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Multicanonical jump walk annealing: An efficient method for geometric
optimization
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A new global optimization method, multicanonical jump walk annea(MdWA), is proposed and
applied to the geometric optimization of Lennard-Jones and Morse clusters and the hydrophobic
(B), hydrophilic(L), and neutra[N) (BLN) protein model. The method efficiently finds the global
minima of these systems. In four comparative studies, MJWA greatly outperforms the conventional
simulated annealing in locating the global minima. Theoretical comparison with other global
optimization methods is discussed. Through this paper, we demonstrate a criterion for devising
stochastic global optimization schemes. Namely, a stochastic global optimization method must
favor the global minimum thermodynamically and at the same time be able to cross the high energy
barriers. © 2000 American Institute of Physid$S0021-9606)0)00706-4

. INTRODUCTION minimization,**** J-walking*® parallel tempering®*’ the

. o . multicanonical method¥-?°and very recently, the stochas-
Efficient global optimization meth re crucial to the .. . ' '
cient global op ation methods are crucial to et|c tunneling methodSTUN) 2:

study of many scientific and engineering problems. For a A or difficulty f lobal minimization i inal
specific class of problems, known as NP-complete major difficulty for global minimization Is to single

problemst however, a deterministic polynomial time solu- Ot the true global minimum from an enormous number of
tion doesn't exist. In other words, if the size of the system i0cal minima. In order to efficiently search for the global
denoted a\, then the computational cost required to deter-Minimum on a rough potential energy surface, a stochastic
ministically find the global optimum of the system is not global optimization method must be able to overcome the
bounded by a polynomial dfl. Such problems are encoun- high energy barriers adequately so as not to be trapped in
tered in the prediction of the native structures of protéins, some local energy minimum, and explore the low energy
the design of very large scale integrai@d Sl) layout? the  regions sufficiently at the same time. These two requirements
traveling salesman problefnthe scheduling of machine seem to contradict each other at first glance, and the unsat-
time? to name only a few. It is shown that all the NP- jsfactory performance of most global optimization methods
complete problems are equivalent in that if a deterministiccan be ultimately attributed to the failure to strike an optimal
polynomial time solution is given to one NP-complete prob-pajance between the two. This problem is manifest in the
lem, then all the other problems in this class are simultagjassical simulated annealing method. At the early stages of
neously solved by a certain mapping of the solution. On thgne annealing process, the high temperature facilitates the
other hand, if a deterministic polynomial solution does NOYy - rrier crossing, but the low energy states are inadequately

exist for a particular NP-complete prpplem, nhone Of.thesampled, while at later stages the low temperature quenches
problems in the class can be solved within polynomial time,

Of the many global optimization problems that are NP-the system to a local energy mir_1imum, gn(_j the method fails
complete, minimization of the potential energies of mol-© explorg othe.r low energy reglons. This is the regson th.at
ecules with respect to their structures is of particular interesi'€ classical simulated annealing performs unsatisfactorily
to chemists. Deterministic approaches such as the branch aM#'en applied to sophisticated systetfhig\ successful global
bound methof® have been adopted in the minimization of OPtimization method should be crossing the energy barriers
many systems. But, because of the prohibitive computation#nd exploring the low energy regions simultaneously, not
cost required in the deterministic methods, significant efforseparately.
has been invested in seeking heuristic methods, which, al- In this work we present the multicanonical jump walk
though not guaranteed, find the global minimum at smalleannealing(MJWA) method, which couples classical simu-
costs. A variety of stochastic global minimization methodslated annealing with multicanonical sampling. The canonical
based on Monte Carlo simulations has been developed arMonte Carlo(MC) sampling digs deep into energy landscape
successfully applied to a wide spectrum of problems. Amongor low energy minima while the multicanonical sampling
the noticeable achievements are simulated anne&8#9,”  surmounts the energy barriers and prevents the MC process
quantum annealin,"*? basin hopping (Monte Carlo  peing locally trapped. The MIWA is applied to the geometric
optimization of Morse and Lennard-Jones clusters to demon-
dE|ectronic mail: berne@chem.columbia.edu strate its efficiency.
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Il. METHOD energy regions and the multicanonical sampling helps barrier

