For clarity we replace the labeigndl with m, such that 9ated wave function is

mruns from 1 toi X |, and the filter states are labelpg, ). N-1
o o ey T 1TSS @ SUPIB 14 3, 314 as
N¢ and we use the recursion relation to generate [i¢
[9n)= 2, Corml ¥, ©  (Igo)=|v))
|+ =(Hs—h)]4)). (15)

where the expansion coefficients,,,, are obtained from the
solution of the generalized eigenvalue equation in the re- The main advantage of the filter-diagonalization method
duced Hilbert spac¢note that the filtered stateb//fn% are s that one can use the same initial guess for different values

not necessarily orthogonat of E,, and thus use the same interpolation polynortwath
o different expansion coefficientto obtain many states simul-
Hc=ScE, (7)  taneously. There is a balance between the propagation width

(oy) and the number of linearly independent states one ob-
tains from propagating a single initial guess state. This bal-
Hmm’:<'r/’rf'n| |:||¢,:n/> (8) ance is related to the energy spacing and the energy range of
the Hamiltonian. In this work we set the propagation width
and so that we obtain-20 states for each initial guess functions.

where



J. Chem. Phys., Vol. 110, No. 11, 15 March 1999 Rabani et al. 5359

Therefore, we apply the filter to several different initial guess o ., ,
function to obtain all states in the desired energy range. H= H—Z g.er f dxp(x)x” P (cogy)), (20

where P (cos(y)) are the Legendre polynomials, is the
angle between the position vectarsand x, and the total
charge density(X) is

We use the reaction field continuum mo&#1/*to study Ng N,
the solvation of the CdSe nanocrystal. The treatment of ex- ;)= —e> (g |XNX|)+ > Q.8(X—R,). (21)
plicit solvent structures is left for future study. Here we de- a=1 a=1

velop a quantum mechanical approach which is consistenfpe nseudopotential reaction-field Hamiltonjah Eq. (20)]

with the empirical pseudopotential method. depends on the total electronic charge, and is therefore, non-
The nanocrystals studied in this work are taken t0 bgjnaar The solution is obtained by iterating the Scfinger

spherical with a corrugated surface, and are arranged in g, ation until convergence is achieved, i.e., until the total

hexagonal crystal structufenless otherwise notedThe re-  gnergy of two iterations agree within a specified tolerance.
action field continuum model requires as an input the specific

shape of the boundary of the solvated particle. In this work

we assume a spherical boundary with a given ragiug®®

and thus neglect the surface corrugation due to the micro:illlAﬁLoicRTYRSOT’\:ESPROPERTIES OF ISOLATED CDSE
scopic atomic structure. Since the solution of the reaction

field inside the sphere for a given charge distribution isA. Density of states and band gap

known analytically’® there is no need to solve the Poisson
equationt® The starting point of our derivation is the reac-
tion field Hamiltonian within the Born—Oppenheimer
approximatiof®1-102

C. The self-consistent reaction-field method

The first set of calculations is performed on isolated
nanocrystals in order to study the dependence of the density
of states and the band gap on nanocrystal size using our
pseudopotential. We use a real space grid of 32X 32 for

Ne the small nanocrystalél4 A<d<20 A whered is the di-
Hio= 2 Ho= > g A¥|NM | ¥IN (16)  ametey, 48x48x48 for the medium size nanocrystals
a=1 /m (20 A<d<30 A), and 64 64x 64 for the large nanocrys-

whereH, is given by Eq.(1) for each electronv. The mul-  tals (30 A<d<40 A), etc. The range of the grid is larger

tipole moment operator foN, electrons, andN,, nuclei is than the nanocrystal diameter by 6—8 atomic units. For all
given by the results reported in this section we use an Newton inter-

polation of lengthN=2048 unless otherwise noted. The

N . . . .
. | 4w S - - propagation width[cf. Eq. (5)] is determined from the
M/m: 2/+1 azl (_e)rgY/m(wa) re|ati0rr5

Np N 22
Oi+— 55— =
+ 21 QaRgY/m(Qa)) ’ (17) ! 7-7(Emax_ Emin)

. . - _ ~ and a typical energy range B~ Emin~10 atomic units.
wherer, andw, are the position operators in polar coordi-  The density of states for each nanocrystal is obtained by
nates for electrom, R, , and(},, are the polar coordinates of applying the filter-diagonalization method described in the
atoma, Y, (€2) are the spherical harmonics, aQq is the  previous section. A set of initial random trial functions,
nuclear charge of ator (which is taken to be the valence which contained the desired energy range, is propagated us-
charge of each atom, i.e5;2 for Cd and+6 for S@. The  ing the Gaussian filter, and then used to solve the generalized
coupling factorsg,, are given by eigenvalue equatiofcf. Eq. (7)]. We note that our approach

