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Quantum mechanical canonical rate theory: A new approach based
on the reactive flux and numerical analytic continuation methods
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We present the reactive flux analytic continuation~RFAC! method, based on the quantum reactive
flux formalism combined with a numerical analytic continuation approach to calculate quantum
canonical rates in condensed phase systems. We express the imaginary time reactive-flux correlation
function in terms of a frequency dependent rate constant, and use path integral formalism to derive
a working expression suitable for Monte Carlo simulation techniques. The imaginary time data
obtained by simulation is analytically continued to the real time using the maximum entropy method
to obtain the reaction rate. Motivated by the success of the method to predict the rates for a simple
one dimensional parabolic barrier model, we assess its accuracy for a condensed phase reaction
modeled by a double-well coupled to a harmonic bath. We note that the method is applicable to a
more general Hamiltonian as long as the reaction coordinate can be identified. The reaction rates
computed in this fashion are in very good agreement with analytic and numerically exact results. We
demonstrate the applicability of the method for a wide range of model parameters and temperatures.
© 2000 American Institute of Physics.@S0021-9606~00!50606-0#
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I. INTRODUCTION

The calculation of quantum mechanical reaction rates
condensed phase systems is a long standing problem.1 One
of the ongoing challenges in rate theory is the proper form
lation of a quantum thermodynamic theory which provid
an estimate for the rate without any time propagation.2 Un-
like the classical thermodynamic formulation, i.e., transiti
state theory~TST!,3 the quantum mechanical version is n
unique, and various authors4–12 have tried to formulate a
quantum mechanical TST which would share the import
properties of the classical version.

In many situations TST provides accurate estimates
the rate constant, however, it can also lead to signific
deviation from the exact rate when one or more of its ba
assumptions are broken. Namely, in the case when there
recrossings of the dividing surface, deviations from therm
equilibrium at the transition state, or when the reaction
ordinate is not separable from the internal degrees of f
dom at the saddle point. In such circumstances an exac
timate of the rate requires real time propagation. Howev
for reactions in condensed phases real time quantum pr
gation is extremely difficult. Thus, most theoretical work
this field has been based on approximate methods.

One approximate approach to estimate the quantum
chanical rate is based on the centroid density.7,13 This ap-
proach is very appealing since the centroid density can
estimated using path integral Monte Carlo~PIMC!
techniques.14,15 Another class of approximate methods

a!Most of this work was done while ER was at the Department of Chemis
Columbia University.

b!Electronic mail: berne@chem.columbia.edu
2600021-9606/2000/112(6)/2605/10/$17.00
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based on replacing the exact quantum mechanical propag
with its semiclassical counterpart.16,17 While the semiclassi-
cal propagator provides a considerable reduction in the c
plexity of the real time calculation it does not eliminate com
pletely the oscillatory nature of the quantum mechani
propagator and thus requires a large number of trajectorie
obtain converged results. The semiclassical approach
comes practical for the condensed phase system whe
additional approximation is introduced, namely when t
quantum propagator is replaced by an ‘‘almost’’ classi
one.18–21 This additional approximation can introduce larg
deviations as compared to the fully semiclassical approac22

It is still an open challenge to further reduce the compu
tional complexity of the semiclassical method for condens
phase systems.23,24

Another major class of approximate methods is based
mixed quantum classical propagation techniques.25–28 The
need to propagate a small subset of degrees of freedom q
tum mechanically along with a classical propagation of
remaining degrees of freedom makes this approach very
tractive. Recently it was shown that the mixed quantum cl
sical treatment of rate processes in a condensed phase
ronment is insufficient to provide accurate rates, and in so
cases the relaxation rates deviate by several orders
magnitude compared to the exact quantum mechan
result.29–33

All the aforementioned approximations are not free
limitations and often break down in various physical situ
tions. Unfortunately, an accurate calculation of the quant
mechanical rate can only be performed for highly simplifi
models.34,35 Thus, it is very important to develop a metho
that can provide accurate quantum mechanical rates for

,

5 © 2000 American Institute of Physics
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eral many-body anharmonic systems. In this paper we p
pose a new computational method, the reactive flux anal
continuation~RFAC!, to calculate quantum reaction rates
condensed phase systems. Our approach combines the
known reactive flux formalism,36–40 which was generalized
to the quantum mechanical case,41 with a numerical analytic
continuation method.42 Since the flux–flux correlation func
tion typically decays on a relatively fast time scale compa
to the rate itself it is expected to provide a good start
point for obtaining the rate using analytic continuation me
ods.

