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Quantum mechanical canonical rate theory: A new approach based
on the reactive flux and numerical analytic continuation methods
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We present the reactive flux analytic continuati®FAC) method, based on the quantum reactive

flux formalism combined with a numerical analytic continuation approach to calculate quantum
canonical rates in condensed phase systems. We express the imaginary time reactive-flux correlation
function in terms of a frequency dependent rate constant, and use path integral formalism to derive
a working expression suitable for Monte Carlo simulation techniques. The imaginary time data
obtained by simulation is analytically continued to the real time using the maximum entropy method
to obtain the reaction rate. Motivated by the success of the method to predict the rates for a simple
one dimensional parabolic barrier model, we assess its accuracy for a condensed phase reaction
modeled by a double-well coupled to a harmonic bath. We note that the method is applicable to a
more general Hamiltonian as long as the reaction coordinate can be identified. The reaction rates
computed in this fashion are in very good agreement with analytic and numerically exact results. We
demonstrate the applicability of the method for a wide range of model parameters and temperatures.
© 2000 American Institute of Physids50021-96080)50606-0

I. INTRODUCTION based on replacing the exact quantum mechanical propagator

_with its semiclassical counterpdft!’ While the semiclassi-

conggﬁsgzlCurlzzznsoggeunﬁgt:;maTf:hirt]:nﬂi;eacilgé]éﬁtees Nal propagator provides a considerable reduction in the com-
P y . g sta 9p plexity of the real time calculation it does not eliminate com-
of the ongoing challenges in rate theory is the proper formu-

. . . . “pletely the oscillatory nature of the quantum mechanical
lation of a quantum thermodynamic theory which provides . . .
an estimate for the rate without any time propagaian- propagator and thus requires a large number of trajectories to

. . ) L .. _obtain converged results. The semiclassical approach be-
like the classical thermodynamic formulation, i.e., transﬂmncomeS ractical for the condensed phase svstern when an
state theory(TST),® the quantum mechanical version is not ddit npl roximation is introd pd n myl when th
unique, and various authdré? have tried to formulate a 2°0'monal approximation Is introguced, namely when the

quantum mechanical TST which would share the importan{;'uarlgyznl1 propagator Is replac_ed b_y an a_lmost classical
properties of the classical version. one. This additional approximation can introduce larger

In many situations TST provides accurate estimates 0?ieviations as compared to the fully semiclassical appréach.

the rate constant, however, it can also lead to significanft 'S Still an open challenge to further reduce the computa-
deviation from the exact rate when one or more of its basié'onal complexity of the semiclassical method for condensed

assumptions are broken. Namely, in the case when there apgase system?§:.24 . .
recrossings of the dividing surface, deviations from thermal _ Another major class of approximate methods is based on
equilibrium at the transition state, or when the reaction coMix€d quantum classical propagation techniciies” The
ordinate is not separable from the internal degrees of freg?€€d t0 propagate a small subset of degrees of freedom quan-
dom at the saddle point. In such circumstances an exact e&im mechanically along with a classical propagation of the
timate of the rate requires real time propagation. However'€maining degrees of freedom makes this approach very at-
for reactions in condensed phases real time quantum propiactive. Recently it was shown that the mixed quantum clas-
gation is extremely difficult. Thus, most theoretical work in Sical treatment of rate processes in a condensed phase envi-
this field has been based on approximate methods. ronment is insufficient to provide accurate rates, and in some
One approximate approach to estimate the quantum mélases the relaxation rates deviate by several orders of
chanical rate is based on the centroid densiyThis ap- Magnitude compared to the exact quantum mechanical
proach is very appealing since the centroid density can beesult?~%
estimated using path integral Monte CarlPIMC) All the aforementioned approximations are not free of
techniqueé_“'l5 Another class of approximate methods is limitations and often break down in various physical situa-
tions. Unfortunately, an accurate calculation of the quantum
dMost of this work was done while ER was at the Department of Chemistry,meChaQLC:gl rate Can only b(.:" performed for highly simplified
Columbia University. models™=> Thus, it is very important to develop a method
PElectronic mail: berne@chem.columbia.edu that can provide accurate quantum mechanical rates for gen-
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eral many-body anharmonic systems. In this paper we prowhere the real time flux—flux correlation function is given by
pose a new computational method, the reactive flux analyti€from now on we sefi=1)

continuation(RFAC), to calculate quantum reaction rates in 1

condensed phase system;. Oéjrlléapproach combines.the well Ci(t)= — Tr(Fe MeHtpg iHig=(5-MH) 2)
known reactive flux formalism®~*° which was generalized Z

to the quantum mechanical caayith a numerical analytic
continuation metho& Since the flux—flux correlation func- quation8=1k,T is the inverse temperature ands intro-

