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Quantum time correlation functions from complex time Monte Carlo
simulations: A maximum entropy approach
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We present a way of combining real-time path integral Monte Carlo simulations with a maximum
entropy numerical analytic continuation scheme in a new approach for calculating time correlation
functions for finite temperature many body quantum systems. The real-time dynamics is expressed
in the form of the symmetrized time correlation function, which is suitable for Monte Carlo
methods, and several simulation techniques are presented for evaluating this function accurately up
to moderate values of time. The symmetrized time correlation function is then analytically
continued in combination with imaginary time data to obtain the real-time correlation function. We
test this approach on several exactly solvable problems, including two one-dimensional systems, as
well two cases of vibrational relaxation of a system coupled to a dissipative environment. The
computed time correlation functions are in good agreement with exact results over several multiples
of the thermal timeB#, and exhibit a significant improvement over analytic continuation of
imaginary time correlation functions. Moreover, we show how the method can be systematically
improved. © 2001 American Institute of Physics.
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I. INTRODUCTION develop simulation techniques for quantum mechanical sys-
tems as well. As a result, significant progress has been made
The last two decades have witnessed tremendous agh the use of stochastic methods in computing time-
vances in the use of computer simulations as an efficient todhdependent properties of quantum system. One stochastic
for predicting the properties of complex systems of classimethod is diffusion Monte CarlODMC) [or quantum Monte
cally interacting particles. Stochastic methods, such agarle~’ (QMC)] for calculation of the zero-temperature
Monte Carlo integratioh(MC) have been an invaluable tool ground state properties. Other methods based on Feynman's
in predicting thermodynamic properties of large molecularpath integral formulation of statistical mechanfdspown as
systems. Other methods, based on the integration of classigaath integral Monte Carfa PIMC) and path integral molecu-
equations of motion, also known as molecular dynafriics lar dynamics® (PIMD) are used to calculate finite tempera-
(MD) have been equally useful. In addition to allowing oneture equilibrium properties. These approaches have allowed
to compute equilibrium properties by virtue of the ergodicity accurate calculations for very large many-body quantum sys-
theorem, trajectories generated in molecular dynamics simuems.
lations can be used to predict time-dependent quantities as In contrast, simulating time evolution of finite tempera-
well. This feature is especially important, since many prop-ture many body gquantum mechanical systems has proven to
erties that are accessible to experiment are of the timebe a formidable problem, and progress in this area has been
dependent nature. These include quantities such as transpefitich more modest. Feynman has pointed out that this prob-
coefficients, inelastic light and neutron scattering cross sedem is NP complete and suggested that quantum computers
tions, dipole relaxation times, and reaction rates. offer a solution‘! Due to system size, basis-set methods and
The experimental methods used to measure the abowgave-packet propagation techniques used to solve the time
mentioned quantities share a common characteristic, that gependent Schdinger equation are not applicable. This
they monitor the response of the system to a perturbatiofeaves path integral methods as the only feasible alternative.
caused by an external field weakly coupled to it. In this re-However, in contrast to equilibrium properties, computation
gime, the dynamics of the system is adequately described hyf time-dependent canonical averages using path integrals
the linear response theory, which implies that the measurerbquires evaluation of multidimensional integrals over rap-
dynamic properties can be expressed in terms of timeidly oscillating exponentials due to the presence of real-time
correlation functions of the corresponding dynamicpropagators. Therefore, in this case stochastic methods based
operatorg. For systems evolving under the laws of classicalon importance sampling are inefficient and lead to statistical
mechanics, time-correlation functions can be computed fronerrors which grow exponentially with time. This is known as
a canonical ensemble of the system’s trajectories. These ime “sign problem,” and is the primary obstacle to the use of
turn are readily available from MD simulations. computer simulations in calculating quantum time-
In part due to the success of computer simulations ircorrelation functions.
describing classical systems, great efforts have been made to Numerous attempts have been made to partially alleviate
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or suppress the sign problem. Most of these are based on thle SYMMETRIZED TIME CORRELATION FUNCTION
use of stationary phase filterif§;'’ optimized reference

systems2=2° and more recently renormalization tech-
niques?t~?* Likewise semiclassical methods such as SC-

1 : )
— I —BH iHt/% —iHt/A
IVR, 2~ and quasiclassical methods, such as centroid mo<as(t) =(A(0)B(1)) = 7 Tr(e A" Be (@

lecular dynamic¥33(CMD) have been successfully applied _
where A and B are quantum mechanical operators corre-

to systems in which quantum effects play a moderate role. . X L
. . . Sponding to measurable observabldss the Hamiltonian of
While these methods introduce a great improvement ovel o system, an@=1kT is the inverse temperature. For rea-

direct sampling of real-time path integrals, they nonethelesgOns of simplicity, in this work we study autocorrelation

suffer from other limitations, and are in many cases applifynctions of operators which are a function of position only,

cable only to certain systems and system sizes. A good rex=B=A(x). We use one-dimensional notation for clarity,

view of these methods can be found elsewtiére. and generalization to multidimensional space is straightfor-
Another approach is based on computing quantum timeward. In the position representation, Ed) takes the form

correlation functions by numerical analytic continuation of 1

imaginary-time correlation functions, which are readily ob- Can(t)= Zf dxdx dx"dx"A(x")A(X") (x| ~PH|x")

tained from PIMC, to real time. The analytic continuation

involves a numerical inversion of a Laplace transform, an X<X/|eth/ﬁ,|X,,><Xu|e—th/ﬁ|X>_ )

extremely unstable operation, and requires the use of speci%I

techniques such as maximum entrgME) or singular value o . 7 .