1 S D) (e—1 is closely related to the generalized moment approach, re-
g,= (/ , )(e—1) ' (19  cently applied to nanocrystal$; however, additional work
' 2R§/“ (Z/+1)e+/) is done in order to obtain the eigenstates, which are then
wheree is the dielectric constant outside the sphere of radiusused fqr other purposésee beloy. In return, the density of
- - states is much more accurate.
R.. In the spirit of the one-electron empirical pseudopoten- . : .
. . In Fig. 3 we plot the density of states for a wide range of
tial method, we take the total wave function to be a product . . .
. nanocrystal sizes. For clarity of presentation the lower va-
of one-electron wave functions U .
lence band, which is characterized by the surface states of
Ne the Se atoms that have missing bonds, is not shown. There
|W)= Hl |¢ha) (190 are several interesting features of the density of states which
“ have been seen in all previous studies. As the nanocrystal
and we populate only two electrons in each state similar to aize increases the gap decreaés=e also Fig. #and the
density functional formalism. width of the upper valence band increagis® lower valence
The many-electron Hamiltonian in E¢L6) is separable, band is not shown We also observe that the continuous tail
and after some tedious algebra is reduced to a single-electrarf the density of states above the conduction band observed
Hamiltonian given by in bulk calculations breaks into several individual peaks due
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to these two types of nanocrystals as “Se-centered” and
“cell-centered,” respectively. The density of states and the
band gap are very similar for these two nanocrystals, how-
ever, we find that the total number of electronic states below
the gap equals the number of paired electrons only for
CdssSeyg, and there is an “excess” state for gg8ey9. This
is also the case for other nanocrystals studied here, and in
general we find missing states whblig4>Nge, and excess
states wherNgcy<Nge. For Ngy# Nge the total number of
states below the gafi.e., valence stat¢sloes not equal the
total number of paired valence electrons.

The missing—excess states are artifacts of the surface
passivation of the nanocrystals. The ligand potenfizflsEq.
(3)] “push” the states of the Cd atorrgvith missing bonds
into the conduction band, and the Se atofwith missing
bonds into the valence band, so that the gap is free of sur-
face states. Physically, the Cd atoifwgith missing bonds
can be regarded as donors, and the Se afovith missing
bondg as acceptors. Since the total number of states is much
larger than the number of missing—excess stéties later
depends ofNc4— Ngd) the net effect of this phenomena on
the density of states is negligibly small, as can be clearly
seen in Fig. 3. Because of this artifact, our present calcula-

FIG. 3. The density of states for CdSe nanocrystals. The results are normdiion does not correctly yield the states localized on the sur-
ized so that théotal numberof valence states is unity.

to quantum confinement. The individual valence states for
a continuum density of states only on the scale of the plot.
In panels(c) and(d) we show the density of state for two
nanocrystals that are identical in size, however, one is cen-
tered around the Se atom (§8e;9) and the other is cen-
tered around the center of the unit cell (GBk;g). We refer

4 * .
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face atoms, however, since we know exactly the number of
missing—excess states, we can correctly predict the number
of occupied states, and thus obtain the band gap and other
electronic properties. We further discuss this point below,
when we present the results for the electronic charge calcu-
lations.
The exciton energies with and without the electron—hole
Coulomb energydefined beloware shown in the lower and
upper panels of Fig. 4, respectively. The results are com-
pared to other calculatiof$®® and to experimental
resultsttt41%17.1%1he valence band maximufvBM) and
the conduction band minimuCBM) are obtained by filter-
ing two states, one with a target energy slightly above the
VBM (E,=—5.4 eV), and the other with a target energy
slightly below the CBM E,,= — 3.8 eV). We thus avoid the
need to compute all valence states and focus on obtaining
only the highest occupied molecular orbif@OMO) and
LUMO, a procedure that scales linearly with the system size.
The propagation width ;) is chosen to converge the
value of the gapEy(d)=Ecgw(d) —Eygm(d), to within a
desired tolerance. Additionally, we also calculate the stan-
dard deviation, §E,)?=(,|(H—E,)?|,), for each state.
A typical value of the standard deviation is found to be be-
low 108 atomic units. Due to the higher density of states
near the VBM, the HOMO converges more slowly than the
LUMO. We, therefore, use a larger Newton interpolation
length for the HOMO, and for similar reasons increase the
Newton interpolation length with the size of the nanocrystal.
We follow the procedure suggested by Wang and

Zunger* to obtain the exciton energy, which is given
by2,3,5,105,106

FIG. 4. Exciton energies of CdSe nanocrystals. The results of Wang and
Zunger are from Ref. 54, and the experimental results are from Ref. 11. The 3.572

upper panel is the bare band gap and the lower panel is the gap including the  E(d) = Eg(d) -

electron—hole Coulomb interaction.

T (23)
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The size dependent dielectric constant of the nanocrystal 0 ' ;
€"%(d), is approximated by M
-20 + + .
1 1 1 o)
nc, =~ The —B(d) nc T . (29 1 1 le
e"(d)  el(d) ex(d) e(d)+35 40 &
and the electronic contribution to the total polarizability is = g, 1 i 1
edy=1r - (25 3R] IR B
ew = —_— o0 T T T
1+(7.5 Ald)L2 2
B(d) indicates how much the ions participate in the screen-'g 20 T T ) A
ing, and is interpolated from the results of Ref. 54. Readersg &
who are interested in more details concerning the derivation T T 18
of Egs. (24) and (25 should consult the original work of
Wang and Zunget! -60 T T T
In the upper panel of Fig. 4 we compare our results for . ‘ . ‘ . ‘

the exciton energies excluding the electron—hole Coulomb
term[i.e., the bare gap energi&g(d)], to the results ob-
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tame.d by_Wang and Zungﬁéru%!fgg the local denSIty derived FIG. 5. Integrated electronic charge density of CdSe nanocrystals. The
semlemplrlcal p_SEUd(_)pOten“ .The agr_eement between charge density is nhormalized such that the integral in each direction equals
the two calculations is very good, albeit the fact that thethe total electronic charge. Note the differences between the two nanocrys-
scaling with respect to the nanocrystal size is somewhat diftals along thex andy directions.