tion typically_ deca_ys_ on a relatively fast t?me scale compar ecguced for numerical convenience. For open reactive systems,
to the rate itself it is expected to provide a good startingq rate is independent af “*! however, the flux—flux cor-

point for obtaining the rate using analytic continuation meth'relation function does depend on it. This was the key point in

ods.Th. icle i q oll In Sec. Il the reduction of the computational complexity of the Yama-
IS article Is structured as follows: In Sec. Il we pro- 5 rate expressioll. Although the mathematical justifica-

vide a general formulation of the analytically continued rate;on is not clear, the independence of the ratexoas been

equation. First, we introduce a frequency dependent rat@ommonly used for bound systems as W&A%21345158ey-
which is related to theeal time flux—flux correlation func- ertheless, our results indicate that numerically the reaction

:!on. l;llext, f}/ve formullettt_e th:cs ratt_e n 'fl_er:mst_of anagln?rs_/ rate does appear to be independentoéven for a bound
ime flux—flux correlation function. This time correlation system like the double-well potential.

function that is calculated along the imaginary time axis : T
(also called the Euclidean time axisan beuniquelyanalyti- In Eq.(2), the symmetrized flux operatdr, is given by
cally continued to the real time axis in order to obtain the 1
rate constant. This mathematical transformation is well de-  F= 5, (Pd(S)+(s)p), &)
fined but rather unstable, and can result in an enormous am-
plification of the statistical and systematic errors present ifvheres is the reaction coordinate with a conjugate momen-
the imaginary time data. In Sec. Ill we describe the maxi-tump and massn. Without loss of generality we assume that
mum entropy(MaxEnt method®**used to perform the ana- the transition state is located s 0.
lytic continuation. The choice of the best inversion method is It can easily be shown that the rate can be written as
still in debate*®*® however, for the present problem we find .
that the MaxEnt method provides significantly better results k= —f dt Ce(t), (4)
than the singular value decompositig8VD) method. In 2) e
Sec. IV we provide a formulation of the imaginary time \;narec (1) is given in Eq.(2). One can define a frequency
flux—flux correlation function which is suitable for PIMC dependent ratek(w),
techniques. We separate the calculation into a time depen-
dent part which is efficiently sampled through the use of the 1 (= (ot
reactive flux formalism, and a time independent part which is k(w)= 2 fﬁxdt eUCi(b), ®)
computed using the umbrella sampling metf6¢f

We consider two test cases to assess the accuracy of tisgch that the rate in Ed4) is the zero frequency value of
RFAC method. The first is a simple parabolic barrier modelk(w). The flux—flux correlation function can be obtained by
where analytic results for the imaginary time flux—flux cor- inverting the Fourier relation in Ed5):
relation function can be obtained. The other test case is a 1 (=
double-well coupled to a harmonic bath; this model was Cf(t):_f do e “K(w). (6)
studied recently by Topaler and Makrand we compare our T
:ﬁ::ﬁlﬁo\r’\cfr\]’véhgg n%)iicgen;nrqﬁfr;:j:;éztfusﬁCygr:'va?\;%rbrgggﬁeme frequency dependent rate is analogous to the spectral

since we wish to illustrate that the method is applicable to agﬁgzg); L;Sn%dp;gy;hﬁ] eaQZ:}rl]t(l,Cr cflgng;/ugg?fgrr%finzpter]z[r?;plllg(?e-
general many-body system. We cover a wide range of tem- entt—,>—ir we obtain '

peratures and coupling strength for the double-well model.

The results for both models are shown and discussed in Sec.

1 (= 3
V. Conclusions and an outlook are given in Sec. VI. Gi(r)=— J,xdw e “k(w), )

andZ, is the partition function of the reactants. In the above

wheret, =0, and
II. ANALYTIC CONTINUATION OF RATES

1
. . . . . = —(r+MNHEa=(B=(7+N\)H
In this section we generalize the reactive flux formalism ~ G1(7) Z, Tr(Fe Fe ). 8

and derive a working expression which is suitable for the ) o ) _
analytic continuation method. In the reactive flux formalism, The reason that_we havg mftroduced thls Imaginary time
the quantum mechanical rate constant is given in terms of thBUx—flux correlation function is that, unlike the real time

it using Monte Carlo simulations even for a many-body sys-
_ |- tem. In Sec. IV we provide a PIMC formulation that permits
k= | dtC(t), &Y :
0 the calculation oiG¢(7) for condensed phase systems.
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The imaginary time flux—flux correlation function is tion in a logically consistent fashion. As such, the method is
given by the two-sided Laplace transform of the frequencywell-suited for solving ill-posed mathematical problems.
dependent ratek(w). Analytic continuation to real time is The methods of MaxEnt have been successfully applied
performed by inverting the integral equati@i to obtain  in the context of analytic continuation for a variety of quan-
k(w). This inversion is possible only i6(7) is analytic tum systems such as various quantum lattice mdtiesd
over the desired range af*? By choosing a finite value for an excess electron solvated in watéhelium and xenon?