. . o . would result in integrals over imaginary time paths connect-
decompositionSVD) to control the instability. In partlcular. ing the states¢’ and x and pairs of forward and backward
the ME method was successfully used to compute absorption,;|_time paths, connectingand x” and x” and x, respec-
spectrd®™" and more recently, accurate quantum reactionvely. One should note that the latter two have no positive
rates® Generally, this approach was found to adequatelyyefinite weights due to the presence of real-time propagators
describe systems in which quantum coherences dissipate ragith purely imaginary phases. As a result, stochastic impor-
idly. tance sampling methods cannot be used to evaluate these

Still, the method has several limitations. The imaginaryintegrals directly. Attempts to use stationary phase filtering
time data need to be determined with high accuracy in ordeiechniques which introduce artificial positive definite
to ensure the stability of the analytic continuation which re-Weights have met with limited succe¥s'”
quires long and expensive PIMC simulations. Even then, A form that appears much more suitable is the symme-
there can be many different real-time decays that are irt\”Z(ad time correlation functioff,
agreement with the same imaginary time data within the sta- . iﬁﬁ)>

2

tistical uncertainty. Another difficulty is that in imaginary GAA:<A(O)A
time, the entire time domain is folded onto a small region of

the imaginary time axigbetween 0 ang#), which further _ ETr(AeiH(H (iB112)Ih p =M (t= (iB#12)Ihy 3)
contracts with increasing temperature. VA ’

In a recent papé? we showed how approximate real- hich is obtained by shifting the domain of the quantum
time data obtained from centroid molecular dynamics can b@me correlation function from the real time axis by
used within the context of ME numerical analytic continua-—ilgﬁ/z_ As the correlations are now measured between
tion. The principal drawback of such an approach is thapoints in the complex time plan&(t) is also known as the
CMD is exact only for systems with purely harmonic inter- complex time correlation functiofr. Introducing a complex
actions, and the deviations from the exact results can be quitéme 7.=t—ig#%/2, one can write the symmetrized correla-
severe for systems with very anharmonic interactions. tion function in position representation as

In this paper we present a way of combining the numeri- 1 A
cal analytic continuation approach with the real-time path GAA(t)=ZJ dxdx A(X)A(x")(x'|e” 7| x)

integral simulations as a feasible method for computing
quantum time correlation functions. Such an approach was ><<x|eiHT§/h|x'>_ (4

recently suggested by Kim and Dllas a way to improve
y sugg Y . . y P The propagation forward and backward along the real time
the quality of analytic continuation methods. In Sec. Il we __. . . :
axis, followed by that along the imaginary time axihe

present a symmetrized form of the time correlation funCt'onKadanoff—Baym contoif® present inC(t) has now been

s_wtablg for PIMC simulations, and in Sec. Ill discuss thereplaced by the propagation along a contour in the complex
simulation methods used. In Sec. IV we formulate the anagme plane consisting of a forward propagation frarto x’

entropy method used to perform it in Sec. V. We present thgetween the two contours is illustrated in Fig. 1.
results for several test systems in Sec. VI. We conclude in  The complex time propagators can now be expressed as
Sec. VII. path integrals,

A general quantum time correlation function is given by

irect application of the path integral formalism to E8)
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(a) 4 symmetric function. In addition, the transformation from
G(t) to C(t) is nontrivial and involves further difficulties
which will be addressed in a later section.

We conclude this section by considering the symme-
trized time correlation function of a system bilinearly
coupled to a harmonic dissipative environment. This impor-
tant model® has been used extensively to study processes in
condensed phase. The model allows the Hamiltonian to be
split as follows:

A

H=Hsg(p,X) + He(Pa Xa) T Hi(X,Xa), )

where (p,Xx) represent the system coordinates apg,k,)

are the harmonic degrees of freedom describing the environ-

ment. The path integrals over the latter can be performed

analytically, and the propagator matrix elements in E.
(b) 4 are expressed as integrals over the system paths only,
whereas the effects of the environment are contained in the
Feynman—Vernon influence functiofdThe influence func-
tional gives rise to interactions that are nonlocal in time and
involve couplings between different points along the com-
plex time contour. For a harmonic environment, which is
characterized by a spectral densityw), the symmetrized

v

- et

SLLCC I correlation function is given by
1 x'
Gaa(t)== | dxdxX A(x")A(X") Dx(z)
-iph - Z x
X .
FIG. 1. A schematic representation of the propagation contour in the com- X f DX'(Z)e('/ﬁ){SIX(Z);Tc] *S[X(Z);‘r:]}| [x(2)], (8)
plex time plane.(a) is the Kadanoff-Baym contour arising in real-time x'

guantum correlation functions arit) is the propagation contour appearing ) ) ) .
in the symmetrized time correlation function. The arrows indicate the direcwhere the influence functionéfx(z)] is a functional of the

tion of propagation. complex time path given 5%

1
I[x(z)]:exp{—%f dzf dz’x(z)L(z—z’)x(z’)],
) 4 . z>7'
<Xr|e—IH'rc/ﬁ|X>: fx DX(Z)e(I/h)S[X(Z);TC], (5) (9)
X
with the integrations over complex timeevaluated along

the contour in Fig. (b). L(z—2") is the force autocorrelation
function of the environment,

1 .
me(z)Z—V(x(z)) . (6) Bho
cos&{—z —iw(z=2")

with §x(2); 7.] being the classical action along the complex
time path,

Six(2i71= [ a2

The principal advantage of the symmetrized time corre- L(z—2')= if dod(w)
lation functions is that in the path integral formulation, the mJo Sim.<'8h_w
complex time paths now do have a positive definite weight, 2
and importance sampling techniques can be used to evaluate
the necessary path integrals. Of course, the “sign problem”
is still present since the complex phases have imaginary conH. PIMC SIMULATIONS
tributions. However, since the imaginary parts of the phase . ,
contributions for forward and backward complex time paths ~ FOr the purpose of computer simulations, each of the
have opposite signs, the resulting cancellation should makg®mplex time propagators in E() is expressed as a prod-
the problem less severe, as was pointed out by Thirumald{Ct Of P short time propagators over=r7./P=¢ +ie€;. In-
and Berné2 Another advantage is that the forward and back-S€rting complete sets of states gives
ward complex time contours form a cyclic path with equiva- 1
lent weights, which allows efficient sampling methods suchG ,,(t)= —f dxg- - dXpA(X1)A(Xp1)
as stagingy to be used to evaluate the integrals. Z

(10

It should be_also noted fthat, while the quantum time X{(Xp+1|€ HH|xp) (x| € HER|x )
correlation function of Hermitian operators is a complex

. . . . . i * i *
function of time, its symmetrized counterpart is a purely real, X (Xq| €M xop)  (Xpio|€M M Xpq). (1)
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A. Standard position basis representation of path
integrals

Most of the simulations in this work were performe
using the symmetric Trotter splitting, with the short time
approximation for the free particle propagator as shown in

Eq. (12),
: i m
<Xj+1|eilHE/h|Xj>* ZWiheeXp{%z(xi“_xj)z
i V(X )+ V(X
7(%)] 12

Inserting this into Eq(11) the expression foG(t) becomes

1
Gaal) = Zf dxg- - -dXop A(X1)

XAXps1)p(Xq, - . . Xopi€)€ PL - Xopie),

with the partition function given by

(14)
p(Xq1, ... Xop;€) IS a positive definite function of the path
given by
p(Xl, P ,XZP;E)

m |\ me
I
= Xip1— X))+ — V(X;
(27T|6|2> p{zldzﬁ 2, (Xj117x)? 2 Do

(15
while the phase information is contained
¢(X1, e ,sz;E),
¢(Xlr s !XZP;E)

me 2P
r
<2|6|2ﬁ){2 (Xj+1— X) - 2+ (Xj+1_Xj)2
. 2P
—#[2 V)= 2 V(X)) (16
=2 j=P+2

Since it is positive definitep(xy, . . .
a weight in importance sampling. For this purpo&t) is
expressed in terms of averages opeas
<A(X1)A(XP+1)ei¢>p

('), ’
where for a function of the path the average ovep is
understood to be

fdxl .