ferent. In the lower panel of Fig. 4 we compare our results

for the exciton energies including the electron—hole Cou- ) , ) )
lomb term to the experimental results of Murratyal :* who We note in passing that the electronic charge density can

have fabricated CdSe crystallites with a remarkably narrow?® OPtained from the trace over the electronic density matrix,
size dispersion €5%). Since the experimental results of Which can be approximated by the (_ZhebysheniNewtor)
other group¥157are very close to those reported by Mur- €XPansion of the Fermi-Dirac density mat?’ For the
ray et al. we do not show them here for the clarity of pre- present problem we find that our implementation of the

sentation. We find good agreement between our Ca|cu|ati0r]‘gter-d|agonal|zat|0n method is more efficient than the one-

and the experimental results for most nanocrystal sizes. ThE¥eP renormalization g%oqp method recently mtlroduced by
calculated confinement enerdiE, (d)—E.(=)] follows Baer and Head-Gordon,since we obtain several states si-

approximately the lavd~¢, with a=1.15, which is slightly myltaneously using the same Newton interpolation polyno-

below both the results of Wang and Zungand the results  Mial- _ _

of Albe, Jouanin, and Bertf® (who recently developed a The integrated electronic charge density along[tHe0)]

tight-binding model for CdSe nanocrystalsut is closer to (X @i, [010] (y axis), and[001] (z axis which is thec axis

the experimental value. of the hexagonal lattige is shown in Figs. 5 and 6. The
We conclude that our local empirical pseudopotential

provides realistic description for the density of states and the

band gap, and therefore, is adequate to use for other elec i 1 1 ]
tronic properties reported below. h £
-100 | T T 1%
N(D
. . -150 | + + 1°
B. Electronic charge density =
B e e e gL B IS O e B B e e e
The electronic charge densiiy,(r), is given in terms of §
the eigenstates of the Hamiltonigig. (1)] g" =50 T T 18
Ne 5 %
5 -100 | T T 13
pe(r)=—e2, (Walr)(rl¥u), (26§
“= T | e L e S B e e L A,
35}
where the sum runs over all occupied states. To ensure the s | + + .
the nanocrystal is neutral we normalize the electronic charge ., [ 1 1 ] 39
density, so that the total electronic charge equals the tota s 1 1 ] &
nuclear chargéin the present calculations we describe only  ~

the valence charge, i.e., 2 Cd electrons and 6 Se elegtrons -100
This is required due to the problem mentioned in the previ-
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15 =5
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ous subsection concerning the missing—excess states. Since

the number of missing—excess states is relatively small confzG: 8- Integrated electronic charge density of CdSe nanocrystals. The
charge density is normalized such that the integral in each direction equals

pared to the total number of occupied states, their effect Ohe total electronic charge. The diameter is 21.2, 25, and 29.6 A for
the electronic charge density should be negligibly small.  CdySe,, Cdis;Se47, and CdySes,;, respectively.
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TABLE lll. The dipole moment of CdSe nanocrystals along hg, andz TABLE IV. The diagonal elements of the second moment of the charge

directions, and its magnitude. density for CdSe nanocrystals. The off-diagonal elements are typically
smaller by more than two orders of magnitude and, therefore, are not given
1y (au) wy (au) 1, (a.u) |u| (a.u) in the table.|Q| is the average magnitude of the diagonal elements of the
CaySas 0.0 0.6 ~67.4 67.4 second moment.
Cd,;Sey 0.0 0.5 23.2 23.2
Chusa, 00 19 140 143 Qu (@au)  Qy@au) Qg (au) Q[ (auw)
CdgsSey; 0.0 -0.2 —153.6 153.6 CdypSey —-110.5 —1145 —23.4 82.8
Cdhs:S6147 0.0 0.1 59.4 59.4 Cd,;Sey —-597.7 —578.9 595.0 590.5
Cdh3S8s; 0.0 —-4.4 -281 28.4 CdssSeso -671.0 —655.7 -0.5 442.4
CdgsSey; —540.2 —633.7 —430.9 535.0
Cdis:S8.47 583.4 779.7 —2184.0 1182.3
Cdy3,S65; —3226.5 —3283.2 —3986.3 3498.7

general features common to all nanocrystals are that the elec-
tronic charge is centered around the Se atoms consistent with

predictions of density functional calculation for bulk Cd%e The dipole moments in the—y plane are very small for
and with high resolution electron microscopy restftand nanocrystals that are Se-centered. This is not the case for