This article is structured as follows: In Sec. II we pr
vide a general formulation of the analytically continued ra
equation. First, we introduce a frequency dependent
which is related to thereal time flux–flux correlation func-
tion. Next, we formulate this rate in terms of animaginary
time flux–flux correlation function. This time correlatio
function that is calculated along the imaginary time a
~also called the Euclidean time axis! can beuniquelyanalyti-
cally continued to the real time axis in order to obtain t
rate constant. This mathematical transformation is well
fined but rather unstable, and can result in an enormous
plification of the statistical and systematic errors presen
the imaginary time data. In Sec. III we describe the ma
mum entropy~MaxEnt! method43,44used to perform the ana
lytic continuation. The choice of the best inversion method
still in debate,45,46 however, for the present problem we fin
that the MaxEnt method provides significantly better resu
than the singular value decomposition~SVD! method. In
Sec. IV we provide a formulation of the imaginary tim
flux–flux correlation function which is suitable for PIMC
techniques. We separate the calculation into a time dep
dent part which is efficiently sampled through the use of
reactive flux formalism, and a time independent part which
computed using the umbrella sampling method.47,48

We consider two test cases to assess the accuracy o
RFAC method. The first is a simple parabolic barrier mo
where analytic results for the imaginary time flux–flux co
relation function can be obtained. The other test case
double-well coupled to a harmonic bath; this model w
studied recently by Topaler and Makri34 and we compare ou
results with their exact numerical rates. However, unl
their work, we do not use an influence functional approac49

since we wish to illustrate that the method is applicable t
general many-body system. We cover a wide range of t
peratures and coupling strength for the double-well mod
The results for both models are shown and discussed in
V. Conclusions and an outlook are given in Sec. VI.

II. ANALYTIC CONTINUATION OF RATES

In this section we generalize the reactive flux formalis
and derive a working expression which is suitable for
analytic continuation method. In the reactive flux formalis
the quantum mechanical rate constant is given in terms of
time integral over the flux–flux correlation function,41

k5E
0

`

dt Cf~ t !, ~1!
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where the real time flux–flux correlation function is given b
~from now on we set\51)

Cf~ t !5
1

Zr
Tr~Fe2lHeiHtFe2 iHte2(b2l)H!, ~2!

andZr is the partition function of the reactants. In the abo
equationb51/kbT is the inverse temperature andl is intro-
duced for numerical convenience. For open reactive syste
the rate is independent ofl,4,41 however, the flux–flux cor-
relation function does depend on it. This was the key poin
the reduction of the computational complexity of the Yam
moto rate expression.50 Although the mathematical justifica
tion is not clear, the independence of the rate onl has been
commonly used for bound systems as well.18,20,21,34,51,52Nev-
ertheless, our results indicate that numerically the reac
rate does appear to be independent ofl even for a bound
system like the double-well potential.

In Eq. ~2!, the symmetrized flux operator,F, is given by

F5
1

2m
~pd~s!1d~s!p!, ~3!

wheres is the reaction coordinate with a conjugate mome
tum p and massm. Without loss of generality we assume th
the transition state is located ats50.

It can easily be shown that the rate can be written as

k5
1

2 E2`

`

dt Cf~ t !, ~4!

whereCf(t) is given in Eq.~2!. One can define a frequenc
dependent rate,k(v),

k~v!5
1

2 E2`

`

dt eivtCf~ t !, ~5!

such that the rate in Eq.~4! is the zero frequency value o
k(v). The flux–flux correlation function can be obtained b
inverting the Fourier relation in Eq.~5!:

Cf~ t !5
1

p E
2`

`

dv e2 ivtk~v!. ~6!

The frequency dependent rate is analogous to the spe
density used in the analytic continuation of spectral li
shapes, and plays the same role. By performing the repl
ment t→2 i t we obtain

Gf~t!5
1

p E
2`

`

dv e2vtk~v!, ~7!

wheret,t>0, and

Gf~t!5
1

Zr
Tr~Fe2(t1l)HFe2„b2(t1l)…H!. ~8!

The reason that we have introduced this imaginary ti
flux–flux correlation function is that, unlike the real tim
flux–flux correlation function, it is straightforward to obtai
it using Monte Carlo simulations even for a many-body s
tem. In Sec. IV we provide a PIMC formulation that perm
the calculation ofGf(t) for condensed phase systems.
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The imaginary time flux–flux correlation function i
given by the two-sided Laplace transform of the frequen
dependent rate,k(v). Analytic continuation to real time is
performed by inverting the integral equation~7! to obtain
k(v). This inversion is possible only ifGf(t) is analytic
over the desired range oft.42 By choosing a finite value for
l (0,l,b/2) it can be shown thatGf(t) is analytic for
0,t,b22l.10 It turns out that forl50 the imaginary
time flux–flux correlation function is not analytic att50,
which is the reason behind introducing the parameterl with
a small positive value~recall that the rate is independent
this parameter, as will be discussed below in Sec. V!.