Gan(t)= 17

.dXZPf(le .
fdxl. .

- Xop)p(Xy, - .

Xop ; €)
“dXopp(Xq, . .. Xop i €) '

(F)p=
(18)

Xop;€) can be used as

Krilov, Sim, and Berne

zero-time distribution were used to optimize the averaging
over configurations. This method has been used b¥fame

d the context of symmetrized time correlation functions, and

details are available therein.
For the models involving systems coupled to a dissipa-
tive environment, the influence functional was discretized as

2P
1
I(Xl, P ,sz):ex% - %E 2 Xjajkxk I} (19)
j=1k=1
where the coefficients;, are given by
AjL(Zj_Zk)Ak, J?&k,
a=1, , (20
2AL(zj—z)A,  j=Kk,
with the time step; determined by
i €j, j = 1,P+ 1,
Aj: e, 2<j=P, (21

—€*, P+2<j<2P.

The same Trotter factorization was used in the imaginary
time correlation functions in position basis representation,
where the discretized expression for these is obtained by set-
ting the real part ofe in Eqgs.(15) and(16) to zero. In this
case, the phase fact@f vanishes, and the expression be-
comes

Chnlli—

_ Jdxg - dxopA(Xi ) A(X)) p(Xq, - - -
del' "dXZPP(Xl, PR

k|ei)

X2p ; €i)
Xop ; €)

: (22)

which is then evaluated through staging PIMC simulations.

B. Discretized variable representation of path
integrals

It is often advantageous to use the discrete variable rep-
resentation(DVR) in the path integration which provides
substantial reduction in the configuration space. The original
coordinate representation can be recovered, if desired, by
means of the one-dimensional DVR transformation,

M
|X/>: 2 bnlun>1
n=1

M
bn:<un|x,>: E <un|(bn’><q)n’|un>1

n'=1

(23

<Un|X| un’>:;(n5n,n’ )

where {u,;X,,n=1,... M} are DVR eigenstates and ei-
genvalues, respectively, obtained from diagonalizing the po-

The two averages in Eq17) were evaluated using the stag- sition matrix of the M lowest eigenstates{®,;E, ,n

ing PIMC algorithm?’ For some of our model systems, no- =1, ...

M}. The discretized path integral expression of the

tably the one-dimensional cases, weighted histogram analysymmetrized correlation function, E¢l1), for the system

sis method® (WHAM) and umbrella sampling from the

coupled to a harmonic environment takes the form
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1 M M 5 3 If one performs an analytic continuation to the imaginary
Gaa(t)= 22 o D Sompi10p.pr1AX0)AXp) time axis by lettingt—ir, one obtains the imaginary time
ko kap+1 correlation function which is a two-sided Laplace transform
2P of the power spectrum
iHge* Ih
ijlll (U, le |uy,) ' .
C'(T)=f doe “l(w). (28
P — 0
X ue e ™Msu, M(Xg, ... Xopiq; o .
,-Hl U] g1 %o 22+13€) |0 order to comput€(t) from C'(7) it is necessary to obtain

I (w) by performing an inverse transform of E@8). Typi-
cally, the value ofC(r) is available from computer simula-
| tions at several values af with finite statistical errors. In
this case, the inverse transform must be performed numeri-
cally, which is a highly unstable operation. Inverse Laplace
ansformation of noisy data is an ill-posed problem due to

(29)

resulting from symmetric Trotter splitting of the tota
Hamiltoniar?® into a system dependent and system indepen
dent parts, which allows larger time stepi.e., a smalleP,

than the standard Trotter split. Also, larger time steps can b

used in quasiadiabatic path integrafi®(QUAPI) in which a the highly singu_lar nature of the Laplace kerne!. As a conse-
counterterm corrected reference system potential is used. fiuence, SpECIf:lhze.d methpds need to be used in order to con-
addition to tremendous reduction of configuration space, grol the numerical |nstab|l|ty_. .
system-specific DVR also has the benefit of calculating the Methoc_j_s based on maximum entropy aqd singular value
short-time system propagator in an exact manner such thaflecomposnmn have been employed for this purpose for a
fange of systems, such as quantum lattice motedsid an
M excess electron solvated in watérhelium, and xenor®
(ule sty Y= e Eniiy|d W D,|u’). (25)  More recently, vibrational relaxatidhand quantum reaction
n=1 rates® have been studied as well. In all the cases it was
found that very accurate data fG(7) are necessary in order
More accurate expressions for discretized influence functo obtain satisfactory results. Even then, the real-time corre-
tional coefficients and further details of this method can beation functions were accurate over relatively short times, so
found elsewhere? the method was limited to cases in which quantum correla-
While for some cases full discretized space integration isions decay on that time scale.
possible, most problems still require the stochastic sampling  The primary obstacle limiting the usefulness of imagi-
method. For Monte Carlo importance sampling, analytic exnary time correlation functions is that their domain is re-
pression for the sampling function and phase of E4S)  stricted to between 0 an@#. Moreover, for most cases of
and(16), however, are no longer available in the discretizedphysical interestC(7) is symmetric around= 8#/2, so that
formalism. In this study, we used the absolute value of comall of the correlation information is actually contained be-
plex integrand without the operators as the sampling functween 0 angs#/2. Hence the domain dE(t), which spans
tion, the entire real-time axis has been compressed into a small
5 5 finite interval on the imaginary time axis. It is precisely this
p(Xo, - - Xop+1;€) fact that is responsible for the sensitivity of the the real-time
2p correlation functions to small variations in their imaginary
—| 8020110 pi1 H (uy |eiHse*/h|uk_> time couqterpart_s. This causes the instability of the numeri-
‘ T TSP J cal analytic continuation. The problem becomes more severe
P at higher temperatures, when the imaginary time domain
Xj];[l <ukj|e—|Hse/h|ukj_l>|(XO, Sopiri6)|. (26 Ici:r(?]r;tt.racts drastically, vanishing completely in the classical
One way to avoid this limitation is to use the symme-
trized time correlation functionG(t) is obtained by shifting
the domain ofC(t) to a line in the complex plane through
The real-time, symmetrized, and imaginary time formsanalﬁic continuationﬂt+i_ﬂﬁ/2._ For Hermitian operatqrs,
of the quantum time correlation function are related to eaciﬁ(t) is real and symmgtrlc_ in time, so the relationship to
other via analytic continuations in the complex time plahe. I(w), and thereforeC(t) is given by
Of these, the real-time quantum correlation function is the 1fm

