
JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 6 8 FEBRUARY 2000
Multicanonical jump walk annealing: An efficient method for geometric
optimization
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A new global optimization method, multicanonical jump walk annealing~MJWA!, is proposed and
applied to the geometric optimization of Lennard-Jones and Morse clusters and the hydrophobic
~B!, hydrophilic ~L!, and neutral~N! ~BLN! protein model. The method efficiently finds the global
minima of these systems. In four comparative studies, MJWA greatly outperforms the conventional
simulated annealing in locating the global minima. Theoretical comparison with other global
optimization methods is discussed. Through this paper, we demonstrate a criterion for devising
stochastic global optimization schemes. Namely, a stochastic global optimization method must
favor the global minimum thermodynamically and at the same time be able to cross the high energy
barriers. © 2000 American Institute of Physics.@S0021-9606~00!00706-6#
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I. INTRODUCTION

Efficient global optimization methods are crucial to t
study of many scientific and engineering problems. Fo
specific class of problems, known as NP-compl
problems,1 however, a deterministic polynomial time solu
tion doesn’t exist. In other words, if the size of the system
denoted asN, then the computational cost required to det
ministically find the global optimum of the system is n
bounded by a polynomial ofN. Such problems are encoun
tered in the prediction of the native structures of protein2

the design of very large scale integrated~VLSI! layout,3 the
traveling salesman problem,4 the scheduling of machine
time,5 to name only a few. It is shown that all the NP
complete problems are equivalent in that if a determinis
polynomial time solution is given to one NP-complete pro
lem, then all the other problems in this class are simu
neously solved by a certain mapping of the solution. On
other hand, if a deterministic polynomial solution does n
exist for a particular NP-complete problem, none of t
problems in the class can be solved within polynomial tim

Of the many global optimization problems that are N
complete, minimization of the potential energies of m
ecules with respect to their structures is of particular inte
to chemists. Deterministic approaches such as the branch
bound method6–8 have been adopted in the minimization
many systems. But, because of the prohibitive computatio
cost required in the deterministic methods, significant eff
has been invested in seeking heuristic methods, which
though not guaranteed, find the global minimum at sma
costs. A variety of stochastic global minimization metho
based on Monte Carlo simulations has been developed
successfully applied to a wide spectrum of problems. Amo
the noticeable achievements are simulated annealing~SA!,9

quantum annealing,10–12 basin hopping ~Monte Carlo

a!Electronic mail: berne@chem.columbia.edu
2700021-9606/2000/112(6)/2701/8/$17.00
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minimization!,13,14 J-walking,15 parallel tempering,16,17 the
multicanonical methods,18–20 and very recently, the stochas
tic tunneling method~STUN!.21

A major difficulty for global minimization is to single
out the true global minimum from an enormous number
local minima. In order to efficiently search for the glob
minimum on a rough potential energy surface, a stocha
global optimization method must be able to overcome
high energy barriers adequately so as not to be trappe
some local energy minimum, and explore the low ene
regions sufficiently at the same time. These two requireme
seem to contradict each other at first glance, and the un
isfactory performance of most global optimization metho
can be ultimately attributed to the failure to strike an optim
balance between the two. This problem is manifest in
classical simulated annealing method. At the early stage
the annealing process, the high temperature facilitates
barrier crossing, but the low energy states are inadequa
sampled, while at later stages the low temperature quen
the system to a local energy minimum, and the method f
to explore other low energy regions. This is the reason t
the classical simulated annealing performs unsatisfacto
when applied to sophisticated systems.12 A successful global
optimization method should be crossing the energy barr
and exploring the low energy regions simultaneously,
separately.

In this work we present the multicanonical jump wa
annealing~MJWA! method, which couples classical simu
lated annealing with multicanonical sampling. The canoni
Monte Carlo~MC! sampling digs deep into energy landsca
for low energy minima while the multicanonical samplin
surmounts the energy barriers and prevents the MC pro
being locally trapped. The MJWA is applied to the geomet
optimization of Morse and Lennard-Jones clusters to dem
strate its efficiency.
1 © 2000 American Institute of Physics
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II. METHOD

In the multicanonical ensemble,18,19 the configurations
are sampled with the probability inversely proportional to t
density of states of the corresponding energy, namely,

rmu~r !}
1

V~E~r !!
. ~1!