Note thatl andt are interchangeable. A large value
l implies a small range of imaginary time and vice ver
For numerical analytic continuation purposes it is desira
for Gf(t) to contain as much information as possible. F
this reason it is important to maximize the imaginary tim
range while ensuring the analyticity of the imaginary tim
flux–flux correlation function.

It is also useful to note that for a finitel ~specified in the
above range! the frequency dependent rate obeys the follo
ing detailed balance relation:

k~2v!5e2(b22l)vk~v!. ~9!

Using this relation, Eq.~7! can be rewritten as

Gf~t!5
1

p E
0

`

dv@e2vt1e(t2b12l)v#k~v!. ~10!

This form is more suitable for numerical analytic continu
tion methods since it eliminates the numerical instabilit
arising from the negative frequency portion of the two-sid
Laplace transform.

III. MAXIMUM ENTROPY NUMERICAL ANALYTIC
CONTINUATION

In this study, we seek to analytically continue the ima
nary time flux–flux correlation function given in Eq.~10!.
SinceGf(t) is analytic for 0,t,b22l, provided that it is
known on this interval, the analytic continuation is acco
plished by inverting the integral equation~10! in order to
obtain a solution fork(v). The zero mode valuek(0) would
then correspond to the experimentally observable reac
rate. Due to the singular nature of the integration kernel
inversion of Eq.~10! is an ill-posed problem. As a conse
quence, a direct approach to the inversion would lead to
uncontrollable amplification of the statistical noise in t
data forGf(t), resulting in an infinite number of solution
that satisfy Eq.~10!. Clearly, in this case, little can be sa
about real time flux–flux dynamics and the correspond
rates.

Recently, Bayesian ideas have been used to deal with
ill-posed nature of continuing the noisy imaginary tim
Monte Carlo data to real time. One of the most widely us
approaches is the maximum entropy~MaxEnt! method.43

The method requires only that the transformation which
lates the data and the solution be known. Furthermore, M
Ent allows the inclusion of prior knowledge about the so
y
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tion in a logically consistent fashion. As such, the method
well-suited for solving ill-posed mathematical problems.

The methods of MaxEnt have been successfully app
in the context of analytic continuation for a variety of qua
tum systems such as various quantum lattice models,44 and
an excess electron solvated in water,53 helium and xenon.54

More recently, vibrational relaxation and infrared line shap
have been studied as well.46,55

For the purpose of the MaxEnt approach we rewrite
integral equation~10!,

D~t!5E dv K~t,v!A~v!. ~11!

In this notationD(t)[Gf(t) is the data, in this case th
imaginary time flux–flux correlation function,K(t,v)
5e2vt1e(t2b12l)v is the singular kernel, andA(v) is the
solution, referred to as the map, corresponding tok(v).
Maximum entropy principles provide a way to choose t
most probable solution which is consistent with the d
through the methods of Bayesian inference. Typically,
data is known only at a discrete set of points$t j%, and we
likewise seek the solution at a discrete set of points$vk%.
The maximum entropy method selects the solution wh
maximizes the posterior probability, or the probability of th
solutionA given a data setD. Using the Bayes theorem on
can show that43,44 the posterior probability is given by

P~AuD!}exp~aS2x2/2!5eQ. ~12!

Herex2 is the standard mean squared deviation from the d

x25(
j ,k

S D j2(
l

K jl Al D @C21# jkS Dk2(
l

KklAl D ,

~13!

whereCjk is the covariance matrix,

Cjk5
1

M ~M21! (
l 51

M

~^D j&2D j
( l )!~^Dk&2Dk

( l )!, ~14!

with M being the number of measurements. In this study,
find that the covariance matrix is diagonal within the no
level of our simulations, and therefore the expression forx2

reduces to

x25(
j

~D j2( lK jl Al !
2

s j
2

, ~15!

wheres j are the standard deviations of each data point,
the square root of the diagonal elements of the covaria
matrix.

S is the information entropy, the form of which is ax
omatically chosen to be

S5(
k

DvS Ak2mk2Ak ln
Ak

mk
D . ~16!

In this formulation the entropy is measured relative to a
fault modelm(v) which can contain prior information abou
the solution anda is a positive regularization parameter.

Obtaining the MaxEnt solution then involves finding
map A which maximizes the posterior probability and
therefore a maximization problem inN variables, whereN is
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the number of points$vk% at which the solution is evaluated
The solution obtained in this way is still conditional on th
arbitrary parametera, which can be interpreted as a regula
ization parameter controlling the smoothness of the m
Large values ofa lead to a result primarily determined b
the entropy function and hence the default model. Smalla in
turn lead to a map determined mostly by thex2 and thus to a
closer fitting of the data. The principal drawback is th
along with the data, the errors would be fit as well.