) ) 19 ) ) crossing. The procedure of MJWA is outlined as follows:
In the multicanonical ensembt&!® the configurations

are sampled with the probability inversely proportional to the(1) Starting from a sufficiently high temperatutg, where

density of states of the corresponding energy, namely, the simulation can cross the high energy barriers fre-
quently, run a canonical Monte Carlo simulation and

construct the energy histograr(E) during the simu-
lation. In the canonical simulation the weight factor used
is just the Boltzmann factop’(E) = exp(— B,E), where
Bo= 1T, therefore from Eq(5), our first estimate of the

Pmu(f)“m- (1)

With this weight factor, the energies are sampled with a flat

distribution P
entropy function is
1
P(E)“Q(E)Pmu(EFQ(E)m:l- 2 L (E)=In(H(E))—In(p%(E))
Consequently, the high energy barriers and the low energy =IN(HYE)+BE (Ein<E<Epa0 (6
minima are each explored with sufficient frequency.
In practice, the density of staté3(E) is not knowna whereE?,, andE? _, are the lowest and highest energies

priori, and has to be numerically estimated via iterative  sampled in the canonical simulation, respectively.

simulationst®1°22Since the probability that a certain energy

E is sampled in a simulation is proportional to the weight(2) Anneal the temperature by a preselected cooling factor

factor p(E) used in the simulation multiplied by the density <1,

of states()(E) of that energy, the energy histogratE) of

the sampling should satisfy T 1=Ti &, (7)
H(E)xQ(E)p(E). ©) wherek=0,1,..., andconstruct the following weight

If the lowest and highest energies sampled in the simulation factor from the estimated entropy functid{(E) ob-

areE ., andE, ., respectively, we can estimate the density  tained in the previous iteration, and temperatlig ;:

of statesQ)(E) for E,,<E<E,,a from the above relation.

Defining the entropy function exp(— B 1E) if E<EK,.
S(E)=In(Q(E)), @ PHE)={ ex—S(E)  if Efn=E<Efn+ Ewindow,
we have 0 if E>Ein* Ewindow
S(E)=In(Q(E))=In(H(E)) —In(p(E)) ©
(for En<E<E, ). (5) whereE,inqow iS the prescribed energy band width, and
Br+1= Uy 1.

The above equations are used to update the estimate of tf@ Carry out a Monte Carlo simulation using the above
density of states in each multicanonical iteration, which in weight factor. The random trial move—r’ in the MC

Furn 'S used in the weight factor for the next |t'erat!on. In each simulation is accepted with the following probability:
iteration the range of the sampled energies increases in
width, and extends to the low energy region. The multica-
. . . k+1(E(rr))
nonical annealing meth88was also proposed as a special- P
ized scheme for global optimization. In the multicanonical 'p"”(E(r)) '
annealing method, the width of the sampled energy range is

fixed at a prescribed value, and the energy band moves to- The energy histograri<* 1(E) is constructed during the

ward the low energy region in each iteration. _ simulation, and the lowest energy configuration encoun-
Multicanonical methods have difficulties in exploring tered so far is saved.

the low energy region& Because the weight factor used is
derived from the previous iterations, it has no information
concerning the unexplored low energy regions of the land-
scape. Therefore, pure multicanonical methods do not effi- S *(E)=In(H*"*(E))—In(p***(E))(for Epn<E
ciently sample low energy configurations.
; ; . . <Ena- (10