that the electronic charge drops rapidly outside the NANOCTye|l-centered nanocrystals which can have finite dipole mo-
tal range. .
: _ . ments in thex—y plane. Both CgsSeyq and CdsSes; have
Ir_1 Fig. 5 we compare the mtc_agratgd e_Iect_ronlc Chargedipole moments that are comparable to the screened experi-
density for nanocrystals that are identical in size, howevep, . o values of Guyot-Sionnest and co-work&rE while
one is Se-centered (ggbe) and the other is ceII-centergd. Cdy:Se,, has the largestamong the structures studied here
(CdegSese). Even though the two nanocrystals are very SImI'dipole moment along the direction. In general, we do not

lar in size, their electronic properties are somewhat differentfinol any systematic behavior of the dipole moment as we
The CdgSey, nanocrystal belongs to i@, group symme- vary the nanocrystal size. The dipole moment strongly de-

try, I\Ngi%h is foun? tod be the group{aslyr}?metry ofdhit?hly an- pends on the detailed structure of the nanocrystal, and may
nealed hexagonal CdSe nanocrystal$he top and bottom vary significantly upon small structural changes. We also

surfaces along the direction are Cd and Se terminated, re- 4, ot there are no correlations between the surface termi-

spectively. The electronic charge density reflects mainly the, o and the direction or magnitude of the dipole moment.
symmetry of the Se atoms, o that ‘.""0.”9 both Xm.ndz e also carried out calculations for a zincblende crystal
directions the electronic charge density is symmetric aroun t

T . ructure, and found vanishing dipole moments in all three
the center(the x direction is chosen to lie in one of the, .o tions g ap
planes of reflection The CggSey is cell centered, and '

heref bel | Th . The large value of the dipole moment can result from the
therefore, belongs to a lower symmetry group. The Majofy .y of inversion symmetry in hexagonal nanocrystdfsr

differences between the two charge densities are inxthe from charge localized on the surfa¢surface states Our

—Y plane. We note that for both nanocrystals we remoV&esults support the classical model of Huong and Birfffan

surf?cle:_ato6ms W'tlh OEIy_one remgun:ng bO'?d- h densi who argue that the spontaneous polarization and large dipole
n Fig. 6 we plot the integrated electronic charge density,,mengs in nanocrystals is due to lack of inversion symme-
of three nanocrystals ranging frodw20 A to d~30 A; all

h : S 4. and bel try in hexagonal nanocrystals. A close examination of the
three nanocrysta S are _e-centere » and be o@g;cgroup structure of CgsSey; reveals the fact that it is highly sym-
symmetry. They differ with respect to the details of the re-

4 ) metric along thez direction (it has a plane of symmetry for
construction of the surface geometries. The top surface ann@d atoms and for Se atoms separatsly that the dipole of
thez direction is Cd terminated for GeSe;; and Cds:Se 47,

and is Se terminated for GgSes;. The bottom surface
along thez direction is Se terminated for all three nanocrys-
tals. Similar to the case of the smaller nanocrystal
(CdssSey), the electronic charge density along thand z
directions is symmetric around the center.

each unit cell of the hexagonal crystal structure adds up to
give a large value for the dipole momeitie same is true for
CdyoSeg). This is not the case for the other two nanocrystals
(CdseSeg and CdgsSes), and it appears that there are some
structural cancellations that decrease the dipole moment
along thez direction. We also modified the ligand potential
used to model the passivation of the surface atoms and found
that the dipole moment is almost insensitive to the value of
the potential at the surface. This strongly suggests that the
Given the electronic charge density, we calculate the didipole moment is a structural property of hexagonal CdSe
pole and higher multipole moments of several nanocrystalsianocrystals and not due to the presence of an electron lo-
Our calculations are based only on the valence electronic anchlized on the surface.
nuclear charge densities, within the empirical pseudopoten- Regarding the second moment of the charge de(ity
tial framework. The origin of the multipole expansion is quadrupole is given in terms of the elements of the second
taken to be the center of the totéblectronic-nucleay momenj, the diagonal elements seem to follow a more sys-
charge densities, which happens to fall near the centered $ematic trend with increasing nanocrystal size, i.e., the sec-
atom. The results for CdSe nanocrystals that are Se-centeredd moment of the charge density increases with size. The
are summarized in Tables Il and IV. off-diagonal elements are smaller by at least two orders of

C. Multipole moments
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CdSe,, Cd,,Sey, Cd,, Se,, TABLE V. The diagonal elements of the electronic polarizability ter(gor
15 ‘ ~153 ‘ 60 ' units of A%/atom obtained from the finite field method. The result for the
bulk is obtained from the Clausius—Mossotti relation usiif=6.2.

Qyx Qyy Az <a>
CdhsSess 3.504 3.396 3.528 3.476
CdysSey 3.678 3.692 3.963 3.778
Cdy5:S61s7 4.197 4.754 4347 4.433
bulk 425

within 2% to 3%, we expect that the ionic polarizability of
CdSe will definitely contribute to the total polarizability.