In this study a is selected according to the L-curv
method.56,57 In this context we regarda as a regularization
parameter controlling the degree of smoothness of the s
tion, and entropy as the regularizing function. The value oa
is selected by constructing a plot of log@2S(A)# vs logx2.
This curve has a characteristic L-shape, and the corner o
L, or the point of maximum curvature, corresponds to
value ofa which is the best compromise between fitting t
data and obtaining a smooth solution.

We employ a maximization algorithm due to Bryan58

which reduces the space in which the search for the solu
is performed. The kernel is first factored using singular va
decompositionK5VSUT. The singular nature of the kerne
ensures only a small number of eigenvalues ofS will be
nonsingular. Since the space spanned by the rows ofK is the
same as that spanned by the columns ofU associated with
nonsingular eigenvalues, the search for the solution can
performed in this singular space of dimensionalityNs ,
whereNs is the number of nonsingular eigenvalues. The
lution in singular space is expressed in terms of the vectou,
which is related to theN dimensional map space via

Aj5mj expS (
l 51

Ns

U jl ul D . ~17!

This exponential transformation is useful since it ensures
positivity of the solution.

In this study we use a flat default map, which satisfie
known sum rule, such as the integral overk(v). Other
choices ofm(v) and their effect on the quality of the resul
will be the subject of future investigation.

IV. PATH INTEGRAL MONTE-CARLO FORMULATION
OF THE IMAGINARY TIME FLUX–FLUX
CORRELATION FUNCTION

In this section we describe the path integral formulat
of the imaginary time flux–flux correlation function. For re
sons that will become clear below, it is computationa
more efficient to calculate the reactive-flux imaginary tim
correlation function given by

Gf s~t!5
1

Zr
Tr~Fe2(t1l)Hh~s!e2„b2(t1l)…H!, ~18!

whereh(s) is the Heaviside function,

h~s!5H 1, if s.0,

0, if s,0.
~19!

The flux–flux correlation function is obtained by taking th
time derivative of the reactive-flux correlation function,
p.

,

u-

he
e

n
e

be

-

e

a

Gf~t!5 i
]

]t
Gf s~t!. ~20!

Since PIMC methods provide the ratio between two
tegrals it is useful to multiply and divideGf s(t) by the total
partition functionZ:

Gf s~t!5
Z

Zr
3

1

Z
Tr~Fe2(t1l)Hh~s!e2„b2(t1l)…H!

5
Z

Zr
G~t!. ~21!

To evaluateGf s(t) one needs to compute the ratio betwe
the total and reactants partition functions given by

Z

Zr
5

Tr e2bH

Tr h~s!e2bH
, ~22!

which can be calculated using standard cyclic PIM
methods14,15 combined with umbrella sampling
techniques.47,48The other part of the calculation ofGf s(t) is
more involved~mainly due to the presence of the flux oper
tor! and will be described in the remaining part of this se
tion.

In the coordinate representationG(t) takes the follow-
ing form:

G~t!5
1

Z E ds dQ^sQuFe2t8Hh~s!e2(b2t8)HuQs&,

~23!

wheret85t1l runs froml to b2l, s is the reaction co-
ordinate and all other degrees of freedom are labeled byQ.
Using the coordinate representation of the flux operator,

^sQuFuQ8s8&5
1

2mi
@d8~s!d~s8!2d~s!d8~s8!#d~Q2Q8!,

~24!

it is simple to show that

G~t!5
1

2imZ E ds ds8 ds9 dQ dQ8@d8~s!d~s8!

2d~s!d8~s8!#3^s8Que2t8HuQ8s9&h~s9!

3^s9Q8ue2(b2t8)HuQs&. ~25!

The time interval can be discretized intoP Trotter slices of
size e5b/P such thatt j5 j e, wherej is the slice number.
Inserting complete sets of states between the short imagi
time propagators and integrating over the delta functions
their derivatives arising from the flux operator yields

G~t j !5
1

2imZD E dQ0•••dQP ds1•••dsP

3@h~sj !2h~sP112 j !#

3P~Q0•••QP ,s05D,s1•••sP ,sP1150!.

~26!

In the above equation,D arises from the use of a finite dif
ference formula to express the integration over the der
tives of the delta functions,
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E dx d8~x! f ~x!52 f 8~0!'
f ~0!2 f ~D!

D
, ~27!

andP(Q0•••QP ,s0•••sP11) is given by

P~Q0•••QP ,s0•••sP11!

5expH 2m

2e (
j 50

P

~sj 112sj !
22e(

j 50

P

V~sj ,Qj !