Our proposed multicanonical jump walk annealing
(MJWA) method solves this problem by coupling a simu-
lated annealing procedure to the lower energy end of th
multicanonical sampling. Below the lowest ener@y,,
sampled in the previous multicanonical iterations, canonical We call the method “jump” walk because it switches
samplings at decreasing temperatures are used, while abofrem a canonical annealing to a multicanonical sampling as
Emin. the configurations are sampled with the multicanonicathe energy crosses),,, resembling a jump between the ca-
method. The canonical annealing efficiently searches the lowonical ensemble and the multicanonical ensemble. Our

acc(r’|r)=min[1 9

(4) Update the entropy function estima®"(E) using

és) Repeat step&)—(4) for a certain number of iterations till
the temperaturd@ anneals to near zero.
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method differs from the pure multicanonical annealingTABLE I. Global minima of Lennard-Jones clusters found by multicanoni-

method in that we systematically anneal the sampling temgal jump walk annealing. For each cluster a total of five trials was carried
t in the | . out, and the number of trials that successfully locate the global minimum is
perature in the low energy region. presented in the table. The annealing was implemented with 100 iterations.

For clusters with size no larger than 20, a total of 200 000 MC sweeps was

IIl. RESULTS AND DISCUSSION used in each simulation, otherwise 1 000 000 MC sweeps were used.
The MIJWA method is first applied to the geometric op- Global minimum Number of
timization of Lennard-Jones and Morse clusters. These Cluster sizen found successful trials
model clusters serve as prototypes in the study of real atomic 5 9103852 5
clusters. For example, argon clusters in gas phase are very 6 —~12.712 062 5
well modeled by the Lennard-Jones clustérahile sodium, 7 —16.505 384 5
potassiunf> and G2° clusters can be modeled by Morse 8 —19.821 489 5
clusters. These two model systems also serve as a standard 1?) :gg'ig ggg g
test field for global optimization method%2’ 1 32765 970 c
12 —37.967 600 5
A. Lennard-Jones clusters 13 44326801 c
The Lennard-Jones clusters are bound by the potential 14 —47.845157 5
- 6 15 —52.322 627 5
o o 16 —56.815 742 5
V(rN)=4¢ > ((—> —(— : (13) 17 ~61.317 995 1
<5 Fii 18 —66.530 949 3
wherer;; is the interatomic distance between itieand the 19 —72.659782 5
jth atoms. In this work, the reduced units are used, i.e., 20 ~/7.177043 4
21 —81.684 571 2
e=10,0=10. 22 ~86.809 782 5
Lennard-Jones clusters with up to 30 atoms were mini- 23 —92.844 472 5
mized using MJWA. Five MJWA simulations were carried 24 —97.348 815 4
out for each cluster size. For clusters with size up to 20, as 25 —102.372663 5
few as 200 000 MC sweeps were used in each MJWA simu- ;S :ﬁ’gg%g géi 51_’
lation, while for clusters with size between 21 and 30, o8 _117.822 402 4
1000 000 total MC sweeps were used. The starting tempera- 29 —123.587 371 5
ture of the annealing process whg= 1.0 (in reduced units 30 —128.286571 2

The performance of the simulations proved not sensitive t
the annealing schedule. Here, we present the results obtained

through 100 iterations with the cooling fact§r0.933 25, _ ) )

which are summarized in Table I. For most of the clustersth® point groupCs, . Three of its cap atoms forming an
the MJWA method finds the global minima with satisfactory equilateral trla_ngle, with the fourth atom sitting at the centgr.
success ratio. Through the trials, however, we found that théhe energy difference between the three structures mainly
Lennard-Jones clusters with 17 and 27 atoms pose an intefOmMes from the subtle difference in the interaction of the
esting challenge to global optimization methods. As showrOUr cap atoms. In other words, the energy difference resulits
in the table, only one out of five MJWA trials in these simu- from different surface tension.