The diagonal elements of the polarizability tensor are
then calculated from the slopes of a linear fit to the results
shown in the Fig. 7. The values are summarized in Table V,
-4 : -5 ‘ -10 : along with the averaged polarizability,) = 3( oyt aryy
-1 -0.5 0 -1 =05 0 -1 -0.5 0 . . . A

F (10 au) F(10°a) F(10° ) + azz)_, which is the property mea_surq_j in experiments. We
also include the electronic polarizability of the bulk esti-
FIG. 7. Plots of the dipole moment as a function of the applied externaimated from the Clausius—Mossotti relation, usim@“'k
field. The direction of the field in each calculation is taken along the direc- _ 6.2. Surprisingly, the polarizabilities are very similar along
tion of the observed dipole moment. The response of the system is linear for ~ """ . o . .
fields smaller than 1G° atomic units. the threg direction, and it seems that th(_—:- Iar_ge dipole alqng
the ¢ axis does not influence the polarizability along this
direction (this reflects the spherical shape of the nanocrys-
. . tals). The electronic polarizability per atom slightly increases
magnitude(except for the case of ggbes which has a van-  ith increasing nanocrystal size concomitant by the decrease
ishing Q;, term), and therefore, are not given in the table. iy the energy gap. Our results are consistent with those of
The values of the second moment of the charge density alor\g/ang and Zungéf for the dielectric constant of CdSe
the different directions are similar in most cases, r9ﬂe‘3tin91anocrystals(for CdgsS6y;, Which is a nanocrystal common
the spherical shape of the nanocrystals. Nevertheless, thegehoth studies, we obtain a dielectric constant of 4.86 using
particles are highly anisotropic due to the large dipole mOthe Clausius—Mossotti relation, which is in excellent agree-
ment along thes axis. ment with the direct calculation of Wang and Zunger
Hence, the total electronic polarizability increases approxi-
. S mately with the volume of the nanocrystal. The off diagonal
D. Electronic polarizabilities elements of the polarizability tensor are typically smaller by

The electronic polarizabilities of the CdSe nanocrystalsit least two orders of magnitude than the diagonal elements,
are calculated using a finite-field meth98-*1'We add an and therefore, are not given in the table.
external electrical field into the Hamiltonian by adding one
term to the effective empirical potential E. Long range electrostatic and dispersion
interactions

|:|,:=|:|—eF-r, (27) . . . H H
L N _ o _ An interesting spinoff of the current results is directly
whereH is the empirical pseudopotential Hamiltonian given related to the long range interactions between two nanocrys-

by Eg. (1), andF is the applied electric field. The polariz- tals. Since hexagonal CdSe nanocrystal may have a large

ability is defined by dipole moment, it is possible that the dominant interaction
o, term between two CdSe nanocrystals is given by the electro-
aij:a—l;, i,j={x,y,z}, (28)  static interaction and not by the dispersion interaction ex-

J

pected for large particlés? Indeed we find that for neutral

wherepu; are the dipole moments along the {x,y,z} axes. CdSe nanocrystals with hexagonal crystal structure the

The different elements of the polarizability tensor aredipole—dipole electrostatic interaction term, which depends
obtained by applying a finite field in the y, andz direc- on R™2 (whereR is the distance between the centers of the
tions. In Fig. 7 we plot the value of the dipole moment as atwo nanocrystalsis the dominant interaction term at large
function of the applied external field for three nanocrystalsinterparticle separations<(5 times the size of the particles
It is clear that the results are well inside the linear responséor all nanocrystals studied in this work. It is by far larger
regime, and that the direction of the induced dipole is in thethan the dispersion interactiofgan der Waals interactions
direction of the applied external field. We must point out thatwhich scale a&R~® and depend on the total polarizability of
we did not relax the ionic positions in the finite field calcu- the nanocrystals at large separations. We also find that at
lations, and thus obtain only the electronic polarizability. separations which are on the order of the nanocrystal size the
Unlike the results for Si and GaA3$! which indicate that the dipole—quadrupole R~%), and dipole—octupole, and
ionic relaxation affects the calculated polarizabilities only quadrupole—quadrupoléR( °) interaction terms are compa-
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rable in size to the dipole-dipole interaction term. This situ- 70 : ,

ation in which the electrostatic interactions are stronger than oo

the dispersion interactions is very similar to the case of water ~_ ¢5 | Co-mTT 4
which also has a large dipole moment. Hence, the interac- 3 ]
tions between hexagonal CdSe nanocrystals are typical of ;N 60 L 0—OCd,g e, R=1484 | |
molecular type interaction and not of the Hamake«dis- O = OCdySeg R=1S9A
persion interactions expected for large particles. 5 , . ' ,

Our current picture is only valid for large separations ' ' ' '
between the nanocrystals compared to the size of the par- gfggjxsgzsl;c:g;ﬁ
ticles. However, understanding various collective properties, 3 -160 1 e
such as the self-assembly of nanocrystai$“or the forma- <
tion of crystals of nanoparticlés® requires a more rigorous 2170 o 1
study of the interactions between neartay almost touch- Ommo-
ing) nanocrystals. At this point it is still an open question -130 — ’ ’
whether the electrostatic will dominate over the dispersion [ [0—0cCd,Se, R=11.6A
also at short separations. 5 167 O~ OCdySe,, R=127A

\CS/
£ 15
IV. THE EFFECT OF THE SURROUNDINGS
We study the effects of the surroundings on various elec- 14 0 5 4 6 8 10

tronic properties of CdSe nanocrystals using the reaction
field continuum modei®’®We diagonalize the one electron