2
e

2
@V~s0 ,Q0!1V~sP11 ,Q0!#

2 (
a51

N
ma

2e (
j 50

P

~Qj 11
(a) 2Qj

(a)!2J , ~28!

such thatQP115Q0 . N is the total number of modes othe
than the reaction coordinate,Qa is the coordinate of the
a
c

ar
t

modea with a massma and V(s,Q) is the total potential
energy surface. In the derivation of Eq.~28! we have used a
symmetric factorization of the short time propagators. N
that in Eq. ~26! s0 and sP11 are constrained toD and 0,
respectively. The total partition function can be expressed
terms of the kernelP(Q0•••QP ,s0•••sP11) as

Z5E dQ0•••dQPds0•••dsP11d~s02sP11!

3P~Q0•••QP ,s0•••sP11!. ~29!

In order to use importance sampling techniques it is u
ful to rewrite Eq.~26! in the following way:

G~t j !5S 1

2imD Dgj j , ~30!

wherej j is the time dependent part given by
s of the
ansition
very high
te, while

ed
the
ive-flux
j j5
*dQ0•••dQP ds1•••dsP„h~sj !2h~sP112 j !…P~Q0•••QP ,s05D,s1•••sP ,sP1150!

*dQ0•••dQP ds1•••dsP P~Q0•••QP ,s05D,s1•••sP ,sP1150!
, ~31!

andg is a small time independent factor given by

g5
*dQ0•••dQP ds0•••dsP11 d~s02D!d~sP11!P~Q0•••QP ,s0•••sP11!

*dQ0•••dQP ds0•••dsP11d~s02sP11!P~Q0•••QP ,s0•••sP11!
. ~32!

The computation ofG(t j ) requires the evaluation of the multidimensional integrals in Eqs.~31! and ~32!. j j can be
computed by a PIMC simulation where the sampling function is given byP(Q0•••QP ,s05D,s1•••sP ,sP1150). Note that
the initial and final time slices for the reaction coordinate areconstrainedto s05D andsP1150. The first is shifted slightly
from the transition state while the other is fixed at the transition state location. This is the key point in the succes
reactive-flux method in the present formulation. During the simulation, the first and final beads are always near the tr
state and thus the polymer chain can cross the barrier going from reactants to products, and vice versa, even for
barriers. The constraints lead to an isomorphic classical system of an open polymer chain along the reaction coordina
the other degrees of freedom are cyclic, namelyQP115Q0 . The time dependence ofj j can be computed with one PIMC
simulation similar to standard PIMC methods. The time is related to the indexj, and different correlation times are generat
by taking the average over different beads in asingle simulation. This is not the case for the direct computation of
flux–flux correlation function due to the presence of an additional flux operator. We therefore compute the react
correlation function and take its time derivative numerically to obtain the flux–flux correlation function.

PIMC techniques can be used to evaluateg as well. For this purpose, we rewrite Eq.~32! asg5gn /gd where

gn5
*dQ0•••dQP ds0•••dsP11 d~s02D!d~sP11!P~Q0•••QP ,s0•••sP11!

*dQ0•••dQP ds0•••dsP11P~Q0•••QP ,s0•••sP11!
, ~33!

and

gd5
*dQ0•••dQP ds0•••dsP11 d~s02sP11!P~Q0•••QP ,s0•••sP11!

*dQ0•••dQP ds0•••dsP11 P~Q0•••QP ,s0•••sP11!
. ~34!
l-
xi-
ow

e
-

Both gn and gd can be computed simultaneously from
single open chain PIMC simulation with the sampling fun
tion given by P(Q0•••QP ,s0•••sP11). However, in this
case the initial and final reaction coordinate time slices
not constrained. Since bothgn andgd are time independen
we use umbrella sampling techniques47,48 to efficiently
sampleP(Q0•••QP ,s0•••sP11). Note that the evaluation
-

e

of gn andgd involves the calculation of the expectation va
ues of the delta functions. In this work, these are appro
mated by computing the averages of normalized narr
Gaussians.

In summary, to compute the reactive-flux imaginary tim
correlation function we perform the following PIMC simula
tions.
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~1! The ratio betweenZ andZr is obtained from a standar
cyclic PIMC simulation using the umbrella samplin
method.

~2! g is computed using an open chain PIMC with a sa
pling function given byP(Q0•••QP ,s0•••sP11), and
since it is time independent, umbrella sampling metho
can be used as well.

~3! j j is the only time dependent factor. It is obtained fro
an open chain PIMC simulation where the initial a
final time slices of the reaction coordinate are fixed, a
the sampling function is P(Q0•••QP ,s05D,
s1•••sP ,sP1150).

The flux–flux imaginary time correlation function needed
obtain the reaction rate is generated from the reactive-
imaginary time correlation function using the relation spe
fied in Eq.~20!.

V. RESULTS AND DISCUSSIONS

A. Parabolic barrier

The first test case of our RFAC method is a simple o
dimensional parabolic barrier model. The real time flux–fl
correlation function for this model is known analytically,41

and the frequency dependent rate can be obtained fro
Fourier transform ofCf(t). On the other hand, it is straigh
forward to obtain analytically the imaginary time flux–flu
correlation function and to use it with the MaxEnt inversi
method. The real time flux–flux correlation function is give
by

Cf~ t !52
vb

2

8pZrAsinh~2vbt1!sinh~vbt2!