j+1

IV. ANALYTIC CONTINUATION PROBLEM

one directly related to the physically measurable dynamical G(t)= dw cog wt)e PR (w). (29

guantities, and obtaining it is the primary goal of this work.

To establish the relationship to the other_ forr_ns it is usgful toFoIIowing the procedure used for imaginary time correlation
introduce the power spectruni(w), which is a Fourier ¢ nctions, one can perform a numerical analytic continuation
transform of the real-time correlation function to obtainC(t) by inverting Eq.(29). The integration kernel

is still ill-behaved but to a lesser degree than in Ezf).
_ i - it Hence, the resulting real-time correlation functions should be
= dowe“l(w). (27) < — S k
2m) = less sensitive to the statistical errors in simulation data for

m™Jo

C(1)
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G(t). The reason for this is that the domain @ft) is not 1 M

restricted to an interval, but extends over all values of real Cjksz (D)-DM((DY-DY), (33
time t, and the temperature affects only the imaginary time =1

component of the complex time argument, or the degree Oiivith M being the number of measurements.
displacement from the real-time axis. Thus, in a sense the g i< the information entropy, the form of which is axi-
complex time correlations contained i@G(t) represent a ’
compromise between conditions favorable to simulation, an
those favorable to the analytic continuation:

8matica|ly chosen to be

Ax
S=2, Aw| Ax—m—AgIn—1. 34
(1) The presence of the real time component extends the Ek @ R my (34)

domain, thereby reducing the numerical instability of the

analytic continuation; nonetheless it introduces oscillat!n this formulation the entropy is measured relative to a de-

ing phase factors into the path integrals. fault modelm(w) which can contain prior information about
(2) The imaginary time component allows importance Samlhe solution andx is a positive regularization parameter.

pling to be used to evaluate the oscillatory integrals  Finding a mapA which maximizes the posterior prob-

present |nG(t)1 however the presence of the imaginary ablilty is a maximization problem il variables, wherd is

time component is the cause of the numerical instabilitythe number of point$w,} at which the solution is evaluated.
in the inversion. The solution obtained in this way is still conditional on the

arbitrary parametest, which can be interpreted as a regular-

Hence, it is plausible to expect that by applying the MEization parameter controlling the smoothness of the map.
numerical analytic continuation method to the symmetrized_arge values ofx lead to a result primarily determined by
time correlation data, or perhaps in combination with imagi-the entropy function and hence the default model. Smaét
nary time data, one will be able to compute real-time quanturn lead to a map determined mostly by teand thus to a
tum correlation functions for longer times. closer fitting of the data. The principal drawback is that,
along with the data, the errors would be fit as well.

In this study « is obtained according to the L-curve
method®®®1 The value ofa is selected by constructing a plot

The maximum entrop{®® (ME) inversion method has of logl—S(A)] vs logx% This curve has a characteristic
been shown to be useful for many problems in which there id--shape, and the corner of the L, or the point of maximum
incomplete and noisy data. The method itself requires onlgurvature, corresponds to the value @fwhich is the best
the knowledge of the transformation which relates the datgompromise between fitting the data and obtaining a smooth
and the solution. Furthermore, prior knowledge about thesolution.
solution is included in a logically consistent fashion. As ~ We employ a maximization algorithm due to Bry&n,
such, ME is ideally suited for solving ill-posed mathematicalwhich reduces the space in which the search for the solution
problems. A particularly important class of such problemsis performed. The kernel is first factored using singular value

V. MAXIMUM ENTROPY METHOD

involves inverting integral equations of the type, decompositiorK =VXUT. The singular nature of the kernel
ensures only a small number of eigenvaluesXofwill be
D(T):i doK(7,0)A(0), (300  honsingular. Since the space spanned by the rowsisfthe
same as that spanned by the columngJofissociated with

whereK (7,w) is a singular kernel. Equatior{27) and (28) nonsingular eigenvalues, the search for the solution can be
which relate the real-time and imaginary time correlationperformed in this singular space of dimensionali,
functions with the power spectrum belong to this class. If thewhereNs is the number of nonsingular eigenvalues. The so-
data setD(7) is noisy and incomplete, the solutioh(w),  lution in singular space is expressed in terms of the vagtor
also referred to as the map, cannot be determined uniquelyvhich is related to thé&l dimensional map space via
Maximum entropy criteria provide a method for determining N

the most probable inversion consistent with the data. This A—m exp( ZS Unu )

method is based on Bayesian inference. Typically, the data " ] =i L

are known only at a discrete set of poitits}, and we like-

wise seek a solution at a discrete set of poifitg}. The  This exponential transformation is useful since it ensures the
maximum entropy method selects a solution which maxi{positivity of the solution.