N (0<A<pBI2) it can be shown thaG;(7) is analytic for  More recently, vibrational relaxation and infrared line shapes
0<7<B—2\.1° It turns out that forn=0 the imaginary have been studied as wéf>®

time flux—flux correlation function is not analytic at=0, For the purpose of the MaxEnt approach we rewrite the
which is the reason behind introducing the paramgtaiith integral equatior(10),

a small positive valudrecall that the rate is independent of

this parameter, as will be discussed below in Sec. V D(T):J dw K(7,0)A(w). (11)

Note that\ andr are interchangeable. A large value of
A implies a small range of imaginary time and vice versa.ln this notationD(7)=G;(7) is the data, in this case the
For numerical analytic continuation purposes it is desirablémaginary time flux—flux correlation functionK(r,w)
for G¢(7) to contain as much information as possible. For=e~¢7+e(7"£*2Me i the singular kernel, and(w) is the
this reason it is important to maximize the imaginary timesolution, referred to as the map, correspondingk(e).
range while ensuring the analyticity of the imaginary time Maximum entropy principles provide a way to choose the
flux—flux correlation function. most probable solution which is consistent with the data

Itis also useful to note that for a finite (specified in the  through the methods of Bayesian inference. Typically, the
above ranggthe frequency dependent rate obeys the follow-data is known only at a discrete set of poifits}, and we

ing detailed balance relation: likewise seek the solution at a discrete set of poinig}.
K(—w)=e B~20K( ). 0] The maximum entropy method selects the solution which
maximizes the posterior probability, or the probability of the
Using this relation, Eq(7) can be rewritten as solutionA given a data seéb. Using the Bayes theorem one
1 o can show th&f**the posterior probability is given by
Gim=7 fo dufe” 7 +el FT2NTk(w). (10 P(A|D) = expl aS— x2/2) = 2. (12

This form is more suitable for numerical analytic continua-Herex” is the standard mean squared deviation from the data
tion methods since it eliminates the numerical instabilities

arising from the negative frequency portion of the two-sided ~ x2= >, (Dj - KA [Cl]jk( Dy— >, KkIAI),
Laplace transform. b ' I (13)

whereC;y is the covariance matrix,

IIl. MAXIMUM ENTROPY NUMERICAL ANALYTIC 1 0 0
CONTINUATION Cjk:m;l (Dj)-DM((DY-D), (14

In this study, we seek to analytically continue the imagi-yith M being the number of measurements. In this study, we
nary time flux—flux correlation function given in EqL0).  find that the covariance matrix is diagonal within the noise

SinceGy() is analytic for 0<7<B—2\, provided thatitis |evel of our simulations, and therefore the expressionyfor
known on this interval, the analytic continuation is accom-reqyces to

plished by inverting the integral equatigiO) in order to 5
obtain a solution fok(w). The zero mode valule(0) would 2:2 (Dj—ZKjiA)
then correspond to the experimentally observable reaction ] o '

. g ) j
rate. Due to the singular nature of the integration kernel the o o
inversion of Eq.(10) is an ill-posed problem. As a conse- whereo; are the standard deviations of each data point, i.e.,

quence, a direct approach to the inversion would lead to af{'® Square root of the diagonal elements of the covariance

uncontrollable amplification of the statistical noise in the Matrx. _ , S

data forG;(7), resulting in an infinite number of solutions S is the information entropy, the form of which is axi-

that satisfy Eq(10). Clearly, in this case, litle can be said °matically chosen to be

about real time flux—flux dynamics and the corresponding Ay

rates. S=2> Aw A= M= AglIn . (16)
Recently, Bayesian ideas have been used to deal with the . k

ill-posed nature of continuing the noisy imaginary time In this formulation the entropy is measured relative to a de-

Monte Carlo data to real time. One of the most widely usedault modelm(w) which can contain prior information about

approaches is the maximum entropylaxEnt method?®  the solution and is a positive regularization parameter.