lations located the global minima of 17- and 27-atom  1he annealing schedules for both the SA and MIJWA
Lennard-Jones clusters successfully. We had to increase t¢ere first optimized via numerous trials. Ten independent
computational cost to find the global minima of these twot“?‘ls for each method were then carried out using the opti-
clusters with satisfactory success ratio. We also made a conf?ized schedule. In SA the temperature was annealed expo-

parative study between the conventional simulated annealingéntially in 8000 stages from 1.0 to 0.001, and the system
and MJWA on these two clusters. was equilibrated for 500 MC sweeps at each stage. There-

fore, a total of 4000000 MC sweeps was used in each SA
simulation. Out of the ten SA trials only one trial located the
correct global minimum, while eight trials annealed the clus-
ter to the second lowest energy structure. A partial reason for
The 17-atom Lennard-Jones cluster has three lowest effiavoring the second lowest energy structure is that we elimi-
ergy structures that have very similar geometries and areated the rotational degrees of freedom in our simulations,
very close in potential energy. All three structures have 13naking the lowest energy nondegenerate, while leaving the
atoms forming an icosahedron, with the other 4 atoms formsecond lowest energy level twofold degenerate. Since these
ing a “cap” on its top. The lowest energy structure has thetwo structures are very close in energy, a conventional an-
energyE;=—61.317 995. Its cap atoms are positioned in anealing process will lead to a structure with the probability
zigzag fashion, and it belongs to the point grodp. The  proportional to its degeneracy, thus favoring the second low-
second lowest energy structure has the enefgy  est energy structure.
= —61.307 146, with the cap atoms forming a trapezoid, and The MJWA method was implemented in 100 iterations,
belongs to the point grou®, . The third lowest energy with 40000 MC sweeps in each iteration, bringing the total
structure has the enerdy;=—61.296 768 and belongs to MC sweeps up to 4000 000, the same as that in SA. Out of

B. Comparison with SA
1. 17-atom Lennard-Jones cluster
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the ten trials, eight found the global minimum successfully,TABLE Il. The global minima of Morse clusters found by multicanonical
which is eight times better than SA. The advantage ofJump walk annealing\ is the range parameter in the Morse potentédl

. i . Eq.(12)]. The system was annealed via 100 iterations.N=e8,6, a total of
MJWA over SA comes from its ability to cross the high 200 000 MC sweeps was used in each simulation, whila fed 0, a total of

energy barriers between the local minima. The lowest two 000 000 MC sweeps was used. Five trials were carried out for clusters of

structures can interconvert between each other, enabling th@ch size. As shown in the table, for most clusters, MJWA finds the correct

method to find the true global minimum. global minima with high success ratio. Far=18, A=10, however, an
MJWA with 1 000 000 total MC sweeps failed to find the global minimum,
and we had to increase the total number of MC sweeps to 5 000 000 to have

a satisfactory success ratio.
2. 27-atom Lennard-Jones cluster y

The 27-atom Lennard-JondtJ) cluster has two low . Global minimum Number of
. . . Cluster sizen N found successful trials
lying energy structures that are close in potential energy. The