With this weight factor, the energies are sampled with a
distribution

P~E!}V~E!rmu~E!5V~E!
1

V~E!
51. ~2!

Consequently, the high energy barriers and the low ene
minima are each explored with sufficient frequency.

In practice, the density of statesV(E) is not knowna
priori , and has to be numerically estimated via iterat
simulations.18,19,22Since the probability that a certain energ
E is sampled in a simulation is proportional to the weig
factor r(E) used in the simulation multiplied by the densi
of statesV(E) of that energy, the energy histogramH(E) of
the sampling should satisfy

H~E!}V~E!r~E!. ~3!

If the lowest and highest energies sampled in the simula
areEmin andEmax, respectively, we can estimate the dens
of statesV(E) for Emin<E<Emax from the above relation
Defining the entropy function

S~E!5 ln~V~E!!, ~4!

we have

S~E!5 ln~V~E!!5 ln~H~E!!2 ln~r~E!!

(for Emin<E<Emax). ~5!

The above equations are used to update the estimate o
density of states in each multicanonical iteration, which
turn is used in the weight factor for the next iteration. In ea
iteration the range of the sampled energies increase
width, and extends to the low energy region. The multi
nonical annealing method20 was also proposed as a speci
ized scheme for global optimization. In the multicanonic
annealing method, the width of the sampled energy rang
fixed at a prescribed value, and the energy band moves
ward the low energy region in each iteration.

Multicanonical methods have difficulties in explorin
the low energy regions.23 Because the weight factor used
derived from the previous iterations, it has no informati
concerning the unexplored low energy regions of the la
scape. Therefore, pure multicanonical methods do not
ciently sample low energy configurations.

Our proposed multicanonical jump walk anneali
~MJWA! method solves this problem by coupling a sim
lated annealing procedure to the lower energy end of
multicanonical sampling. Below the lowest energyEmin

sampled in the previous multicanonical iterations, canon
samplings at decreasing temperatures are used, while a
Emin , the configurations are sampled with the multicanoni
method. The canonical annealing efficiently searches the
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energy regions and the multicanonical sampling helps bar
crossing. The procedure of MJWA is outlined as follows:

~1! Starting from a sufficiently high temperatureT0, where
the simulation can cross the high energy barriers f
quently, run a canonical Monte Carlo simulation a
construct the energy histogramH0(E) during the simu-
lation. In the canonical simulation the weight factor us
is just the Boltzmann factorr0(E)5exp(2b0E), where
b051/T0, therefore from Eq.~5!, our first estimate of the
entropy function is

S0~E!5ln~H0~E!!2ln~r0~E!!

5ln~H0~E!!1b0E ~Emin
0 <E<Emax

0 ! ~6!

whereEmin
0 andEmax

0 are the lowest and highest energi
sampled in the canonical simulation, respectively.

~2! Anneal the temperature by a preselected cooling fac
j,1,

Tk115Tk j, ~7!

where k50,1,. . . , and construct the following weight
factor from the estimated entropy functionSk(E) ob-
tained in the previous iteration, and temperatureTk11:

rk11~E!5Hexp~2bk11E! if E,Emin
k

exp~2Sk~E!! if Emin
k <E<Emin

k 1Ewindow

0 if E.Emin
k 1Ewindow

,

~8!

whereEwindow is the prescribed energy band width, an
bk1151/Tk11.

~3! Carry out a Monte Carlo simulation using the abo
weight factor. The random trial mover→r 8 in the MC
simulation is accepted with the following probability:

acc~r 8ur !5minH1,
rk11~E~r 8!!

rk11~E~r !!
J . ~9!

The energy histogramHk11(E) is constructed during the
simulation, and the lowest energy configuration enco
tered so far is saved.

~4! Update the entropy function estimateSk11(E) using

Sk11~E!5 ln~Hk11~E!!2 ln~rk11~E!!~ for Emin<E

<Emax!. ~10!