The method requires only that the transformation which re-  Obtaining the MaxEnt solution then involves finding a

lates the data and the solution be known. Furthermore, Maxnap A which maximizes the posterior probability and is

Ent allows the inclusion of prior knowledge about the solu-therefore a maximization problem M variables, wherd\ is

(15
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the number of point§w,} at which the solution is evaluated. 9
The solution obtained in this way is still conditional on the ~ Gt(7) =1 ——Gs(7). (20
arbitrary parametest, which can be interpreted as a regular-
ization parameter controlling the smoothness of the map. Since PIMC methods provide the ratio between two in-
Large values ofx lead to a result primarily determined by tegrals it is useful to multiply and divid&s(7) by the total
the entropy function and hence the default model. Smati  partition functionZ:
turn lead to a map determined mostly by tffeand thus to a 7z 1
closer fitting of the data. The principal drawback is that,  Gis(7)= - X= Tr(Fe™ (""MHp(s)e™ (B~ (7HMH)
. : 7.7z

along with the data, the errors would be fit as well.

In this study « is selected according to the L-curve
method®®%7 In this context we regard as a regularization =7 G(7). (21)
parameter controlling the degree of smoothness of the solu- ' )
tion, and entropy as the regularizing function. The value of 10 evaluateGs(7) one needs to compute the ratio between
is selected by constructing a plot of [66(A)] vs logy 2 the total and reactants partition functions given by

This curve has a characteristic L-shape, and the corner of the -, Tre AH

L, or the point of maximum curvature, corresponds to the T (22
value of a which is the best compromise between fitting the r Trh(s)e

data and obtaining a smooth solution. which can be calculated using standard cyclic PIMC

We employ a maximization algorithm due to Bry#n, methodd*!> combined with  umbrella sampling
which reduces the space in which the search for the solutiogschnique$”#8 The other part of the calculation &;<(7) is
is performed. The kern$l is first factored using singular valuémore involved(mainly due to the presence of the flux opera-
decompositiorK =VXU". The singular nature of the kernel tor) and will be described in the remaining part of this sec-
ensures only a small number of eigenvalues>ofwill be  {jon.
nonsingular. Since the space spanned by the rowsisfthe In the coordinate representati@7) takes the follow-
same as that spanned by the columndJodssociated with  jng form:
nonsingular eigenvalues, the search for the solution can be

performed in this singular space of dimensionality, G(7) = Ef ds dQ(sQ|Fe~ T’Hh(s)ef(ﬂfr’)H|QS>
whereNg is the number of nonsingular eigenvalues. The so- z ’
lution in singular space is expressed in terms of the vagtor (23
which is related to thé\ dimensional map space via wherer =7+ \ runs from\ to B—N\, s is the reaction co-
Ng ordinate and all other degrees of freedom are labele@ by
Aj=m, exp( lzl Ujl”l) . (17 Using the coordinate representation of the flux operator,

1
This exponential transformation is useful since it ensures thésQ|F|Q’s’)= Zmild (8)8(s")—8(s)8"(s)]8(Q-Q"),
positivity of the solution. (24)
In this study we use a flat default map, which satisfiesa
known sum rule, such as the integral ovefw). Other it is simple to show that
choices ofm(w) and their effect on the quality of the results 1
will be the subject of future investigation. G(7)= mj dsds ds"dQdQ'[&'(s)d(s")

_ 5(8)5/(51)]><<SIQ|e*T’H|QISH>h(SH)
IV. PATH INTEGRAL MONTE-CARLO FORMULATION ,
OF THE IMAGINARY TIME FLUX—FLUX X(s"Q'le”B=7IH|Qs). (25)

CORRELATION FUNCTION The time interval can be discretized inBoTrotter slices of

In this section we describe the path integral formulationSize €= /P such thatr;=|e, wherej is the slice number.
of the imaginary time flux—flux correlation function. For rea- Inserting complete sets of states between the short imaginary
sons that will become clear below, it is computationally ime propagators and integrating over the delta functions and
more efficient to calculate the reactive-flux imaginary timetheir derivatives arising from the flux operator yields
correlation function given by 1
1 ) ] G(Tj):mfdQO"'dQPdsi"'dSP
Gis(7)= Z—Tr(Fe‘(T“‘) h(s)e™ B~ (HH), (18)
' X[h(sj)—h(spi1-j)]

XP(Qo - Qp,So=A4A,S1---Sp,Sp4+1=0).
(19 (26)

In the above equation\ arises from the use of a finite dif-

The flux—flux correlation function is obtained by taking the ference formula to express the integration over the deriva-
time derivative of the reactive-flux correlation function, tives of the delta functions,

whereh(s) is the Heaviside function,
1, if s>0,

hS)=10, i s<o.
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) , f(0)—f(A) mode o with a massm, andV(s,Q) is the total potential
J dx &' (x)f(x)=—1'(0)~ A ' (27) energy surface. In the derivation of E@8) we have used a
symmetric factorization of the short time propagators. Note
andP(Qy- - - Qp,So- - - Sp+1) IS given by that in Eq.(26) s, and sp, ; are constrained t&A and O,

respectively. The total partition function can be expressed in

terms of the kerneP(Qq- - - Qp,Sg- - - Sp+ 1) &S
P(Qo - Qp,So" - "Sp+1) '