(35

mizes the probability of the map given a data seD, In this study we use a flat default map, which satisfies a
known as the posterior probability:>® known sum rule, such as the integral ov&(w). Other
P(A|D)exp aS— y2/2) = €. 31) choices ofm(w) and their effect on the quality of the results

will be the subject of future investigation.
Herex? is the standard mean squared deviation from the data  One should note that the important precondition to the
successful application of the ME method is that the data be
V2= iDj_E K“Aliicl]jk(Dk_E KklAI), Gaussian distributed and independent. Thus care must be
Ik ! ! taken to ensure that the simulation data satisfies these condi-
(32) tions as closely as possible. Ideally, there should be no cor-
whereC;y is the covariance matrix, relation between different data points. If the simulation
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‘: ®  PIMC simulation - .‘. .
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| Y = .
° O [ .
0.02 — . ] 03 .b — . . . .
. e ° . FIG. 2. Analytic continuation results for the linear har-
| *e ] - . A monic oscillator of frequencyy,=10.0 a.u. at the in-
e 06— ‘% . ] verse temperatur8= 1.0 a.u. In(a) we show the imagi-
0 | | “",u..m ) [ < nary time correlation function computed by PIMC
0 02 0.4 0 0.2 0.4 simulation(circles compared to the exact resyitotted
7 [au.] f [a] line). In (b) we show the same for the symmetrized time
correlation function, computed by PIMC up te=0.3
3 T T — 1 0T I(d) a.u. In(c) we show the power spectra obtained by ME
(©) * == Exact (shown in (d) only) y 1 continuation of imaginary time dathroken ling and a
r == Ccw T ﬁ B o] combination of symmetrized and imaginary time data
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= r] ] the exact resultdotted ling.
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method does introduce correlation, the nature and the exte@aussian distribution of the data. This was checked by com-
of the correlations needs to be expressed in terms of thputing the skewness and the kurtosis of the block averages

covariance matrix. for each imaginary time data poifit;}. In all cases it was

found that the data are within the norm of a Gaussian distri-
VI. RESULTS FOR SEVERAL BOUND QUANTUM bution. The corresponding covariance matrix was computed
SYSTEMS from the block averages using E@3).

The approach described in the previous section was For imaginary time correlation functions, the data for all

tested by computing quantum time correlation functions forvalues of imaginary time are obtained from a single simula-

several bound systems. In all cases, we computed the po%%?' Tht|§ mtrgduce? stroan correllauons bet;veen S?Jtla flfr
tion autocorrelation functions, that is we takéx)=x in Eq. ~ 9''crent Imaginary imes. Hence, farge numbers ot DIocks

(2). These are directly related to absorption spectra in th&/ere requi'red to accurately evaluate the off—diagonal covari-
dipole limit, with the photon absorption cross section given2C€ matrix elements. This was necessary since strong cor-

by relations between data lead to an unstable spectral analysis of
4 the covariance matrix with eigenvalues spanning several or-
- : . .
O_(w):(_)w(l_e—ﬁhw)l(w)' (36) ders of. magnltu.de. On the other hand, symmgtrlzed time
fic correlation functions were computed by performing a sepa-

wherel () is given by Eq.(27). In most cases, we used the rate simulation for each value of real time. As a result, there
standard position basis representation, with the Trotter spl® no correlations between data points corresponding to dif-
of the short time propagator shown in EG2) to discretize ~ ferent times, the covariance matrix is diagonal, and smaller
the path integrals required to compute the symmetrized timg8umbers of blocks were required. Such data is therefore
correlation functions5(t) and the corresponding imaginary more suitable for ME inversion.

time correlation function€'(7). This approach was chosen A one-dimensional systems

to keep the method computationally simple, applicable to a ] o
wide variety of systems, and to avoid using aaypriori We first tested the method on two nondissipative one-

approximations. In a few cases we compu@@) using a dimensional bound systems. In both of these cases the spec-
more advanced approximation to the propagators, based dffl densities of the quantum position autocorrelation func-
QUAPI with DVR expansion. tions consist of discrete lines corresponding to various

The simulations were performed using the staging PIMCjuantum transitions, and as a consequence, the correlation
method. The correlation function data was block-averaged tfunctions will not dephase, but will oscillate indefinitely. The
remove the correlations between successive Monte Carlexact results were computed by matrix diagonalization of the
steps, and the length of blocks was adjusted to ensure tlmrresponding Hamiltonians.
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The first system considered is a linear harmonic oscilla-5000 T T . T T T T T
tor of frequencywy=10 a.u. at the inverse temperatyge L@ .
=1.0 a.u. In Figs. @) and Zb) we show the imaginary time 4400 |- -=cw _
and symmetrized correlation functions computed by PIMC I — G +Cw| |
simulations. The imaginary time path integrals were dis- 3000 1 Exact 1
cretized intoP=64 slices, and a total of 1P configura- -
tions were generated, which were divided into 200 blocks.= |
For G(t), the complex time paths were discretized ifRo 2000~ 7
=32 slices per path, and the averages were obtained fron r 7
25x 10’ configurations by umbrella sampling from the zero- 1000 - \ —
time distribution to increase the efficiency of the averaging L W _
and reduce statistical errors due to phase oscillations. The . | . 7 Yo . | .
data was computed at intervals aft=0.01 a.u. up tot 0 0.001 0~002w[a.u.] 0.003 0.004 0.005
=0.3 a.u. -+ Exact

Figure Zc) shows the power spectra obtained by ME . , . | -=
analytic continuation of the imaginary time data, and the (b) — G+

simultaneous analytic continuation using both the imaginary 0.1
time and symmetrized time correlation functions. The real
parts of the corresponding real-time correlation functions are [
shown in Fig. 2d) in comparison with the exact results. The
continuation of the combination of imaginary and symme-
trized time correlation data leads to a significant improve-
ment over using imaginary time data alone. In particular, the
spectral line atv= w is significantly narrowed, leading to a
longer decoherence time. As a consequence, correct cohe o
ence behavior is retained for more than eight oscillation pe- . , , [ . [ .
riods, while imaginary time results decohere significantly af- 0 2000 4000 6000 8000
ter three periods. flan

We next examined an anharmonic system, namely a onesG. 3. Analytic continuation results for the quartic oscillator potential at

dimensional quartic oscillator, given by the Hamiltonian  the temperature of 200 K. Ita) we show the power spectra of the position
correlation functions computed by ME analytic continuation of imaginary
p2 time data(broken ling and the combination of imaginary and symmetrized
H=—+ax* (37) time correlation dat#solid line). The solid bars show relative intensities of
2m the two principal transition lines active at this temperature(b)nwe show
. the real parts of the corresponding real-time correlation functions in com-
The calqulatlons were performed for=1836.15 a.u(cor-  parison \Eith the exact resmzotted?me.
responding to the mass of a proj@nda=0.001 194 a.u. at
the temperature of 200 K&=1578.78 a.y. In this regime,
the dynamics are dominated by the two-stdtp—|2) tran-  or more thant=8000 a.u. In comparison, the result based

sition, with a small contribution from th&l)—|3) transi-  solely on imaginary time data starts dephasing already at