; ; . ; ; ; _ FIG. 8. Plots of the dipole moments along theirection vs the dielectric
pSGUdOp.Otentlal r.eaCtlon field Hanjlltonlﬂﬁq. (20)] itera _?onstant outside the nanocrystal for two values of the cutoff radii.
tively using the eigenstates of the isolated nanocrystal, unti
the convergence of the eigenvalues is within 4®@f their

three iterations that converge the eigenvalues to within?10 In Figs. 8 and 9 we show the dependence of the first and
of their initial value. The use of the isolated eigenstates as 8econd moments of the charge density on the dielectric con-
basis set to study the effects of the surroundings is advantatant () outside the nanocrystal sphere for two different
geous for the size of nanocrystals studied in this work, sinc@toff radii (R.). The results are shown for three nanocrys-
the direct diagonalization of the Hamiltonian within this sub- 5|5 that are Se-centered, and thus have dipole moments only
space is faster than performing the filter-diagonalization stegjong thez direction. These values are chosen to cover the
in each iteration. However, since this procedure scales withange of dipoles from relatively small values (588 to

the cube of the number of basis functions, for larger nanotarge values (CgSes;), and a range of sizes. We use cutoff
crystals a direct filter-diagonalization procedure at each iteragagjj in the reaction field calculations which are larger than

tion will be faster. The number of Legendre polynomialSthe nanocrystal radii to incorporate the effect of the ligand
used in the one-electron pseudopotential reaction field

Hamiltonian[Eq. (20)], depends on the particular grid point
(r), and is chosen to converge the value of the potential at CdySeq, CdySey, CdyySers
that given grid point to within 10® of its initial value. For T 00 ey 20 e
grid points near the edge of the sphere we use more thar
5000 Legendre polynomials, however a more typical value is
below 50.

dielectric constant

=2250 -

)
8 3 3

Q,(au
1)

—2350

A. Collective state properties <10 o 440 —2450

—640 -

The changes in the total electronic charge density are -660 850 -

very small with increasing dielectric constantand cannot < o
be seen on the scale of Figs. 5 and 6. The individual states d®
mix, however, and as expected, the largest effect on the en _sg
ergy shifts are obtained for states that are near the surface

We did not find any states well inside the band gap, but somez
surface states do appear near the valence band maximun§
These surface states may leak into the gap, depending on th™ |

magnitude of the dielectric constant outside the nanocrystal, =700 ~— === 565 === 350 e
and on the magnitude of the interaction between the nano- dielectric constant dielectric constant dielectric constant
crystal and its surroundings. We believe that the appearan G. 9. Plots of the diagonal elements of the second moment of the charge

of these surfgce _States depends Strongly on the detai!s of ﬂE!@nsity vs the dielectric constant outside the nanocrystal for two values of
surface passivation, and for other passivation potentials th@e cutoff radii.

-650 -

800
—660 -

-670 F—————— 750

5701 545 650 -
-680 |
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passivation layer. Since the exact passivation width is un- 0.00 —a— . —
known, we study the solvation as a function of this width by I 0—0Cd,ySe, R=159A
changing the cutoff radiusR). 3 —0.10 )l
Even though the change in the electronic charge density g 020
is extremely small £1%—-3%), weobserve a change of up .
to 15% in the dipole moment§ig. 8). The absolute value of 0.00
the dipole moment increases with increasing dielectric con- 020 -
stant for all the nanocrystals studied here. The relatively g 040 |
large change in the dipole moment is directly related to the m ’
large size of the nanocrystals. The dipole moment is given by < -060 -
m=[dxp(x)x, wherep(x) is the total charge densifgf. Eq. 0.00
(21)]. The small changes in the electronic charge density are 001 |
amplified in the dipole calculations due to the large values of % -002
X. Moreover, these nanocrystals have a large surface area, o -003 |
and thus even very small changes in the charge at the surface < —0.04
give rise to fairly large changes in the dipole moment. Simi- 0.00 |
lar arguments also apply in explaining the behavior of the —020 L
second moment of the charge density shown in Fig. 9. 3
The effect of the width of the passivation layer on the %’ —040 o
first and second moments of the charge density is also evi- -0.60 | 8—3552;2";2311:;22/1 T~0--_ g
dent in Figs. 8 and 9. For simplicity we assume that the —0.80 . . . :
dielectric constant in the passivation layefeis 1. This im- 0 2 4 6 8 10
plies that the change in the passivation layer is modeled by a dielectric constant

change in the cutoff radius used in the reaction field calcugg 10 Plots of the energy shifaE=E, (€)— E.(e=1), vs the dielec-
lations. The smaller the width of the passivation layer, thetric constant outside the nanocrystal. Note the small shifts fs%2gh and
larger is the interaction of the nanocrystals with its surroundthe large shifts for CgiSey; .
ings, and hence the larger are the changes in the multipole
moments.