P P
-m Z=fd - -dQpdsy- - -dsp10(Sp—Sp11)
:ex42_620 (Sj+1_sj)2_620 V(SijJ) QO QP So P+1 ( 0 P+1
: : XP(Qo- - Qp ,So- - Sp1). (29
€
- E[V(SO,QO) +V(sp+1,Qo)] In order to use importance sampling techniques it is use-
ful to rewrite Eq.(26) in the following way:
N P
m
-2 5 2 QY -Q)?, (28) 1
a=1 2€ =0 i1 ! G(Tj)= m) 7§j, (30)

such thatQp, 1=Qq. N is the total number of modes other
than the reaction coordinat®, is the coordinate of the where¢; is the time dependent part given by

:fon‘ --dQpds;- - -dsp(h(sj)) —h(spy1-j))P(Qo- - -Qp,Sp=4,S1- - -Sp,Sp+1=0)

_ , 31

! JdQqo- - -dQpds;- - -dsp P(Qp- - - Qp,So=4A,S;" - Sp,Sp+1=0) 3y
and y is a small time independent factor given by

_ JdQq: - -dQpdsy: - -dspyq 8(Sp—A)S(Sp+1)P(Qo- - - Qp,So- - *Spy1) (32)

?7 7 [dQp- - -dQp dsy- - -dSp.16(Sg—Sps1)P(Qp- - QpSo- - -Sp11)

The computation ofG(7;) requires the evaluation of the multidimensional integrals in Eg§%) and (32). & can be
computed by a PIMC simulation where the sampling function is give®{®,- - - Qp,So=A4,S;- - -Sp,Sp;1=0). Note that
the initial and final time slices for the reaction coordinate @astrainedio s,=A andsp, ;=0. The first is shifted slightly
from the transition state while the other is fixed at the transition state location. This is the key point in the success of the
reactive-flux method in the present formulation. During the simulation, the first and final beads are always near the transition
state and thus the polymer chain can cross the barrier going from reactants to products, and vice versa, even for very high
barriers. The constraints lead to an isomorphic classical system of an open polymer chain along the reaction coordinate, while
the other degrees of freedom are cyclic, nam@ly, ;=Q,. The time dependence & can be computed with one PIMC
simulation similar to standard PIMC methods. The time is related to the ipdexd different correlation times are generated
by taking the average over different beads isiagle simulation. This is not the case for the direct computation of the
flux—flux correlation function due to the presence of an additional flux operator. We therefore compute the reactive-flux
correlation function and take its time derivative numerically to obtain the flux—flux correlation function.

PIMC techniques can be used to evaluatas well. For this purpose, we rewrite E§2) as y= v,/ vq Where

:fdQO' +-dQpdsy- - -dspiq 8(Sp—A)(Sp11)P(Qo- - - Qp,Sp- - -Spr1)
n JdQq- - -dQpdsy- - -dsp41P(Qo- - Qp,Sp - *Sp+1) ’
and

(33

zfdQO' -+ dQpdsg- - -dspyq 8(Sp—Sp1+1)P(Qp- - Qp,Sp- - - Spr1)
vd JdQq- - -dQpdsy- - -dspy1P(Qp- -~ Qp,So- -+ Spt1) '

(34)

Both vy, and y4 can be computed simultaneously from a of y, andyy4 involves the calculation of the expectation val-
single open chain PIMC simulation with the sampling func-ues of the delta functions. In this work, these are approxi-
tion given by P(Qq---Qp,Sg- - -Sp4+1). However, in this mated by computing the averages of normalized narrow
case the initial and final reaction coordinate time slices aré&aussians.

not constrained. Since both, and y4 are time independent In summary, to compute the reactive-flux imaginary time
we use umbrella sampling techniqle® to efficiently  correlation function we perform the following PIMC simula-
sampleP(Qq- - - Qp,Sg- - -Sp+1). Note that the evaluation tions.
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(1) The ratio betweeZ andZ, is obtained from a standard
cyclic PIMC simulation using the umbrella sampling
method. <

(2) v is computed using an open chain PIMC with a sam- g
pling function given byP(Qp- - -Qp,Sp- - -Sp+1), and 02 |
since it is time independent, umbrella sampling methods
can be used as well.

(3) ¢; is the only time dependent factor. It is obtained from
an open chain PIMC simulation where the initial and
final time slices of the reaction coordinate are fixed, and
the sampling function is P(Qq---Qp,So=A,

S+ +Sp,Spy+1=0).