Re[C(1)]
o
l

tion. The relative intensities are shown in Fig@3 The  =3000 a.u. However, neither result is able to capture the
imaginary time path integral was discretized =64  effect of the small contribution from the second transition.
slices, and a total of fOconfigurations were generated, In both one-dimensional systems examined, the ME ana-

which were divided into 100 blocks. The symmetrized timelytic continuation was able to extract accurate real-time cor-
correlation function was calculated from a totaP Idnfigu-  relation functions for time intervals up to ten times longer
rations, with 2x 10° configurations sampled from each of the than the range of the symmetrized time correlation data sup-
respective distributions at/B#=0,0.1,0.2,0.3 and 0.4, plied from the simulation. Although these results are very
which were stored on disk. WHAM was then used to extractencouraging, it should be noted that both of these systems
averages from these configurations in the effort to improveare dominated by a single frequency. It should be noted that
the averaging and reduce statistical error. The valuethe contributions from the higher state transitions become
of G(t) were computed at intervals éft=15.8 a.u. up to more important at high temperatures. However, real-time
t=710.5 a.u. path integrals in the standard position basis representation
As in the case of the harmonic oscillator, ME inversionare much harder to converge in these cases due to higher
was performed using imaginary time data alone, and using ftequency oscillations of the integrands, and hence can be
combination of short time symmetrized and imaginary timeevaluated only for very short times without incurring pro-
correlation data. The resulting power spectra and the redlibitive computational costs. Thus, it would be difficult to
parts of the corresponding time correlation functions areobtain the data at the sufficiently long times required for the
shown along with the exact results in Figga3and 3b). resolution of the discrete spectral lines through analytic con-
Once again, the use @(t) improves the results, giving a tinuation. Similarly, the imaginary time correlation functions
better reproduction of the principal transition. The correla-are harder to compute at higher temperatures due to the in-
tion function thus obtained is very accurate over five periodscreased stiffness of the harmonic bonds. Moreover, the ME
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FIG. 4. Analytic continuation results for a harmonic
oscillator coupled to a harmonic environment (& we
show the power spectra and (b) the real parts of the
corresponding real-time position correlation functions
obtained by ME continuation of imaginary time data
(broken ling, symmetrized time correlation data
(dotted—dashed lineand the combination of the two
(solid ling) in comparison with the exact resytiotted
line). The symmetrized time correlation function data
was included up t¢=0.5 a.u. In(c) and(d) we show
the same results using symmetrized time correlation
data up tat=1.0 a.u.

<
(=3
L]

RelC(®)]

-0.02 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1
0 . .

method was designed and shown to give best results for cofi-he analytic form of the friction kernel was chosen to fit
tinuous smooth spect®*® which are the characteristic of simulation data for a fluid of Lennard-Jones particles, and is
most physical condensed phase systems. In the next two subiven by*®
sections we test the method for systems that are coupledtoa ()2 4 4m a(f1)?
dissipative environment in which the dynamics is characteré(t)=&ote™ “*"V [1+a;(ft)"]+ay(ft)"e”*2 ). (41)
ized by a broad range of frequencies. The particular parameters chosen dgg=225, a,=1.486
B. Harmonic oscillator coupled to harmonic ><10?, a;=285, ;=903 anda,=75.0. In this study we
environment consider the case of low damping=0.2) at the inverse

- ) ) o temperatureB=0.25 a.u. The bare oscillator frequenay

In addition to being a classic model for vibrational re- \yas chosen to be 20 a.u. Under these conditions, the system
laxation processes, this is the only many body system foggyples weakly to the environment, and exhibits complex
which exact solutions for quantum position autocorrelationyg|axation dynamics, which is evident from the line shape of
functions are available. In particular, it was shown that thegpe power spectrum of the position autocorrelation function
classical photon absorption cross section, obtained in closeghown in Figs. 4) and 4c). Two principal features are a
form by solving the generalized Langevin equalitis equal  sharp peak at the oscillator frequency, and a broad low in-
to the quantum 9”%4- As such, this system was subject 10 tansity phonon band extending over the entire low frequency
|nve§t|gat|08n using ME analytic continuation methods egion. As a result, the system exhibits a long relaxation time
previously*® The total Hamiltonian is given by and the correlation functions were difficult to obtain by ME
analytic continuation of imaginary time data alofielhere-
fore, it is an appropriate test for the new approach.

The influence functional coefficients were computed
from J(w) using Eq.(10) and Eq.(20). The PIMC simula-
where &,p) correspond to the system, in this case the hartions were then performed to evaluate the path integrals in
monic oscillator and X, ,p,) correspond to a harmonic Ed. (8) as well as the ones arising in corresponding imagi-
mode of the environment with mass, and frequencyw,, . nary time correlation function expression. The imaginary
We use the influence functional approach and express théme path integral was discretized with=128 time slices,
properties of the environment in terms of the spectral densitnd the correlation function was computed from a total of

2

1
H=2p—m+§mw§x2+§

o
2m,

1
+ Emawixi)—xE CXar (39)

function J( ), 2x 10" configurations divided into 200 blocks. The symme-
trized correlation function was computed at intervalsAdf
- c2 =0.005 a.u. up to a total time &&= 0.25 a.u.(corresponding

J(w)= EE = Z) Sw—w,), (39 to Bh). A separate simulation was performed for each value

of t, and the numbers of configurations ranged frorfi ttD

2x 10° for the longest times. The complex paths were dis-

cretized withP=8 slices eacltfor a total of 16 time slices

in each simulation.

Iw)= wfwdt cog wt){(1). (40) Two sets of data were useql as input for_ ME inversion. _In
0 the first case, symmetrized time correlation data was in-

which was computed from the classical friction kergét),
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cluded up tot=0.125 a.u., which is the same as the imagi- 800 T T T

nary time range. The ME inversions were performed using " == c @ -
imaginary time data alone, symmetrized time correlation s00|.—.. G —
function alone and the combination of the two. The results — G +Cn 4

for power spectra and the real parts of the correspondingg 490
position autocorrelation functions are shown in Figé)4 ~
and 4b) in comparison with exact results. The same proce-
dure was then performed usir@(t) data for up tot=0.25

a.u., or twice the range of the first case, with the results
shown in Figs. &) and 4d).

In both cases, including symmetrized time correlation
function data leads to an improvement. The continuation us-
ing imaginary time data results in a real-time correlation
function accurate t6=0.3 a.u., or on the order @##. This
is superior to the results using orB(t) data in the first case
(i.e., data up t¢=0.125 a.u, but in the second case, con-
tinuation using longer time symmetrized correlation function
data(up tot=0.25 a.u) yields a real-time correlation func-
tion accurate ta=0.45 a.u. In particular, the low frequency
portion of the spectrum is well reconstructed. This behavior 017
is not unexpected, as the power spectrunGof) is related
to 1(w) through G(w)=e #"“"?|(w), it is thus primarily
determined by the low frequency region I¢fw).