~5! Repeat steps~2!–~4! for a certain number of iterations til
the temperatureTk anneals to near zero.

We call the method ‘‘jump’’ walk because it switche
from a canonical annealing to a multicanonical sampling
the energy crossesEmin

k , resembling a jump between the c
nonical ensemble and the multicanonical ensemble.
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method differs from the pure multicanonical anneali
method in that we systematically anneal the sampling te
perature in the low energy region.

III. RESULTS AND DISCUSSION

The MJWA method is first applied to the geometric o
timization of Lennard-Jones and Morse clusters. Th
model clusters serve as prototypes in the study of real ato
clusters. For example, argon clusters in gas phase are
well modeled by the Lennard-Jones clusters,24 while sodium,
potassium,25 and C60

26 clusters can be modeled by Mors
clusters. These two model systems also serve as a stan
test field for global optimization methods.13,27

A. Lennard-Jones clusters

The Lennard-Jones clusters are bound by the potent

V~rN!54«(
i , j

S S s

r i j
D 12

2S s

r i j
D 6D , ~11!

wherer i j is the interatomic distance between theith and the
jth atoms. In this work, the reduced units are used,
«51.0, s51.0.

Lennard-Jones clusters with up to 30 atoms were m
mized using MJWA. Five MJWA simulations were carrie
out for each cluster size. For clusters with size up to 20
few as 200 000 MC sweeps were used in each MJWA sim
lation, while for clusters with size between 21 and 3
1 000 000 total MC sweeps were used. The starting temp
ture of the annealing process wasT051.0 ~in reduced units!.
The performance of the simulations proved not sensitive
the annealing schedule. Here, we present the results obta
through 100 iterations with the cooling factorj50.933 25,
which are summarized in Table I. For most of the cluste
the MJWA method finds the global minima with satisfacto
success ratio. Through the trials, however, we found that
Lennard-Jones clusters with 17 and 27 atoms pose an i
esting challenge to global optimization methods. As sho
in the table, only one out of five MJWA trials in these sim
lations located the global minima of 17- and 27-ato
Lennard-Jones clusters successfully. We had to increase
computational cost to find the global minima of these t
clusters with satisfactory success ratio. We also made a c
parative study between the conventional simulated annea
and MJWA on these two clusters.

B. Comparison with SA

1. 17-atom Lennard-Jones cluster

The 17-atom Lennard-Jones cluster has three lowest
ergy structures that have very similar geometries and
very close in potential energy. All three structures have
atoms forming an icosahedron, with the other 4 atoms fo
ing a ‘‘cap’’ on its top. The lowest energy structure has t
energyE15261.317 995. Its cap atoms are positioned in
zigzag fashion, and it belongs to the point groupC2 . The
second lowest energy structure has the energyE2

5261.307 146, with the cap atoms forming a trapezoid, a
belongs to the point groupCv . The third lowest energy
structure has the energyE35261.296 768 and belongs t
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the point groupC3v . Three of its cap atoms forming a
equilateral triangle, with the fourth atom sitting at the cent
The energy difference between the three structures ma
comes from the subtle difference in the interaction of t
four cap atoms. In other words, the energy difference res
from different surface tension.

The annealing schedules for both the SA and MJW
were first optimized via numerous trials. Ten independ
trials for each method were then carried out using the o
mized schedule. In SA the temperature was annealed e
nentially in 8000 stages from 1.0 to 0.001, and the syst
was equilibrated for 500 MC sweeps at each stage. Th
fore, a total of 4 000 000 MC sweeps was used in each
simulation. Out of the ten SA trials only one trial located t
correct global minimum, while eight trials annealed the clu
ter to the second lowest energy structure. A partial reason
favoring the second lowest energy structure is that we eli
nated the rotational degrees of freedom in our simulatio
making the lowest energy nondegenerate, while leaving
second lowest energy level twofold degenerate. Since th
two structures are very close in energy, a conventional
nealing process will lead to a structure with the probabil
proportional to its degeneracy, thus favoring the second lo
est energy structure.