@)

—— RFAC
---- Exact

The flux—flux imaginary time correlation function needed to 02 ©
obtain the reaction rate is generated from the reactive-flux
imaginary time correlation function using the relation speci-
fied in Eq.(20).

Kw) Z,

V. RESULTS AND DISCUSSIONS

04 )
A. Parabolic barrier 03
The first test case of our RFAC method is a simple one 2oz
dimensional parabolic barrier model. The real time flux—flux o1 b
correlation function for this model is known analyticaffy, 0 . , , , ‘
and the frequency dependent rate can be obtained from a o 50 100 150 2000 250 300

o[au]

Fourier transform ofC¢(t). On the other hand, it is straight-
forward to obtain analytically the imaginary time flux—flux FIG. 1. Plots of the frequency dependent rate for a one dimensional para-
correlation function and to use it with the MaxEnt inversion Pelic barrier. The inverse temperatuie a.u) are(@ 5=0.5, (b) 5=1, ()

. . . . B=2, and(d) B=3. The exact results are given by the dashed line. The
method. The real time flux—flux correlation function is gIven geac results, shown as the solid line, were computed from the analytic

by imaginary time flux—flux correlation functions corrupted by the addition of
2 1% Gaussian random noise.
w
b

877, \/Sinh — wyty) SN wpty)

Cit)=
points ranged from 1000 to 1200 and the frequency range
% 1 N 1 35 was adjusted to ensure converged results. Our default model
sinh(—wypty)  sinNwyty) |’ (35 was a flat distribution with an integral that equat&¢(0).
. . L B The analytically continued frequency dependent rates are
where @p 1S thg bar_rler fr_equencytl—t I\ anq =1 " in excellent agreement with the exact results over the entire
+i(B—N\). The imaginary time flux—flux correlation func-

. . . frequency range. Moreover, the best agreement is achieved at
tion can be obtained by performing the replacement low frequencies which are expected to have the largest influ-

—i7in Eq.(39), ence on the reaction rates. The latter are in very good agree-
wﬁ ment with the exact analytic results and the average devia-
Gi(r)=— - - tion does not exceed 10%. We also verified that the rates are
87Z,sin( — wpTy)Sinwp ) independent of the value of. Sincek(w+0) does depend
1 1 on A it follows that C¢(t) depends on it too, which is con-

X| = + = , (36)  sistent with the prediction of YamamotbThe high quality
SiN(—wp7y)  SIN(wpTo) N ] .

of these results was a motivation to treat real simulation data

wherer;=7+N\ and .=~ (7+N\). of a more realistic model which we describe in the next
In Fig. 1 we plotk(w)Z, for the parabolic barrier at four subsection.
different temperatures. The exact results were computed
from the Fourier transform of(t) given in Eq.(35) with a
barrier frequency ofw,=1 a.u. andA=0.053. Maximum
entropy numerical analytic continuation was performed on In this subsection we use the reactive flux analytic con-
mock data generated by adding 1% Gaussian npisth  tinuation method to calculate the canonical rate constants for
respect to the maximum value &(7)] to the analytic re- a double-well bilinearly coupled to a harmonic bath. The
sults of G¢(7) given by Eq.(36). The number of time points Hamiltonian of our system is given by
was set to 256 for the entire time range. Sir@g ) is ) N 2 2
symmetric, all useful information is contained in the time _P Pa E 2( _ 9.8 )
! ) - +V(s)+ 2 +=-myw?| Q, .

range O toB/2—\. Hence only this portion was used in the m a=1|2m, 2 “ mawi
analytic continuation procedure. The number of frequency (37

B. Double-well coupled to a harmonic bath
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TABLE |. Parameters of the model double-well potentials and of the specresults shown below we sat=3/P. In some of the cases
tral density in cm'™. we verified that the rates are independent\ofvithin the
E, oy 0, statistical error.

The time dependent part of the reactive-flux correlation
function, ¢;, was computed by an open chain staging PIMC
simulation. In this case the first and last beads of the reaction
coordinatesy andsp ., 1, were fixed atA and 0, respectively,
whereA arises from a finite difference approximation in Eq.
In the above equatiors,is the reaction coordinate with con- (27). In both cases) was chosen to be 0.1 a.u. The lengths
jugate momenturp and massn; Q,, is the harmonic mode of the simulations and the number of Trotter slices were the
of the discretized bath with conjugate momentBy, mass same as those foy described above.