The continuation using the combination of imaginary
and symmetrized time correlation functions in both cases o.02
leads to improvement over that using the either data alone. Ir g
particular, major improvement is observed in the first case,
where qualitative accuracy is observed upttel1.0 a.u. In
the second case, as longer til@¢t) is used, this data tends
to dominate the ME inversion, and hence the results of con-
tinuation of the combined data are similar, although some- 0 2000 4000 6000
what better than usinG(t) alone. In general, using symme- tlav]
trized correlation functions doubles the time interval over _ . ) _

. . . . . FIG. 5. Analytic continuation results for a quartic oscillator coupled to a
which the analytlca”y continued correlation functions are aC'harmonic environment at the temperature of 200 K. The symmetrized time

curate, and results in qualitative accuracy over much longegorrelation function data was included uptte 790 a.u. In(a we show the
times. power spectra and ith) the real parts of the corresponding real-time posi-

It should be noted. that in order to reduce the statistica]ion correlation functions computed by ME continuation of imaginary time
hich i ' idl ith th b fint data(broken ling, symmetrized time correlation datdotted—dashed line

e_rrors (W Ic 'ncreases r§p| y _WI e number o '_n €92 and the combination of the tw@olid ling). In (c) we show the symmetrized
tion variableg in PIMC simulations ofG(t), a relatively  correlation functions calculated from the power spectré@irin comparison
small number of time slices was used, which introducedvith the exact resultempty circles.
some discretization error. Thus a part of the error in real-time
correlation functiongparticularly the slight shift of the prin-
cipal peak in the power spectroman be attributed to this
fact. This part of the error is systematic and will decrease i
the Trotter number is increased.

200

RelC(] o
= =

&
=
N

%/vith the cutoff frequencyw,=4.556<10 * a.u., and the
coupling strengthy=12.55 a.u., which again leads to a rela-
tively weak coupling with the system characterized by long
relaxation times, and therefore a difficult regime for analytic
C. Quartic oscillator coupled to harmonic environment continuation methods.

We next examine a highly anharmonic system, namely a We have used two simulation approaches for this sys-

quartic oscillator interacting with a dissipative environment,'€M: First an approach identical to the one used for the vi-
The Hamiltonian is given by brational relaxation of the harmonic oscillator was imple-

mented. The imaginary time path integral was discretized
with P=64 time slices, and the corresponding correlation
function computed from 10PIMC configurations divided
(42) into 200 blocks. The symmetrized time correlation function
. . was calculated at intervalst=31.6 a.u. (0.08%) up to a
with the system parameters same as those of a quartic oscll-_ . : N ; 7
) ! . . ) _maximum time oft=1578.78 a.u. g#), using 5< 10 con-
lator described in a previous section. The environment ig;

characterized by an Ohmic spectral density

2
p
C b Imae3X2 | XD, CuXy,

p2
H=—+ax4+§ e >

2m

o

gurations at short times and up tx80° configurations for
the longest times. The complex time paths were discretized
J(w)=nwe~ wlwg (43 with P=8 slices for each of the two paths.
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1200 T T T with this simulation scheme. The results of analytic continu-
@ ation, as well as the corresponding exact integration data for
G(t) are shown in Figs. ®), 6(b), and &c).

The results show a similar trend to the one observed in
- the case of the harmonic oscillator vibrational relaxation.
The use of short timéup to a cutoff time oft.=790 a.u)
G(t) data together with imaginary time data leads to a con-
§ siderable improvement over the inversion using imaginary
T >0 ) time data alone, more than doubling the time interval over
o [au] 0004 0006 which the exact symmetrized correlation data is accurately
reproduced, as can be seen in Fi¢gc)5Using only imagi-
nary time data still gives better results than using only short
time G(t) data. However, as shown in Fig. 6, if longer time
G(t) data is used in the inversion, the result of a continuation
using a combination of imaginary and symmetrized time cor-
relation data is virtually identical to using the symmetrized
time correlation data alone. Both show a major improve-
ment, accurately reproducing exa@G(t) data up tot
=6000 a.u., as can be seen in Figc)6 which is almost

- == cw
= G
— G +Cw

800 —

I(w)

400 —

Re[C(D] o
o &

&
=
N

. | ! | ! |
0. . :
Yo 2000 4000 6000 fivefold longer than the range of accuracy of analytically
continued imaginary time data.
0.044 This effect was observed in case of the harmonic oscil-

lator as well, the reason behind it being that the inversion
data is increasingly dominated I&(t) as the domain of the
symmetrized correlation data is extended, up to a point
where the imaginary time data plays a negligible role. It is
therefore interesting to observe whether a systematic im-
provement in accuracy of real-time correlation functions re-
sulting from analytic continuation can be achieved by suc-
cessively extending the domain dB(t) used in ME
tlau] inversion.
For this purpose we used a specialized DVR based
FIG. 6. Analytic continuation results for a quartic oscillator coupled to a p|MC method described in Sec. 1. Although limited to sys-
harmonic environment at the temperature of 200 K. The symmetrized tim? . hich the int fi ith th . t b
correlation function data was included uptte 1580 a.u. In@ we show the ems in w !C € Interaction W'_ ) € enV|r0nmer? can be
power spectra and ib) the real parts of the corresponding real-time posi- €xpressed in terms of a quadratic influence functional, and
tion correlation functions computed by ME continuation of imaginary time thus less genera| then the standard approach used so far, this
data(broken ling, symmetrized time correlation datdotted—dashed line method allows integrals over continuous variables extending
and the combination of the tw@olid ling). In (c) we show the symmetrized .
correlation functions calculated from the power spectréjrin comparison ~ OVver all space .tO be redgcgd to asum over a finite number of
with the exact resultempty circles. paths. In addition, quasiadiabatic modificatitwas applied
to the path integrals which allowed fewer time slices to be
used. Both of these serve the purpose of dramatically reduc-
The ME analytic continuation was then performed asing the size of the space that must be stochastically sampled,

before using the two correlation functions and their combi-Which in tumn results in fewer phase cancellations and a
slower growth of statistical errors with time. Hence, using

nation. In the first case we us&jft) data up tot=790 a.u. X ; X
(0.58%). The resulting power spectra are shown in Fig) 5 this method one is able to compu®(t) for considerably

and the real parts of the corresponding real-time correlatiotPg€r times tharsf which is more or less the limit attain-
functions in Fig. Bb). Due to the presence of the anharmonicable using the standard position basis discretization. This is
potential, the full dynamics cannot be obtained exactlyParticularly important in simulating systems at higher tem-
However, it is possible to compute the symmetrized correlaPeratures, ag# then corresponds to a very short time.