The MJWA method was implemented in 100 iteration
with 40 000 MC sweeps in each iteration, bringing the to
MC sweeps up to 4 000 000, the same as that in SA. Ou

TABLE I. Global minima of Lennard-Jones clusters found by multicano
cal jump walk annealing. For each cluster a total of five trials was car
out, and the number of trials that successfully locate the global minimum
presented in the table. The annealing was implemented with 100 iterat
For clusters with size no larger than 20, a total of 200 000 MC sweeps
used in each simulation, otherwise 1 000 000 MC sweeps were used.

Cluster sizen
Global minimum

found
Number of

successful trials

5 29.103 852 5
6 212.712 062 5
7 216.505 384 5
8 219.821 489 5
9 224.113 360 5

10 228.422 532 5
11 232.765 970 5
12 237.967 600 5
13 244.326 801 5
14 247.845 157 5
15 252.322 627 5
16 256.815 742 5
17 261.317 995 1
18 266.530 949 3
19 272.659 782 5
20 277.177 043 4
21 281.684 571 2
22 286.809 782 5
23 292.844 472 5
24 297.348 815 4
25 2102.372 663 5
26 2108.315 616 5
27 2112.873 584 1
28 2117.822 402 4
29 2123.587 371 5
30 2128.286 571 2
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the ten trials, eight found the global minimum successfu
which is eight times better than SA. The advantage
MJWA over SA comes from its ability to cross the hig
energy barriers between the local minima. The lowest t
structures can interconvert between each other, enabling
method to find the true global minimum.

2. 27-atom Lennard-Jones cluster

The 27-atom Lennard-Jones~LJ! cluster has two low
lying energy structures that are close in potential energy.
global minimum lies atE152112.873 584 and has the sym
metry C2v . The second lowest structure has the energyE2

52112.825 518 and belongs to the point groupCs . The
simulated annealing was implemented in 8000 annea
stages, with 1000 MC sweeps at each stage. Thus, eac
simulation consisted of 8 000 000 MC sweeps in tot
MJWA was implemented with 100 iterations, and in ea
iteration 80 000 MC sweeps were used, so a total 8 000
MC sweeps was used in each simulation, the same as us
SA. Ten independent MJWA and SA simulations were c
ried out. Out of the ten SA trials, only one found the tr
global minimum, while all the other nine trials annealed
the second lowest structure. On the other hand, five ou
the ten MJWA trials found the global minimum, which
five times better than SA.

C. Morse clusters

The Morse potential can be expressed as

V~rN!5(
i , j

el(12r i j /r e)@el(12r i j /r e)22#«. ~12!

After adopting the reduced units and settingr e and« to
be 1, we are left with a free parameterl which decides the
range of the pairwise interaction. Largel corresponds to
short-ranged interactions and smalll to long-ranged.

The MJWA method was applied to Morse clusters w
long- and short-ranged interactions, i.e.,l53,6,10. The glo-
bal minima were found for clusters of up to 20 atoms. Glo
minimization for long ranged interaction Morse clusters is
relatively easy task. For clusters withl53,6 short MJWA
simulations with 200 000 total MC sweeps sufficed to loc
the global minima with good performance. The glob
minima for clusters with short-ranged interactions are c
siderably more difficult to find because of the increased
ergy barriers and the rough energy landscapes assoc
with short-range interactions.28 Therefore, for Morse cluster
with l510, a total of 1 000 000 MC sweeps was used
each simulation. As in the study of LJ clusters, the syst
was annealed in 100 iterations. The starting temperature
T51.0, and the cooling factor wasj50.933 25. The results
are summarized in Table II. MJWA located the glob
minima for most clusters with good success ratio, except
the short ranged (l510) 18-atom cluster. For this singula
case, a total of 5 000 000 MC sweeps was used in e
MJWA simulation to obtain an acceptable success ratio
60%.
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D. Comparison between MJWA and SA

Morse clusters bound by extremely short-ranged inter
tions pose a severe challenge to any global optimiza
methods. The energy landscape of such clusters resem