Dw1 2085 500 500
DwW2 1043 500 100

m, and frequencyw,. The potential along the reaction co- The imaginary time flux—flux correlation functions were
ordinate is a symmetric double-well given by computed from the reactive-flux ones by taking a time de-
V(s)= —a,82+ a,s*, (38) rivative. This was done numerically using a simple two point

forward difference. Our findings indicate that this procedure
The g, are the coupling coefficients between the reactivesignificantly amplifies the statistical noise presenGin(7).
system and the bath that are determined by the Ohmic spektowever, it should be noted that higher order finite differ-

tral density function ence methods were not observed to improve the results.

o 92 The correlation functions evaluated by the above proce-

Jw)== 2, ——8(w—w,)=nwe” . (390  dure were then used as input data for the MaxEnt numerical

2 7 My, analytic continuation procedure. The covariance matrices re-

J(w) was discretized evenly with an incremei, and the ~ guired by the MaxEnt procedure were computed by block

coupling coefficients were calculated according to averaging the MC data. We find that, within the statistical
noise, the matrices are diagonal, with the diagonal elements

gz=3maw2 e @alveh . (40) giving_the estimate_:s of the variances for each of the imagi-

« o “ nary time data pointr;. The MaxEnt procedure was then

In order to compare the escape rates to the work of To_used to determine the frequency dependent rate constant cor-

paler and MakA* we have studied the same double-well SyS_responding to each correlation function, by inverting Eq.
tems as those described in their work. These include a hightQ): The rates computed from the zero mode valuele( af)

barrier model with a wide spectral density labeled DW1, and"¢'® found to be (_)nly weakly dependent on the regulariza-
tion parameter estimated from the L-curve. In each case the

a lower barrier model with a narrower spectral density la- ; : !

beled DW2. The parameters were chosen to model a pr0t0§pacmg gnd the range of the frequency drael} on Wh'Fh

transfer reaction described by the above generic Hamil'Ehe solution was're'presented was acyusted'to obtain con-
verged results. Similar to the parabolic barrier case, a flat

default model(prior distribution with the integral given by

7G(0) was used.

A sample input imaginary time flux—flux correlation

ction for DW2 is shown in the upper panel of Fig. 2 along

tonian, and are summarized in Table I.

We performed PIMC simulations described in Sec. IV in
order to calculate the imaginary time reactive-flux correla-
tion functions for the above two systems. In both cases w
investigated a range of coupling strengths and temperaturzg.n )
studied by Topaler and Mak#. For the symmetric double- with the MaxEnt fit. The lower panel shows the correspond-

well, the ratio between the full and reactant partition function'"9 k(é") COIanut(;d by the mémf]r'ci Qa;)nalyrt]!chcontlnljlatlon
is known analytically to be 2, and hence did not need to pdrocedure. Note the structured shap @b) which was also

determined by simulation. However, our results confirm thaP?S€"ved with the SVD inversion methodot shown. This

it is possible to estimate this ratio from standard umbrellgStructure indicates deviations from quantum transition state

sampling PIMC simulations. In performing the simulationsthﬁ_oLy' smf:de I |mpI|es recrossings gf the _d|V|(;II|ng surfalce
the number of bath modes was chosen to be 100 for DWY’ 'Cf wou g1;_|;]/e rise t_o a stru_c tur_e r%acta/ € fiux colrre a-f
and 50 for DW2. This number of modes was sufficient tol'O" function. The reaction rate is given by the zero value o

obtain converged rates in both cases. k(“’?' Fig. 3 h he d q f1h -
The quantitiesy, and y4, defined in the previous sec- n Fig. 3 we show the dependence of the transmission

tion, were computed from open chain staging PROIG! coefficient,x =k/kyst, on the damping parameteyr for the

simulations. The width of the Gaussians used to approximatQ_W1 systemkrsr is the classical transition state theory rate
the delta functions in Eq$33) and(34) was chosen to be 0.1 given by

a.u. This should be compared to the natural distance wo

Ja;/(2a,), which is 2 a.u. for DW1 and/2 a.u. for DW2. krsT=5_e "%, (41)

In both cases, the systems were equilibrated for 200,000 MC

passes and data was collected for 10 million passes. Eaathere wg=2a;/m. We compare the results with the cal-
pass consisted of attempting moves of all the beads for eaatulations by Topaler and Makri using the quasi adiabatic
degree of freedom. In most cases this was sufficient to obtaipropagator path integrédQUAPI) method and with the quan-
converged results fo. The number of Trotter slices was tum Grote—Hynes theoryQGH).%2 Our results are in very
P=50 to P=128 depending on the temperature. In all thegood agreement with the QUAPI numerical results over the
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0.8 T T 5 T

@)

OQUAPI
@RFAC
—— QGH

tph

(®)

n/(mw,)

FIG. 4. Plot of the quantum transmission coefficient for a range of values of
the friction parameter; for DW2 atT=200 K andP=50. The solid line is

the quantum Grote—Hynes res(iRef. 62. The empty circles are the results
of the the quasi adiabatic propagator path integral metfel. 34. The

2 1 reactive-flux analytic continuation results are shown as solid circles.