Despite the large dipole moments of hexagonal CdS

. , fhe average energy shifts for the valence states, which are
nanocrystals, the total ground state is not very polarizabl

; . Qifferent from the energy shifts observed for the LUMO
(for comparison, the dipole mome_ntg Of_ water changes fron%tate. Therefore, we can conclude that the energy shifts of the
1'85.D in the gas phase to 2.5 D in liquid phada ge”efa' LUMO are a combination of the solvation of the nanocrystal
we find two major effects that influence the change in theand the changes observed in the single electronic LUMO
multipole moments with the dielectric constant outside thevvave function.

nanocrystal — the variation in the nanocrystal size and the The smallest energy shifts are observed forSeks
magnitude of its multipoles. The variation in size gives risedue '

- . to the relatively small dipole moment of this nanocrystal.
to variations in the surface area. Large nanocrystals havg)n the other hand, we find large energy shifts1( eV) for
large surface area, and thus larger contributions to th '

. . ) ?’:d&gSegl which has the largest dipole moment among the
changes in the multipole moments due to changes n Fhﬁanocrystals studied here. The screening effect of the passi-
surfacg charge. The other effect is relgted to the interactioq) o, layer is also evident in the lower panel of Fig. 10,
potgntlal between .the nanocrystal a.nd its surroundings Wh'CQ/here we plot the energy shifts of G@e, for two different
is directly proportional to thg multipole mqmerﬁsf. .Eq. values of the cutoff radius. The screening due to the passi-
(16)]. Hence, naljocrystals W|th_larger multlpole_s will have vation layer increases with increasing cutoff radius resulting
larger changes_m the ele_ctronlc charge density, a_nd thui?l a decrease in the energy shift. We note that the energy
larger changes in the multipole moments as one varies shifts observed for the LUMO are comparable in size to the
quantum confinement effect.

An even more dramatic effect occurs for the integrated

So far we have discussed the solvation effects on th€ UMO probability along thez direction, which is shown in
total ground state electronic properties, and also describelig. 11 for the three larger nanocrystals. The unperturbed
qualitatively the effects of the surroundings on single va-LUMO is delocalized over the nanocrystal. The changes in
lence states which are localized near the surface. In this sulthe integrated LUMO probability along the direction are
section we focus on single excited states, such as the LUMGQglatively small for CggSey. However, we find that the
which can be much more polarizable, and the results showhUMO of CdgsSe;; has a tendency to localize on the surface,
in this subsection support this prediction. on the side opposite to the direction of the dipole moment.

In Fig. 10 we plot the energy shiffSAE=E, juo(e€) This occurs only for large enough dielectric constants, and
—E_umo(€=1)] of the LUMO as a function of the dielectric for e=2 the LUMO is still a very delocalized state. We note
constant outside the nanocrystal. The magnitude of the erhat similar qualitative effects have been observed for semi-
ergy shifts increases with increasing dielectric constant foconductor quantum dots within the effective mass
all four nanocrystals shown in the figure. We also calculateapproximatior’* However, there are quantitative differences

B. Single state properties
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FIG. 11. Plots of the normalized integrated probability of the LUMO along

the z axis. The solid, dotted, ar_l_d dash_ed lines ar_ee‘@_rl, €=2, an_de FIG. 12. Plots of the optical absorption spectma arbitrary unit3. The
=8, respectively. The cutoff radii used in the reaction field calculations areSolid dotted. and dashed lines are for 1. e—2. ande=8. respectivel
12.7,13.2, and 15.9 A for increasing nanocrystal size. Note the localizatio ' ! €= €= p Y

. " I"]‘he cutoff radii used in the reaction field calculations are 12.7 A for
of the integrated probability for Gg5e and for Cds;Sq4; when e=8. CdssSey and 15.9 A for Cgs;Se4;. The vertical arrow marks the position

of the bare band gap. Note the appearance of states inside the gap as the
dielectric constant outside the nanocrystals is increased.

between our molecular model and the predictions made
based on the effective mass approximation, mainly with re-

spect to the extension of the LUMO outside the nanocrystal IM2|
radius, and with respect to the direction in which the LUMO  |(E)c > 1 5(E—E;)), (29)
moves. T EZ

We_ also examine the effects qf the surroundings on th%vhereEfi= E,—E, is the transition energy, the dipole tran-
properties of an excess electron in CdSe nanocrystals. For

simplicity we assume that the excess electron occupies ths"tIon matrix elements take the forM ;= (f|p|i), andp is

LUMO state, and we carry out similar calculations for the{]?]e momentum operator. In the above equatiandi denote

. . final and initial states, respectively.
resultant charged nanocrystal. These calculations differ from . ’ .
9 y In Fig. 12 we show the absorption spectra ofz§Sw;g

those of the neutral system in that the total charge densngnd Cds,Se, for three values of the dielectric constant out-

entering the reaction field Hamiltonian includes a contribu-Side the nanocrvstals. The dominant feature of the absorotion
tion from a single electron in the LUMO. Although the re- : Y ' : . : orp
ectrum in the absence of a dielectric medium outside the

sults for the charged system are essentially the same as thoda . .
anocrystal is the presence of a few absorption peaks near

for the neutral system, the effects of the surroundings ar%1 o -
Y g e band gap enerdgolid line in both pane)scharacteristic

somewhat more pronounced. We find that the multipole mo- molecular spectra. These peaks were also observed in pre-

ments of the charged system are somewhat larger than tho\g/{t%us studieél%“ and are atr))sent from nanocrvstals mage

of the neutral system. This leads to slightly larger localiza-, - ' ) . y
[rom indirect-gap materials such as®3i.

ion of the ex lectron on one side of the nanocrystal. ) .
tion of the excess electron on one side of the nanocrysta There are two main features that are due to the interac-