TABLE II. The global minima of Morse clusters found by multicanonic
jump walk annealing.l is the range parameter in the Morse potential@cf.
Eq. ~12!#. The system was annealed via 100 iterations. Forl53,6, a total of
200 000 MC sweeps was used in each simulation, while forl510, a total of
1 000 000 MC sweeps was used. Five trials were carried out for cluste
each size. As shown in the table, for most clusters, MJWA finds the cor
global minima with high success ratio. Forn518, l510, however, an
MJWA with 1 000 000 total MC sweeps failed to find the global minimum
and we had to increase the total number of MC sweeps to 5 000 000 to
a satisfactory success ratio.

Cluster sizen l
Global minimum

found
Number of

successful trials

5 3 29.299 500 5
5 6 29.044 930 5
5 10 29.003 565 5
6 3 213.544 229 5
6 6 212.487 810 5
6 10 212.094 943 5
7 3 217.552 961 5
7 6 216.207 580 4
7 10 215.956 512 5
8 3 222.042 901 5
8 6 219.327 420 5
8 10 218.964 638 5
9 3 226.778 449 5
9 6 223.417 190 5
9 10 222.850 758 5

10 3 231.888 630 5
10 6 227.473 283 5
10 10 226.583 857 5
11 3 237.930 817 5
11 6 231.521 880 5
11 10 230.265 230 4
12 3 244.097 880 5
12 6 236.400 278 5
12 10 234.366 755 5
13 3 251.737 046 5
13 6 242.439 863 5
13 10 239.662 975 3
14 3 256.754 744 5
14 6 245.619 277 5
14 10 242.675 222 5
15 3 263.162 119 5
15 6 249.748 409 5
15 10 246.541 404 5
16 3 269.140 648 5
16 6 253.845 835 5
16 10 250.261 947 5
17 3 275.662 417 5
17 6 257.941 386 3
17 10 253.983 559 2
18 3 282.579 266 4
18 6 262.689 245 3
18 10 257.657 135 3a

19 3 290.647 461 5
19 6 268.492 285 3
19 10 262.166 843 3
20 3 297.417 393 5
20 6 272.507 782 5
20 10 265.679 115 3

aFor this system, 53106 MC sweeps were used in each simulation.
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that of a golf course, consisting of a multitude of loc
minima that are very close in energy and separated by h
energy barriers.28 The conventional simulated annealin
method can be trapped in any one of these local minima
fails to anneal to the true global minimum. The MJW
method, on the other hand, can always escape any loca
ergy minimum trap, due to the coupled multicanonical sa
pling, and will thus eventually anneal to the global min
mum.

A comparative study between SA and MJWA is done
a cluster of 13 atoms, interacting through the very sh
ranged Morse potential withl514. @cf. Eq. ~12!# This sys-
tem is chosen because its energy landscape has been
oughly studied28 and its icosahedral global minimum stru
ture (E5237.258 877 in reduced unit! has been determine
with fair confidence.

Optimized annealing schedules for both the conventio
simulated annealing and MJWA were first determined vi
large number of trials. Ten independent SA and MJW
simulations were then carried out using the optimized
nealing schedule. In SA the temperature was annealed e
nentially in 8000 stages from 1.0 to 0.001, and at each s
the system was equilibrated for 250 MC sweeps. Theref
the total number of sweeps was 2 000 000 in each SA si
lation. Out of the ten trials, only two successfully located t
global minimum. In MJWA 50 iterations were used, and
each iteration the system was advanced for 40 000
sweeps, therefore, 2 000 000 MC sweeps in total were u
in each simulation, the same as that in SA. Out of the
MJWA trials, six of them successfully located the glob
minimum. The MJWA method is thus found to be thr
times more efficient than the conventional SA method in t
case.