global minimum lies aE;= —112.873 584 and has the sym- 5 3 —9.299 500 5
metry C,, . The second lowest structure has the endEgy g 160 :3'83‘3‘ 222 g
f—112.825 518 Qnd beloqgs to the poipt groGp. The _ 6 3 _13.544 229 5
simulated annealing was implemented in 8000 annealing 6 6 —12.487 810 5
stages, with 1000 MC sweeps at each stage. Thus, each SA 6 10 —12.094 943 5
simulation consisted of 8000000 MC sweeps in total. 7 3 —17.552 961 5
MJWA was implemented with 100 iterations, and in each ! 6 ~16.207:580 4
: X 7 10 —15.956 512 5
iteration 80 000 MC sweeps were used, so a total 8 000 000 8 3 99042 901 5
MC sweeps was used in each simulation, the same as used in 8 6 —19.327 420 5
SA. Ten independent MJWA and SA simulations were car- 8 10 —18.964 638 5
ried out. Out of the ten SA trials, only one found the true 9 3 —26.778 449 5
global minimum, while all the other nine trials annealed to g 160 :;g'gég %zg g
the second lowest structure. On the other hand, five out of 10 3 _31.888 630 5
the ten MJWA trials found the global minimum, which is 10 6 27473283 5
five times better than SA. 10 10 —26.583 857 5
11 3 —37.930817 5
11 6 —31.521 880 5
11 10 —30.265 230 4
C. Morse clusters 12 3 —44.097 880 5
12 6 —36.400 278 5
The Morse potential can be expressed as 12 10 —34.366 755 5
13 3 —51.737 046 5
Ny — NL—ri/r N(L—ri /T 13 6 —42.439 863 5
v(r )_;j el et - 2]e. (12 13 10 ~39.662975 3
14 3 —56.754 744 5
After adopting the reduced units and settimgande to 14 6 —45.619 277 5
be 1, we are left with a free parameterwhich decides the 14 10 —42.675 222 5
range of the pairwise interaction. Large corresponds to 15 3 —63.162119 5
short-ranged interactions and sm}alto long-ranged. _ ig 160 :jg:;ﬁ 382 g
The MIJWA method was applied to Morse clusters with 16 3 —69.140 648 5
long- and short-ranged interactions, ix= 3,6,10. The glo- 16 6 —53.845 835 5
bal minima were found for clusters of up to 20 atoms. Global 16 10 —50.261 947 5
minimization for long ranged interaction Morse clusters is a 17 3 —75.662417 5
relatively easy task. For clusters with=3,6 short MJWA 1; 160 :g;gg 228 g
simulations with 200 000 total MC sweeps sufficed to locate 18 3 —82.579 266 4
the global minima with good performance. The global 18 6 —62.689 245 3
minima for clusters with short-ranged interactions are con- 18 10 —57.657 135 3
siderably more difficult to find because of the increased en- 19 3 —90.647 461 5
ergy barriers and the rough energy landscapes associated ig 160 :221225 gig g
with short-range interactiorf§. Therefore, for Morse clusters 20 3 —97.417 393 5
with A=10, a total of 1000000 MC sweeps was used in 20 6 —72.507 782 5
each simulation. As in the study of LJ clusters, the system 20 10 —65.679 115 3

\1/'vislfior]'naer?(;e$]:;n ng)?)?ll’lltgergcl:?grswg Stgglsngge_?h%e::tsulrﬁ quléor this system, % 10° MC sweeps were used in each simulation.
are summarized in Table II. MJWA located the global
minima for most clusters with good success ratio, except fo
the short rangedN(=10) 18-atom cluster. For this singular
case, a total of 5000000 MC sweeps was used in each Morse clusters bound by extremely short-ranged interac-

MJWA simulation to obtain an acceptable success ratio ofions pose a severe challenge to any global optimization

60%. methods. The energy landscape of such clusters resembles

E). Comparison between MJWA and SA
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that of a golf course, consisting of a multitude of local (ii) Bond angle potential

minima that are very close in energy and separated by high
energy barrieré® The conventional simulated annealing

method can be trapped in any one of these local minima and V4 ({6})=

fails to anneal to the true global minimum. The MJWA

method, on the other hand, can always escape any local en-

ergy minimum trap, due to the coupled multicanonical sam-
pling, and will thus eventually anneal to the global mini-
mum.

N—-2

ky
E (0 002, (15)

where 6; is the bond angle betweernr;&r,.,) and

ri.1), Ky=20e, and 8= 1.8326. Bond angle po-

(Nigo—

tential controls the bending vibration of the bonds.

A comparative study between SA and MJWA is done on(iii) Dihedral angle potential

a cluster of 13 atoms, interacting through the very short
ranged Morse potential with =14. [cf. Eq. (12)] This sys-

tem is chosen because its energy landscape has been thor- Vg, ({#i})= 2 [Ai(1+cosg¢;)+B(1+cos 3p)],
I=

oughly studie@® and its icosahedral global minimum struc-
ture (E=—37.258877 in reduced upihas been determined
with fair confidence.