tion functions up to intermediate timéseveral multiples of We have computed the symmetrized time correlation
Bh) using a nonstochastic approach based on exact evalufinction for the dissipative quartic oscillator at two tempera-
tion of integrals in the discrete variable representation ofures, 200 K, which was discussed above, and at 1000 K. For
path integrals in Eq(24). These are shown in Fig(& in  the latter it was very difficult to obtain converged results at
comparison with the symmetrized time correlation functionssufficiently long times using the standard method. We have
computed from the power spectra in Figapusing Eq.(29). used MC importance sampling to evaluate the sums over
In the second case, the same procedure was performed whif@ths in Eq.(24), using the sampling function given by Eq.
using longer time data foB(t) as input, up t¢=1580 a.u., (26). For the lower temperature case, 4 DVR states were
which corresponds t@#4 and approaches the limit attainable used and the complex paths were discretized into 8 time

0.02

G(t)

-0.02
0
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FIG. 7. Analytic continuation results for a quartic oscillator coupled to a

harmonic environment at the temperature of 200 K.(dhwe show the  FIG. 8. Analytic continuation results for a quartic oscillator coupled to a
power spectra and itb) the real parts of the corresponding real-time posi- harmonic environment at the temperature of 1000 K(dnwe show the
tion correlation functions computed by ME continuation of symmetrized power spectra and itb) the real parts of the corresponding real-time posi-
time correlation function data computed by simulation up to the cutoff timetion correlation functions computed by ME continuation of symmetrized
t;=800 a.u. (broken ling, t.=1600 a.u.(dotted—dashed line and t, time correlation function data computed by simulation up to the cutoff time
=2400 a.u.(solid line). In (c) we show the symmetrized correlation func- t,=500 a.u. (broken ling, t,=1000 a.u.(dotted—dashed line and t,
tions calculated from the power spectra(&@ in comparison with the exact  =1500 a.u(solid line). In (c) we show the symmetrized correlation func-
result(empty circles. tions calculated from the power spectra(@ in comparison with the exact
result(empty circle$.

slices par path, while for the higher temperature case w
used 7 DVR states and 6 time slices par path.

With these parameters we were able to obtain converge
results forG(t) up tot=3000 a.u. for the low temperature
case and= 2000 a.u. for the high temperature case. We use
ME analytic continuation to compute the real-time correla-

tion functions from symmetrized correlation functions, for . ) . :
compute accurate quantum time correlation functions for sig-

several sets o65(t) with increasing cutoff timd.. The re- o . . .
sults for the power spectra, and the real-time and Symmer]|f|cantly longer times than that could be attained by direct

trized time correlation functions computed from the formers'mUIat'on‘

are shown in Figs. (@), 7(b), and 7c), respectively, for the

lower temperature case and Fig. 8 for the higher temperatur\é”' CONCLUSION

one. We have presented a new method for obtaining quantum
For both temperatures a systematic improvement can béme correlation functions through maximum entropy nu-

observed as the time domain of the simula@t) data is merical analytic continuation using path integral Monte

extended. This is evident in comparison with ex&gt) re-  Carlo simulations. Previous approaches focused on using

sults in Figs. Tc) and 8c), which are accurately reproduced PIMC simulations to estimate dynamics in imaginary time.

as the cutoff time is increased. It should be noted that th&hese data were then numerically inverted to obtain real-

e . . . . . .
gain in the time rang§i.e., the range over which the analyti-
(aally continued real-time results are accurate compared to the
cutoff time up to which the5(t) data are availableappears

by increase with increasing cutoff time. As the computational
effort for real-time path integrals increases exponentially
with time, this is particularly significant, as it allows one to
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time correlation functions. However, due to the highly sin-time, due to strong phase cancellations. Hence, using the
gular nature of exponentially decaying inversion kernel, thisstandard simulation method based on primitive discretization
operation is highly unstable. As a result, even small statistiof path integrals in position basis representation one can
cal errors in imaginary time data can lead to large deviationseach times longer thag# only with difficulty, as exceed-

in analytically continued real-time correlation functions. Theingly large numbers of Monte Carlo configurations need to
reason for this instability is that the correlation information, be sampled. In particular, we note that that the rate of growth
spanning the entire real-time axis, is compressed into an iref statistical error with time correlates strongly with the size
terval of[0,8%/2] in imaginary time. The problem becomes of the space(i.e., number of integration variableshat is
particularly severe at higher temperatures, for which thesampled. In case of the primitive discretization, we observe
imaginary time domain further contracts. that for Trotter numbers larger thdh= 60 it was difficult to

In order to alleviate this problem we have introduced theobtain converged results for even short times. On the other
symmetrized time correlation functio(t), the domain of hand, many quantum systems might require substantially
which has been displaced from the real-time axis byhigher Trotter numbers to represent the continuum ad-
—iBhI2. Hence, the domain of this correlation function lies equately.
in the complex plane, with its real part spanning all values of ~ Thus it is of considerable interest to investigate better
time, and the imaginary part a constant. As a result, the syrrdiscretization schemes which allow smaller number of time
metrized form is related to the real-time correlation functionslices to be used and lead to a reduction of the overall inte-
via an analytic continuation operation which is numerically gration space. An example of such a scheme is the DVR with
more stable than in case of the imaginary time. system specific propagators, described in Sec. Ill. Using this

This benefit comes with a price, though, as the path in/method it was possible to obtain converge resultsr) at
tegral that must be evaluated for the determina€gt) con- ~ much longer times, allowing more accurate reconstruction of
tains oscillating phase factors due to complex time correlateal-time correlation functions. Generalizing this approach
tions. Nonetheless, in contrast to the real-time correlatiovill be a subject of future study. In addition, we plan to use
functions, the complex time paths do have a positive definitéhe methodology described in this work to study quantum
weight, and PIMC methods can thus be directly used to comteaction rates and transport coefficients.
pute G(t). We have described several simulation methods
based on position basis or DVR of the path integral that cad CKNOWLEDGMENT
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