E. BLN-protein model

Simplified protein models are often used to test com
tational methods for native structure prediction. In this wo
we applied the MJWA method to the global minimization
the BLN-protein model.29–31 The model protein sequenc
consists of three kinds of residues: hydrophobic (B), hydro-
philic (L), and neutral (N). The residues contribute to th
potential energy of the protein in the following terms:

Ep~$r i%!5Vbl~$r i%!1Vba~$u i%!1Vdih~$f i%!1Vnb~$r i j %!,
~13!

where

~i! Bond length potential

Vbl~$r i%!5 (
i 51

N21
kr

2
~ ur i 112r i u2a!2, ~14!

where kr5400«h /a2. a is the average bond length be
tween two residues, taken to be 1 in our study.«h is the
average strength of the hydrophobic interaction, a
taken to be 1 to simplify the computation. The bo
length potential restricts the bonds to stretch and co
press around the equilibrium length.
l
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~ii ! Bond angle potential

Vba~$u i%!5 (
i 51

N22
ku

2
~u i2u0!2, ~15!

where u i is the bond angle between (r i2r i 11) and
(r i 122r i 11), ku520«h andu051.8326. Bond angle po
tential controls the bending vibration of the bonds.

~iii ! Dihedral angle potential

Vdih~$f i%!5 (
i 51

N23

@Ai~11cosfi!1Bi~11cos 3fi!#, ~16!

wheref i is the dihedral angle formed by the four su
cessive residuesi ,i 11,i 12, andi 13. If two or more of
the four residues are neutral (N), Ai50 and Bi

50.2«h , otherwiseAi5Bi51.2«h . Dihedral angle po-
tential arises from the steric hindrance of the bon
rotation.

~iv! Non-bonded potential

Vnb~$r i j %!5 (
i 51

N23

(
j 5 i 13

N

Vab~r i j !, ~17!

wherer i j 5ur i2r j u anda,b5B,L, or N. Vab represents
the interaction between the residues that are not
valently bonded and is the main factor for the foldin
process.

VLb~r i j !54« lF S a

r i j
D 12

1S a

r i j
D 6G ~b5Bor L,« l5

2
3 «h!,

~18!

VNb~r i j !54«hF S a

r i j
D 12G ~b5B,N,or L !, ~19!

VBB~r i j !54«hF S a

r i j
D 12

2S a

r i j
D 6G . ~20!

In this paper we used the MJWA method to search
the global minimum of a BLN-protein consisting of 46 res
dues with the sequenceB9N3(LB)4N3B9N3(LB)5L. This
system has been shown as a highly frustrated system.32 The
lowest four minimum structures found have similar barr
like geometry and their energies differ only in the first de
mal place.12 The true global minimum lies atE
5249.263 512«h .

Simulations of considerable length have to be used
locate the global minimum of this system. We carried out
independent MJWA simulations, each consisting of 200
nealing iterations and 150 000 MC sweeps per iteration. T
a total of 303106 MC sweeps was used in each of the
simulations. The starting temperatureT0 was fixed atT0

53.0«h /kB , wherekB is the Boltzmann constant, and th
cooling factor used wasj50.960 76. In the first ten simula
tions, a zigzag structure was used as the initial configurat
The residues were placed so that all the bond lengths wea,
all the bond angles wereu0, and all the dihedral angles wer
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TABLE III. Comparison between the MJWA method and simulated annealing. Same cost~total MC sweeps!
was employed in both methods for each system studied. The successful trials are those that located
global minima. The ratios of the number of successful trials versus the total number of trials are presen
both methods. The advantage of the MJWA method over SA is manifest.

Molecular system Global minimum Total MC sweeps

Successful trials/Total trials

MJWA SA

LJ$n517% 261.317 995 43106 8/10 1/10
LJ$n527% 2112.873 584 83106 5/10 1/10
Morse$n513,l514% 237.258 877 23106 6/10 2/10
LNB-46-mer 249.263 512 303106 14/20 4/20~Ref.12!
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p. Because different random number sequences were us
each of these simulations, the results were uncorrelated.
out of these ten simulations successfully located the glo
minimum. In the other ten simulations, the residues w
randomly positioned in a box at the beginning of the sim
lation. In this case five out of the ten simulations located
true global minimum. The combined success rate is thus
out of 20, or 70%, which is a significant improvement co
pared to the optimal success rate of 20% for simulated
nealing at the same cost.12 Comparison between the MJWA
and SA methods is summarized in Table III.