Kayx10°
IS

0 0.05 0.1 0.15 02 MaxEnt procedure were larger compared to the results for
ofau] DW?2. We note that we have also carried out simulations for
o . . . DW1 with a larger number of Trotter slices. The level of
FIG. 2. A typical imaginary time flux—flux correlation functiofupper . in th - lati hi d h
pane) and the corresponding frequency dependent fateer panei for ~ NOIS€ IN those simulation was much larger compared to the
DW?2 at 7/mw,=3 andT=200 K. The circles are the PIMC data and the results shown, leading to slightly larger deviation from the
solid lines are the results obtained through maximum entropy inversion. QUAPI results.
It turns out that the classical results for the parameters
chosen for DW#* provide reasonable estimates ®f In

entire range of f”Ct'onS: Near the turnoyer_ fr|ct|on,_o_ur view of that, it is interesting to assess the accuracy of our
method slightly underestimates the transmission Coeﬁ'c'e”%ethod for a more “quantum” systems, such as DW2. The

however, it does capture the turnover from energy to spatigyenendence of the transmission coefficient on the damping
diffusion. For this high barrier case the imaginary time COr-harameter for DW2 is shown in Fig. 4 with the QUAPI and
r<—:t-]lat|ontl‘ulnctlons were more noisy trr:an the results f?r DW2he QGH results. The classical transmission coefficient for
shown below. As a consequence, the error Bad calcu- g case differ by almost an order of magnitude compared to
lable) on the transmission coefficients obtained using the, . quantum mechanical counterpgf©ur results are in

good agreement with the QUAPI results over the entire fric-

55 , , , tion range. They capture the turnover in the transmission
coefficient signifying the crossover from energy to spatial
diffusion.

OQUAPL

It is also interesting to study the temperature dependence
of the rate calculated using the RFAC method. An Arrhenius
plot of the escape rate for DW1 is shown in Fig. 5 where we
compare the RFAC and QUAPI results. Our results are in
excellent agreement with the QUAPI rates over the range of
temperatures characterized by the thermally activated re-
gime. In this range the rates change by 7 orders of magni-
tude. This suggests the wide range of applicability of the
os | ] RFAC method. In the low temperature tunneling regiine.,
below the crossover temperatyré¢he statistical noise was
too large to obtain converged PIMC results for the imaginary
: : : time reactive-flux correlation function, and thus we could not

0 0.5 1 115 2 2.5 3 35 .
N/ (myy) compute the tunneling rates.

FIG. 3. Plot of the quantum transmission coefficient for a range of values OM' CONCLUSIONS

the friction parameter, for DW1 atT=300 K andP=50. The solid line is ; i
the guantum Grote—Hynes res(RRef. 62. The empty circles are the results In this paper we presented a method to compute canoni

of the quasi adiabatic propagator path integral mettRdf. 34. The cal quantum r_eaction rate constants_ in the conden_sed phase.
reactive-flux analytic continuation results are shown as solid circles. The method is based on the reactive-flux formalism com-
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escape rate, or at low frictions where energy diffusion be-
comes important.
O---OQUAPI There are numerous possible improvements for our
method. On one hand, more efficient sampling techniques
are needed to converge the results for PIMC at very low
temperatures in order to obtain tunneling rates. On the other
hand, the numerical analytic continuation method used in
this work is a very basic implementation of the maximum
entropy method. As such, it is quite surprising that the results
for the rates we obtained are in such a good agreement with
st ™~ : ] the numerically exact ones. We believe that considerable im-
O provement can be achieved by using a more sophisticated
T~ maximum entropy procedure. For example, rather than using
O a flat default model, one could use a more informative one.
1 2 3 4 5 6 7 Such a model could be obtained from approximate methods,
Bx10” [a.n.] such as a multi dimensional parabolic approximaffoin
FIG. 5. Plot of the logarithm of the escape rate for DWIpanw,=0.5 as addition, recently it was shown that combining short real-
a function of temperature illustrating the Arrhenius behavior. The quasitime dynamical information with the imaginary time data can
adiabatic propagator path integréiRef. 34 results are shown as empty sjgnificantly improve the quality of the analytically contin-
circles and the dot—da_she_d line. The reactive-ﬂl_Jx analytic continuation eiied result$3%4 Real time PIMC simulatiorfé could be used
sults are shown as solid circles and the dotted line. . . .
to compute the real-time flux—flux correlation function for
short times to be used in combination with imaginary time
data as input for the MaxEnt procedure. All of these ap-
eoroaches will be the subject of future investigation.

log k
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