Optimized annealing schedules for both the conventional
simulated annealing and MJWA were first determined via a
large number of trials. Ten independent SA and MJWA
simulations were then carried out using the optimized an-

N-3
(16)

where ¢, is the dihedral angle formed by the four suc-
cessive residuesi +1,i + 2, andi + 3. If two or more of
the four residues are neutralNY, A;=0 and B;
=0.2,,, otherwiseA;=B;=1.2¢,,. Dihedral angle po-
tential arises from the steric hindrance of the bonds’

nealing schedule. In SA the temperature was annealed expo- rotation.

nentially in 8000 stages from 1.0 to 0.001, and at each stagév) Non-bonded potential
the system was equilibrated for 250 MC sweeps. Therefore,
the total number of sweeps was 2 000 000 in each SA simu-
lation. Out of the ten trials, only two successfully located the
global minimum. In MJWA 50 iterations were used, and in
each iteration the system was advanced for 40000 MC
sweeps, therefore, 2000000 MC sweeps in total were used
in each simulation, the same as that in SA. Out of the ten
MJIWA trials, six of them successfully located the global

N-3 N
an({rij}):iz :2 Vap(rij), (17)

wherer;;=|r;—r;| ande,3=B,L, orN. V,; represents
the interaction between the residues that are not co-
valently bonded and is the main factor for the folding

minimum. The MJWA method is thus found to be three process.

times more efficient than the conventional SA method in this all2 [ g\6

case. Viglri) =de)| | —| +|— (B=BorL,s;=5%¢y),
I I
j J (18)

E. BLN-protein model a\t?

- BENP Vis(rij) = 4en (r—) } (B=B,N,orL), (19)
Simplified protein models are often used to test compu- 1
tational methods for native structure prediction. In this work, a\l2 [a\®
we applied the MJWA method to the global minimization of ~ Vaa(rij) =4en o o (20

the BLN-protein modef®=3! The model protein sequence .
consists of three kinds of residues: hydropholg,(hydro- In this paper we used the MJWA method to search for
philic (L), and neutral ). The residues contribute to the the global minimum of a BLN-protein consisting of 46 resi-

potential energy of the protein in the following terms: dues with the sequencBgN3(LB)4N3BgN3(LB)sL. This
system has been shown as a highly frustrated sy$térhe

Ep({rih) =Vui({ri}) + Ved{6i}) + Vain({ ¢i}) + Viu({rij 1), lowest four minimum structures found have similar barrel-
(13 like geometry and their energies differ only in the first deci-
where mal place’? The true global minimum lies atE

=—49.263512,.

Simulations of considerable length have to be used to
locate the global minimum of this system. We carried out 20
independent MJWA simulations, each consisting of 200 an-
nealing iterations and 150 000 MC sweeps per iteration. Thus
a total of 30<10° MC sweeps was used in each of these
where k, =400, /a%. a is the average bond length be- simulations. The starting temperatufg was fixed atT,
tween two residues, taken to be 1 in our stuelyis the  =3.0s,/kg, wherekg is the Boltzmann constant, and the
average strength of the hydrophobic interaction, alsaooling factor used wag=0.960 76. In the first ten simula-
taken to be 1 to simplify the computation. The bondtions, a zigzag structure was used as the initial configuration.
length potential restricts the bonds to stretch and comThe residues were placed so that all the bond lengths ayere
press around the equilibrium length. all the bond angles weré,, and all the dihedral angles were

(i) Bond length potential

N—-1

K,
Vb|({ri}):241 §(|ri+1_fi|_a)2, (14
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TABLE IIl. Comparison between the MJWA method and simulated annealing. SamétatastMC sweeps

was employed in both methods for each system studied. The successful trials are those that located the true
global minima. The ratios of the number of successful trials versus the total number of trials are presented for
both methods. The advantage of the MJWA method over SA is manifest.