IV. DISCUSSION

From the point of view of thermodynamics, Monte Car
methods more frequently sample the states correspondin
low free energies. For many molecular systems, the glo
potential energy minimum becomes the free energy m
mum only at a relatively low transition temperature. At
higher temperature other local minima dominate thermo
namics because of the associated larger entropy.33 The global
energy minimum becomes thermodynamically favored o
at temperatures below the transition point. Suppose a l
energy minimumr2

N has the energyE2 and the entropyS2,
while the global energy minimumr1

N has the energyE1

,E2 and the entropyS1. The two minima are separated by
high energy barrier. In the case whereS1,S2, the global
energy minimumr1

N has lower free energyF15E12TS1

than the local energy minimumr2
N only when the tempera

ture is below the transition pointTc5DE/DS, where DE
5E22E1.0 and DS5S22S1.0. Consequently, at tem
peratures above the transition temperature, Monte C
samples the local minimumr2

N more frequently than the glo
bal minimum. At low temperatures, however, the syst
cannot cross the energy barrier and commute between
minima, so a simulation starting from a local minimum co
figuration may fail to visit the global minimum in a simula
tion of finite length. The conventional simulated anneali
method fails for such cases because it traps the system i
regions of large entropy as the temperature cools down
sulting in a ‘‘supercool’’ system. It has been suggested t
slowing down the cooling procedure around the transit
temperature will help SA locate the global minimum. Th
practice, however, entails pinpointing the transition point
every system to be studied. The MJWA method elimina
these supercool traps by forcing the system to always sam
the high energy regions. Through the annealing of the te
in
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perature at the low energy end, the MJWA method enfor
the transition in which the global potential energy minimu
becomes the free energy minimum as the temperature d
below the transition pointTc . In MJWA there is no kinetic
barrier as in SA, consequently, the method should alw
locate the global minimum in a simulation of reasonab
length.

The criteria for an efficient stochastic global optimiz
tion method are therefore:

~1! In thermodynamics, the sampling should enforce the g
bal potential energy minimum to be the free ener
minimum.

~2! In kinetics, the method should be able to cross the h
energy barriers.

Many stochastic global optimization methods have been
veloped in accordance with these criteria. Here, we brie
examine some of them.

In the J-walking method,15 and its later modified ver-
sion, parallel tempering method,16,17 several samplings a
temperatures ranging from very low to sufficiently high a
carried out in parallel, and samplings at adjacent tempe
tures can occasionally exchange configurations with e
other with certain criteria to maintain equilibrium. In th
way, the sampling at low temperatures takes the respons
ity of searching the low energy regions, while the sampli
at the higher temperatures help the low temperature samp
to overcome high energy barriers through the exchange.
drawback of theJ-walking method and the parallel tempe
ing method, as has been pointed out in other papers,15,23,34is
that for the exchanges to be adequately successful, the
peratures chosen have to be closely spaced. As a res
large number of samplings are needed, entailing huge c
putational cost. Moreover, the temperature spacing i
problem-dependent parameter that requires physical ins
to be adjusted to optimize the method’s performance
troublesome factor for the method’s general applicability.

The multicanonical methods force the sampling to p
form a one-dimensional random walk in the scalar ene
space, and sample all the energies within a certain range
a uniform distribution. In other words, the high energy ba
riers and the low energy minima are equally visited, the
fore meeting both of the two criteria stated previously. T
generic disadvantage of the purely multicanonical metho
as pointed out in Sec. II, is that in practice it is often inef
cient in exploring low energy regions, which severely han



-
o
a

pe
is

th

i-
th

m
re
ry

ob

t h

s

ov
ed
s
e
r

ua
u
ow
m
th

fa
l
d
a
rk
in

d
lob

th
a
p
ap
th
, i

n
-
ic

p
al
cy
nd

on-
u-

WA
aling
hat
o
be-
en-

m
dy-

uld
gu-
n-
od

ergy
ics

hen
rgy

i-
ble
ical

a
g a
ay-

i-
m-
-

ol.

ys.