Furthermore, the energy shifts of the excess electronic state . .
%y ilon between the nanocrystal and the environment. The first

are larger than those of the LUMO state, due to the solvatior. g L
effect of the extra charge. We do not show the results for thés related to the broadening and overlap of these individual

: I ggaks. As the dielectric constant outside the nanocrystal in-
excess charge here since they are qualitatively the same creases the overlap between the peaks increases until the
those for the neutral system. b P

peaks disappear. This broadening is not associated with the
lifetime of the states, but its origin is in changes observed for
the oscillator strength due to the coupling to the surround-
ings. The other feature is the appearance of states inside the
The absorption spectrum of the nanocrystal is proporband gap. These are not “pure” surface states, however,
tional to the imaginary part of the dielectric constant and isthey are localized near the surface along the prefezred
given in terms of the dipole transition matrix elemené;() rection, and thus are referred to as “quasi surface states.”

C. Absorption spectrum
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Since the LUMO is also localized along taedirection, the  systematic trend with changing nanocrystal size. In the con-
overlap of these quasi surface states with the LUMO is strontext of long range interactions between nanocrystals, our re-
ger and can be detected by absorption spectroscopy. Thilts provide, for the first time, a quantitative description for
presence of surface states in the gap depends strongly on ttiee electrostatic and dispersion interactions between CdSe
passivation of the surface and on the interactions with th@anocrystals, which are important in understanding collec-
environment as clearly can be seen in the figure. We notdve properties of CdSe nanocrystals. An important conclu-
that surface states have been reported for CdSe quantusion is that for hexagonal CdSe nanocrystals the multipole
films'!® and for CdSe nanocrystaté using conductance interactions are more important than the dispersion interac-
spectroscopy and other complementary methHdti$he ap- tions for large interparticle separation.

pearance of surface states inside the gap for CdSe nanocrys- We next developed a self-consistent reaction field
tals was shown to strongly depend on the wetting of themethod and applied it to study the effects of the surrounding

surface!® on collective and single state properties of CdSe nanocrys-
tals. The interaction of the nanocrystals with the dielectric
V. CONCLUDING REMARKS environment increases with the magnitude of its multipole

We have carried out a detailed study of the electronic,moment.s’ and in particglar the dipole moment. The yalenqe
properties of CdSe nanocrystals in the absence and presen%lgc'[{onlc c?a_l(rjgetgensny depet:nldshweakly odn thte ?Lelelctrlc
of a dielectric medium outside the nanocrystal. Our calcula®"s a]lcnthou S| t'el € tr;]anocr?;_s al’ oweve:, ue to the farge
tions were based on the empirical pseudopotential method'2€ Of the particies, the multipole moments vary in a more

which was modified to describe the finite nanocrystal Systempronounced way. Single state such as the LUMO tends to

We developed a self-consistent reaction field method to b trongly localize at the surface of the nanocrystal opposite to

used with the empirical pseudopotential Hamiltonian. To relne direction of the dipole moment when the nanocrystals

duce the computational cost of the calculations, we have rey ¢ embedded in a moderate dielectric medium. We found

t@at there is a correlation between the size of the dipole mo-

corresponding Hamiltonian has a relatively small energ)}“ents gnd the localization effect, i.e., for nanocry;tals with
range. small dipole moments, the LUMO remained delocalized over

The solution of the one-electron effective pseudopoten:[he hole nanocrystal range. Similar effects were observed for

tial Hamiltonian was made possible by the implementationan excess electron which was assumed to occupy the LUMO

of the filter-diagonalization metho@s far as we know this is of the neutral system. We have also showed the effects of the

the first electronic structure study using this methddVe dielectric medium on the absorption spectra. The individual

have modified the method by using a Newton interpolationabsorption peaks near the band gap were broadened by the

polynomial instead of the Chebyshev polynomial for the fil—d'e!{egtrl'f mt()edmn:., and qutaS| surfacg st%testhth%t CE;I’] be de-

ter operator, and as a results of this change, the method hé%c ed Dy absorption spectra appear inside the band gap.

become more flexible in terms of changing the filter func- This work presents a first attempt to study the effects of
a surrounding polar environment on electronic properties of

tion. Of course, the Newton interpolation polynomial hasCdS al . detailed molecul del for th
other advantages such as treating non-Hermitian Hamilto="%=€ Nanocrystals using a detared molecuiar mocet for the

nians, in which case the interpolation points have to be Chc)r_1anocryst::1I. Our results indicate the importance of including
sen ,to reside in the complex plat8. The filter- the surroundings in the study of hexagonal CdSe nanocrys-

diagonalization method was shown to provide an excellen ar:s, WT'Ch. halvet;t tfln;the dipole mo?]imnt r?lonthhPeigz.S
framework to carry out the electronic structure calculation, in ey also imply that other nanocrystdiuch as GaP, '

particular if one is interested in a narrow set of eigenstates"’,lnd S) with crystal structures that belong to a higher sym-

such as the HOMO and the LUMO which specify the band™ Y point group will not interact ;tror_lgly with their e_nvi- .

gap. ronme;nt. Further'work along the directions presented in this
The first set of calculations was performed on isolatedWork is currently in progress.
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