3F 1

sinh~2vbt1!
1

1

sinh~vbt2!G , ~35!

where vb is the barrier frequency,t15t2 il and t25t
1 i (b2l). The imaginary time flux–flux correlation func
tion can be obtained by performing the replacementt→
2 i t in Eq. ~35!,

Gf~t!52
vb

2

8pZrAsin~2vbt1!sin~vbt2!

3F 1

sin~2vbt1!
1

1

sin~vbt2!G , ~36!

wheret15t1l andt25b2(t1l).
In Fig. 1 we plotk(v)Zr for the parabolic barrier at fou

different temperatures. The exact results were compu
from the Fourier transform ofCf(t) given in Eq.~35! with a
barrier frequency ofvb51 a.u. andl50.05b. Maximum
entropy numerical analytic continuation was performed
mock data generated by adding 1% Gaussian noise@with
respect to the maximum value ofGf(t)] to the analytic re-
sults ofGf(t) given by Eq.~36!. The number of time points
was set to 256 for the entire time range. SinceGf(t) is
symmetric, all useful information is contained in the tim
range 0 tob/22l. Hence only this portion was used in th
analytic continuation procedure. The number of frequen
-

s

d

x
-

e

a

d

n

y

points ranged from 1000 to 1200 and the frequency ra
was adjusted to ensure converged results. Our default m
was a flat distribution with an integral that equalspGf(0).

The analytically continued frequency dependent rates
in excellent agreement with the exact results over the en
frequency range. Moreover, the best agreement is achieve
low frequencies which are expected to have the largest in
ence on the reaction rates. The latter are in very good ag
ment with the exact analytic results and the average de
tion does not exceed 10%. We also verified that the rates
independent of the value ofl. Sincek(vÞ0) does depend
on l it follows that Cf(t) depends on it too, which is con
sistent with the prediction of Yamamoto.50 The high quality
of these results was a motivation to treat real simulation d
of a more realistic model which we describe in the ne
subsection.

B. Double-well coupled to a harmonic bath

In this subsection we use the reactive flux analytic co
tinuation method to calculate the canonical rate constants
a double-well bilinearly coupled to a harmonic bath. T
Hamiltonian of our system is given by

H5
p2

2m
1V~s!1 (

a51

N F Pa
2

2ma
1

1

2
mava

2S Qa2
gas

mava
2 D 2G .

~37!

FIG. 1. Plots of the frequency dependent rate for a one dimensional p
bolic barrier. The inverse temperature~in a.u.! are~a! b50.5, ~b! b51, ~c!
b52, and ~d! b53. The exact results are given by the dashed line. T
RFAC results, shown as the solid line, were computed from the ana
imaginary time flux–flux correlation functions corrupted by the addition
1% Gaussian random noise.
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In the above equation,s is the reaction coordinate with con
jugate momentump and massm; Qa is the harmonic modea
of the discretized bath with conjugate momentumPa , mass
ma and frequencyva . The potential along the reaction co
ordinate is a symmetric double-well given by

V~s!52a1s21a2s4. ~38!

The ga are the coupling coefficients between the react
system and the bath that are determined by the Ohmic s
tral density function

J~v!5
p

2 (
a

ga
2

mava
d~v2va!5hve2v/vc. ~39!

J(v) was discretized evenly with an incrementDv, and the
coupling coefficients were calculated according to

ga
25

2

p
mava

2he2va /vcDv. ~40!

In order to compare the escape rates to the work of
paler and Makri34 we have studied the same double-well sy
tems as those described in their work. These include a h
barrier model with a wide spectral density labeled DW1, a
a lower barrier model with a narrower spectral density
beled DW2. The parameters were chosen to model a pr
transfer reaction described by the above generic Ha
tonian, and are summarized in Table I.

We performed PIMC simulations described in Sec. IV
order to calculate the imaginary time reactive-flux corre
tion functions for the above two systems. In both cases
investigated a range of coupling strengths and temperat
studied by Topaler and Makri.34 For the symmetric double
well, the ratio between the full and reactant partition functi
is known analytically to be 2, and hence did not need to
determined by simulation. However, our results confirm t
it is possible to estimate this ratio from standard umbre
sampling PIMC simulations. In performing the simulatio
the number of bath modes was chosen to be 100 for D
and 50 for DW2. This number of modes was sufficient
obtain converged rates in both cases.