2707J. Chem. Phys., Vol. 112, No. 6, 8 February 2000 Multicanonical jump walk annealing
caps its candidacy for global optimization method.
Both the basin hopping method13,14 and stochastic tun

neling method21 ~STUN! transform the energy surface t
eliminate or reduce the energy barriers while maintaining
the minima. In basin hopping, the energy surface is map
to its locally minimized counterpart, namely, the sampling
done on the following transformed energy surface instead
on the original one

Ẽ~r !5min$E~r !%, ~21!

where r represents a configuration and min means that
energy is locally minimized starting fromr . With this trans-
formation, the resistance to the intrawell motion is elim
nated while the interwell barrier heights are reduced to be
energy differences between local minima. At the same ti
all the minima are preserved. Basin hopping, however,
quires local minimization at every step; therefore, it is ve
computationally expensive. This also forbids its use in pr
lems where local minimization is impossible.

The stochastic tunneling method21 dynamically trans-
forms the energy surface, based on the lowest energy tha
currently been sampled. The transformation is simple

Ẽ~r !512exp@2g~E~r !2E0!#, ~22!

whereE0 is the lowest energy sampled so far in the proce
and g is a problem-dependent parameter. This transform
tion squeezes all energies aboveE0 into the small interval
@0,1#, thus drastically decreasing the energy barriers ab
E0, eliminating the possibility for the sampling to be trapp
in any located local minima. On the other hand, it suppres
the energies belowE0 to be immensely lower, enhancing th
search for lower energies. STUN, however, uses a unifo
transformation that ignores the particulars of each individ
system, and the method has very little control over distrib
ing the sampling points evenly over high energy and l
energy regions.~The method does this by adjusting the sa
pling temperature according to the energy distribution in
sampling.! In fact, the problem-dependent parameterg de-
termines the steepness of the transformed energy sur
and it effectively reflects aguessat the shape of the origina
energy landscape. In most cases it has to be determine
trial and error. We find that it is difficult to determine
properg in STUN for the test cases we studied in this wo
The MJWA method, in contrast, uses the system-specific
formation, the density of statesV(E), to insure that both the
high and low energies are sampled evenly, and uses the
creasing temperature to help anneal the system to the g
minimum.

The essential message we want to convey here is
stochastic global optimization methods should utilize
much information available from the system to strike an o
timal balance between escaping local energy minimum tr
and exploring the low energy configurations. We regard
multicanonical methods as a major step in this direction
that they use the density of statesV(E) as the extra infor-
mation to aid the search. The MJWA method suppleme
this extra information with a little more control by introduc
ing an annealing process at the lower energy end, wh
improves the sampling in the low energy regions.
ll
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V. CONCLUSION

In this paper, we introduced the multicanonical jum
walk annealing~MJWA! method as a new stochastic glob
optimization approach. We demonstrated its efficien
through the geometric optimization of Lennard-Jones a
Morse clusters and the BLN-protein model. We also dem
strated the new method’s superiority over conventional sim
lated annealing through a set of comparative studies. MJ
has an advantage over the conventional simulated anne
because it avoids the local energy minimum traps t
trouble the SA method in cases of ‘‘super cooling.’’ It als
has an advantage over the pure multicanonical methods
cause the decreasing temperature at the low energy end
forces the transition in which the global energy minimu
becomes the free energy minimum and thus is the thermo
namically favored state.

Our aim was to devise an annealing method that co
cross high energy barriers and explore low energy confi
rations at the same time. The multicanonical jump walk a
nealing method is a stochastic global optimization meth
that overcomes energy barriers and explores the low en
regions at the same time. In the language of thermodynam
this means that MJWA is able to cross energy barriers w
the global potential energy minimum is also the free ene
minimum.

In this work, we also want to show that a global optim
zation method should utilize as much information availa
about the system to guide the search. In the multicanon
ensemble, this information is the density of statesV(E) at
each energy level. Looking for the global minimum on
sophisticated energy landscape is analogous to findin
needle in a haystack. It helps to know more about the h
stack and the needle.
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