Successful trials/Total trials

Molecular system Global minimum Total MC sweeps MJWA SA
LYn=17} —61.317 995 K10 8/10 1/10
LYn=27} —112.873 584 &10° 5/10 1/10
Morsgn=13)\=14} —37.258 877 x10° 6/10 2/10
LNB-46-mer —49.263 512 3 10° 14/20 4/20(Ref.12

7. Because different random number sequences were usedpperature at the low energy end, the MJWA method enforces
each of these simulations, the results were uncorrelated. Nirtee transition in which the global potential energy minimum
out of these ten simulations successfully located the globabecomes the free energy minimum as the temperature drops
minimum. In the other ten simulations, the residues werebelow the transition poinT.. In MJWA there is no kinetic
randomly positioned in a box at the beginning of the simu-barrier as in SA, consequently, the method should always
lation. In this case five out of the ten simulations located thdocate the global minimum in a simulation of reasonable
true global minimum. The combined success rate is thus lfength.

out of 20, or 70%, which is a significant improvement com-  The criteria for an efficient stochastic global optimiza-
pared to the optimal success rate of 20% for simulated anion method are therefore:

nealing at the same cotComparison between the MIJWA

and SA methods is summarized in Table Il (1) In thermodynamics, the sampling should enforce the glo-

bal potential energy minimum to be the free energy

minimum.
(2) In kinetics, the method should be able to cross the high

From the point of view of thermodynamics, Monte Carlo energy barriers.
methods more frequently sample the states corresponding to
low free energies. For many molecular systems, the globdlany stochastic global optimization methods have been de-
potential energy minimum becomes the free energy miniveloped in accordance with these criteria. Here, we briefly
mum only at a relatively low transition temperature. At a€xamine some of them.
higher temperature other local minima dominate thermody-  In the J-walking method;® and its later modified ver-
namics because of the associated larger entfoppe global  sion, parallel tempering methdft!” several samplings at
energy minimum becomes thermodynamically favored onlytemperatures ranging from very low to sufficiently high are
at temperatures below the transition point. Suppose a loc#larried out in parallel, and samplings at adjacent tempera-
energy minimurrrg has the energ¥, and the entropys,, tures can occasionally exchange configurations with each
while the global energy minimunnT has the energyE; other with certain criteria to maintain equilibrium. In this
<E, and the entropys;. The two minima are separated by a way, the sampling at low temperatures takes the responsibil-
high energy barrier. In the case wheBg<S,, the global ity of searching the low energy regions, while the sampling
energy minimumr!! has lower free energfF,=E,—TS,  atthe higher temperatures help the low temperature sampling
than the local energy minimunrg‘ only when the tempera- to overcome high energy barriers through the exchange. The
ture is below the transition poinf.=AE/AS, where AE  drawback of theJ-walking method and the parallel temper-
—E,—E,>0 and AS=S,—S,>0. Consequently, at tem- ing method, as has been pointed out in other paplers:‘is
peratures above the transition temperature, Monte Carlthat for the exchanges to be adequately successful, the tem-
samples the local minimum}) more frequently than the glo- peratures chosen have to be closely spaced. As a result a
bal minimum. At low temperatures, however, the systemlarge number of samplings are needed, entailing huge com-
cannot cross the energy barrier and commute between thautational cost. Moreover, the temperature spacing is a
minima, so a simulation starting from a local minimum con- problem-dependent parameter that requires physical insight
figuration may fail to visit the global minimum in a simula- to be adjusted to optimize the method’'s performance, a
tion of finite length. The conventional simulated annealingtroublesome factor for the method’s general applicability.
method fails for such cases because it traps the system in the The multicanonical methods force the sampling to per-
regions of large entropy as the temperature cools down, rderm a one-dimensional random walk in the scalar energy
sulting in a “supercool” system. It has been suggested thaspace, and sample all the energies within a certain range with
slowing down the cooling procedure around the transitiona uniform distribution. In other words, the high energy bar-
temperature will help SA locate the global minimum. Thisriers and the low energy minima are equally visited, there-
practice, however, entails pinpointing the transition point forfore meeting both of the two criteria stated previously. The
every system to be studied. The MJWA method eliminategeneric disadvantage of the purely multicanonical methods,
these supercool traps by forcing the system to always sampbs pointed out in Sec. Il, is that in practice it is often ineffi-
the high energy regions. Through the annealing of the temeient in exploring low energy regions, which severely handi-