The quantitiesgn and gd , defined in the previous sec
tion, were computed from open chain staging PIMC59–61

simulations. The width of the Gaussians used to approxim
the delta functions in Eqs.~33! and~34! was chosen to be 0.1
a.u. This should be compared to the natural dista
Aa1 /(2a2), which is 2 a.u. for DW1 andA2 a.u. for DW2.
In both cases, the systems were equilibrated for 200,000
passes and data was collected for 10 million passes. E
pass consisted of attempting moves of all the beads for e
degree of freedom. In most cases this was sufficient to ob
converged results forg. The number of Trotter slices wa
P550 to P5128 depending on the temperature. In all t

TABLE I. Parameters of the model double-well potentials and of the sp
tral density in cm21.

Eb vb vc

DW1 2085 500 500
DW2 1043 500 100
e
c-

-
-
h

d
-
on
il-

-
e
es

e
t

a

1

te

e

C
ch
ch
in

results shown below we setl5b/P. In some of the cases
we verified that the rates are independent ofl within the
statistical error.

The time dependent part of the reactive-flux correlat
function,j j , was computed by an open chain staging PIM
simulation. In this case the first and last beads of the reac
coordinate,s0 andsP11 , were fixed atD and 0, respectively,
whereD arises from a finite difference approximation in E
~27!. In both cases,D was chosen to be 0.1 a.u. The lengt
of the simulations and the number of Trotter slices were
same as those forg described above.

The imaginary time flux–flux correlation functions we
computed from the reactive-flux ones by taking a time d
rivative. This was done numerically using a simple two po
forward difference. Our findings indicate that this procedu
significantly amplifies the statistical noise present inGf s(t).
However, it should be noted that higher order finite diffe
ence methods were not observed to improve the results.

The correlation functions evaluated by the above pro
dure were then used as input data for the MaxEnt numer
analytic continuation procedure. The covariance matrices
quired by the MaxEnt procedure were computed by blo
averaging the MC data. We find that, within the statistic
noise, the matrices are diagonal, with the diagonal elem
giving the estimates of the variances for each of the ima
nary time data pointt j . The MaxEnt procedure was the
used to determine the frequency dependent rate constant
responding to each correlation function, by inverting E
~10!. The rates computed from the zero mode values ofk(v)
were found to be only weakly dependent on the regulari
tion parameter estimated from the L-curve. In each case
spacing and the range of the frequency grid$vk% on which
the solution was represented was adjusted to obtain c
verged results. Similar to the parabolic barrier case, a
default model~prior distribution! with the integral given by
pG(0) was used.

A sample input imaginary time flux–flux correlatio
function for DW2 is shown in the upper panel of Fig. 2 alon
with the MaxEnt fit. The lower panel shows the correspon
ing k(v) computed by the numerical analytic continuatio
procedure. Note the structured shape ofk(v) which was also
observed with the SVD inversion method~not shown!. This
structure indicates deviations from quantum transition s
theory, since it implies recrossings of the dividing surfa
which would give rise to a structured reactive flux corre
tion function. The reaction rate is given by the zero value
k(v).

In Fig. 3 we show the dependence of the transmiss
coefficient,k5k/kTST, on the damping parameterh for the
DW1 system.kTST is the classical transition state theory ra
given by

kTST5
v0

2p
e2bEb, ~41!

wherev052Aa1 /m. We compare the results with the ca
culations by Topaler and Makri using the quasi adiaba
propagator path integral~QUAPI! method and with the quan
tum Grote–Hynes theory~QGH!.62 Our results are in very
good agreement with the QUAPI numerical results over

-
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entire range of frictions. Near the turnover friction, ou
method slightly underestimates the transmission coefficie
however, it does capture the turnover from energy to spa
diffusion. For this high barrier case the imaginary time co
relation functions were more noisy than the results for DW
shown below. As a consequence, the error bars~not calcu-
lable! on the transmission coefficients obtained using t

FIG. 2. A typical imaginary time flux–flux correlation function~upper
panel! and the corresponding frequency dependent rate~lower panel! for
DW2 at h/mvb53 andT5200 K. The circles are the PIMC data and th
solid lines are the results obtained through maximum entropy inversion

FIG. 3. Plot of the quantum transmission coefficient for a range of values
the friction parameterh for DW1 atT5300 K andP550. The solid line is
the quantum Grote–Hynes result~Ref. 62!. The empty circles are the results
of the quasi adiabatic propagator path integral method~Ref. 34!. The
reactive-flux analytic continuation results are shown as solid circles.
t,
al
-
2

e

MaxEnt procedure were larger compared to the results
DW2. We note that we have also carried out simulations
DW1 with a larger number of Trotter slices. The level
noise in those simulation was much larger compared to
results shown, leading to slightly larger deviation from t
QUAPI results.