IV. DISCUSSION



J. Chem. Phys., Vol. 112, No. 6, 8 February 2000 Multicanonical jump walk annealing 2707

caps its candidacy for global optimization method. V. CONCLUSION

.BOth the basin hopping methbtt* and stochastic tun- In this paper, we introduced the multicanonical jump
ngllqg method" (STUN) transform .the energy s:urfa_lcg to walk annealingMJWA) method as a new stochastic global
ehmmgt_e or reduce_ the energy barriers while maln_tamlng al ptimization approach. We demonstrated its efficiency
the minima. In basin hopping, the energy surface is mappe rough the geometric optimization of Lennard-Jones and

to its locally minimized counterpart, namely, the sampling is orse clusters and the BLN-protein model. We also demon-

done on t_h_e following transformed energy surface instead 0Ecrated the new method’s superiority over conventional simu-
on the original one

lated annealing through a set of comparative studies. MJWA
E(r)=min{E(")}, (21  has an advantage over the conventional simulated annealing
because it avoids the local energy minimum traps that
wherer represents a configuration and min means that thgguble the SA method in cases of “super cooling.” It also
energy is locally minimized starting from With this trans-  has an advantage over the pure multicanonical methods be-
formation, the reSiStance to the intraWe” mOtion iS elimi' cause the decreasing temperature at the IOW energy end en-
nated while the interwell barrier heights are reduced to be thgyrces the transition in which the global energy minimum

enel’gy differences betWeen |Oca| minima. At the same timebecomes the free energy minimum and thus is the thermody_

all the minima are preserved. Basin hopping, however, renamically favored state.

quires local minimization at every step; therefore, it is very  oyr aim was to devise an annealing method that could

Computationally expenSive. This also forbids its use in prOb'CrOSS h|gh energy barriers and exp|0re low energy Configu-

lems where local minimization is impossible. rations at the same time. The multicanonical jump walk an-
The stochastic tunneling methfdddynamically trans-  nealing method is a stochastic global optimization method

forms the energy surface, based on the lowest energy that higat overcomes energy barriers and explores the low energy

currently been sampled. The transformation is simple regions at the same time. In the language of thermodynamics
= this means that MJWA is able to cross energy barriers when
E(n=1-ex—y(E()~Eo)], @2 the global potential energy minimum is also the free energy

whereE, is the lowest energy sampled so far in the processminimum.

and vy is a problem-dependent parameter. This transforma- In this work, we also want to show that a global optimi-

tion squeezes all energies abokg into the small interval zation method should utilize as much information available

[0,1], thus drastically decreasing the energy barriers abovabout the system to guide the search. In the multicanonical

Eq, eliminating the possibility for the sampling to be trappedensemble, this information is the density of stafbeE) at

in any located local minima. On the other hand, it suppressesach energy level. Looking for the global minimum on a

the energies belo, to be immensely lower, enhancing the sophisticated energy landscape is analogous to finding a

search for lower energies. STUN, however, uses a uniforrmeedle in a haystack. It helps to know more about the hay-

transformation that ignores the particulars of each individuaktack and the needle.

system, and the method has very little control over distribut-
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