It turns out that the classical results for the paramet
chosen for DW134 provide reasonable estimates ofk. In
view of that, it is interesting to assess the accuracy of
method for a more ‘‘quantum’’ systems, such as DW2. T
dependence of the transmission coefficient on the damp
parameter for DW2 is shown in Fig. 4 with the QUAPI an
the QGH results. The classical transmission coefficient
this case differ by almost an order of magnitude compare
their quantum mechanical counterparts.34 Our results are in
good agreement with the QUAPI results over the entire fr
tion range. They capture the turnover in the transmiss
coefficient signifying the crossover from energy to spat
diffusion.

It is also interesting to study the temperature depende
of the rate calculated using the RFAC method. An Arrhen
plot of the escape rate for DW1 is shown in Fig. 5 where
compare the RFAC and QUAPI results. Our results are
excellent agreement with the QUAPI rates over the range
temperatures characterized by the thermally activated
gime. In this range the rates change by 7 orders of ma
tude. This suggests the wide range of applicability of t
RFAC method. In the low temperature tunneling regime~i.e.,
below the crossover temperature!, the statistical noise was
too large to obtain converged PIMC results for the imagin
time reactive-flux correlation function, and thus we could n
compute the tunneling rates.

VI. CONCLUSIONS

In this paper we presented a method to compute can
cal quantum reaction rate constants in the condensed ph
The method is based on the reactive-flux formalism co

of

FIG. 4. Plot of the quantum transmission coefficient for a range of value
the friction parameterh for DW2 atT5200 K andP550. The solid line is
the quantum Grote–Hynes result~Ref. 62!. The empty circles are the result
of the the quasi adiabatic propagator path integral method~Ref. 34!. The
reactive-flux analytic continuation results are shown as solid circles.
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bined with the numerical analytic continuation approach. W
expressed the imaginary time reactive-flux correlation fu
tion in terms of a frequency dependent rate constant,
used the path integral formalism to derive a working expr
sion suitable for Monte Carlo simulation techniques. T
maximum entropy method was then used to analytically c
tinue the imaginary time data to real time to obtain the f
quency dependent rate and the reaction rate.

Unlike the existing methods based on semiclassical
mixed quantum-classical approaches, the reactive flux a
lytic continuation formalism treats the whole system in
fully quantum mechanical fashion. In addition, compared
other fully quantum mechanical methods such as the q
adiabatic propagator path integral method, the present
proach is not limited to the treatment of harmonic bat
Furthermore, the method does not require that the Ha
tonian be separable into a ‘‘system’’ part and a ‘‘bath’’ pa
consisting of oscillators whether harmonic or anharmon
Rather, the only requirement is that one is able to identify
reaction coordinate. To our knowledge this is the on
method that may be capable of determining reasonably a
rate quantum mechanical rates for a general anharm
many-body system.

The accuracy of the method was tested for a simple p
bolic barrier model, and for a double-well coupled to a h
monic bath. It is remarkable to note that the reactive-fl
analytic continuation rates agree with the analytic res
within 10% for the parabolic barrier. The same agreemen
found in most situations for the double-well model for
wide range of coupling parameters and temperatures. In
ticular, the right Arrhenius behavior is captured, as well
the turnover from energy to spatial diffusion. The meth
fails when the statistical noise exceeds the limits set by
numerical inversion method or when long time dynam
govern the reactive-flux correlation function. This may ha
pen at very low temperatures when tunneling dominates

FIG. 5. Plot of the logarithm of the escape rate for DW1 ath/mvb50.5 as
a function of temperature illustrating the Arrhenius behavior. The qu
adiabatic propagator path integral~Ref. 34! results are shown as empt
circles and the dot–dashed line. The reactive-flux analytic continuation
sults are shown as solid circles and the dotted line.
e
-
d
-

e
-
-

d
a-

o
si
p-
.
il-

.
e

u-
ic

a-
-
x
s
is

r-
s

e
s
-
e

escape rate, or at low frictions where energy diffusion b
comes important.

There are numerous possible improvements for
method. On one hand, more efficient sampling techniq
are needed to converge the results for PIMC at very l
temperatures in order to obtain tunneling rates. On the o
hand, the numerical analytic continuation method used
this work is a very basic implementation of the maximu
entropy method. As such, it is quite surprising that the res
for the rates we obtained are in such a good agreement
the numerically exact ones. We believe that considerable
provement can be achieved by using a more sophistic
maximum entropy procedure. For example, rather than us
a flat default model, one could use a more informative o
Such a model could be obtained from approximate metho
such as a multi dimensional parabolic approximation.62 In
addition, recently it was shown that combining short re
time dynamical information with the imaginary time data c
significantly improve the quality of the analytically contin
ued results.63,64Real time PIMC simulations65 could be used
to compute the real-time flux–flux correlation function f
short times to be used in combination with imaginary tim
data as input for the MaxEnt procedure. All of these a
proaches will be the subject of future investigation.
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