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Quantum time correlation functions from complex time Monte Carlo
simulations: A maximum entropy approach

Goran Krilov, Eunji Sim, and B. J. Berne
Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

~Received 13 July 2000; accepted 19 October 2000!

We present a way of combining real-time path integral Monte Carlo simulations with a maximum
entropy numerical analytic continuation scheme in a new approach for calculating time correlation
functions for finite temperature many body quantum systems. The real-time dynamics is expressed
in the form of the symmetrized time correlation function, which is suitable for Monte Carlo
methods, and several simulation techniques are presented for evaluating this function accurately up
to moderate values of time. The symmetrized time correlation function is then analytically
continued in combination with imaginary time data to obtain the real-time correlation function. We
test this approach on several exactly solvable problems, including two one-dimensional systems, as
well two cases of vibrational relaxation of a system coupled to a dissipative environment. The
computed time correlation functions are in good agreement with exact results over several multiples
of the thermal timeb\, and exhibit a significant improvement over analytic continuation of
imaginary time correlation functions. Moreover, we show how the method can be systematically
improved. © 2001 American Institute of Physics.
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I. INTRODUCTION

The last two decades have witnessed tremendous
vances in the use of computer simulations as an efficient
for predicting the properties of complex systems of clas
cally interacting particles. Stochastic methods, such
Monte Carlo integration1 ~MC! have been an invaluable too
in predicting thermodynamic properties of large molecu
systems. Other methods, based on the integration of clas
equations of motion, also known as molecular dynamic2,3

~MD! have been equally useful. In addition to allowing o
to compute equilibrium properties by virtue of the ergodic
theorem, trajectories generated in molecular dynamics si
lations can be used to predict time-dependent quantitie
well. This feature is especially important, since many pro
erties that are accessible to experiment are of the ti
dependent nature. These include quantities such as tran
coefficients, inelastic light and neutron scattering cross s
tions, dipole relaxation times, and reaction rates.

The experimental methods used to measure the ab
mentioned quantities share a common characteristic, th
they monitor the response of the system to a perturba
caused by an external field weakly coupled to it. In this
gime, the dynamics of the system is adequately describe
the linear response theory, which implies that the measu
dynamic properties can be expressed in terms of tim
correlation functions of the corresponding dynam
operators.4 For systems evolving under the laws of classi
mechanics, time-correlation functions can be computed fr
a canonical ensemble of the system’s trajectories. Thes
turn are readily available from MD simulations.

In part due to the success of computer simulations
describing classical systems, great efforts have been ma
1070021-9606/2001/114(3)/1075/14/$18.00
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develop simulation techniques for quantum mechanical s
tems as well. As a result, significant progress has been m
in the use of stochastic methods in computing tim
independent properties of quantum system. One stocha
method is diffusion Monte Carlo~DMC! @or quantum Monte
Carlo5–7 ~QMC!# for calculation of the zero-temperatur
ground state properties. Other methods based on Feynm
path integral formulation of statistical mechanics,8 known as
path integral Monte Carlo9 ~PIMC! and path integral molecu
lar dynamics10 ~PIMD! are used to calculate finite temper
ture equilibrium properties. These approaches have allo
accurate calculations for very large many-body quantum s
tems.

In contrast, simulating time evolution of finite temper
ture many body quantum mechanical systems has prove
be a formidable problem, and progress in this area has b
much more modest. Feynman has pointed out that this p
lem is NP complete and suggested that quantum compu
offer a solution.11 Due to system size, basis-set methods a
wave-packet propagation techniques used to solve the
dependent Schro¨dinger equation are not applicable. Th
leaves path integral methods as the only feasible alterna
However, in contrast to equilibrium properties, computati
of time-dependent canonical averages using path integ
requires evaluation of multidimensional integrals over ra
idly oscillating exponentials due to the presence of real-ti
propagators. Therefore, in this case stochastic methods b
on importance sampling are inefficient and lead to statist
errors which grow exponentially with time. This is known a
the ‘‘sign problem,’’ and is the primary obstacle to the use
computer simulations in calculating quantum tim
correlation functions.

Numerous attempts have been made to partially allev
5 © 2001 American Institute of Physics
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or suppress the sign problem. Most of these are based o
use of stationary phase filtering,12–17 optimized reference
systems,18–20 and more recently renormalization tec
niques.21–24 Likewise semiclassical methods such as S
IVR, 25–30 and quasiclassical methods, such as centroid
lecular dynamics31–33~CMD! have been successfully applie
to systems in which quantum effects play a moderate r
While these methods introduce a great improvement o
direct sampling of real-time path integrals, they nonethel
suffer from other limitations, and are in many cases ap
cable only to certain systems and system sizes. A good
view of these methods can be found elsewhere.34

Another approach is based on computing quantum tim
correlation functions by numerical analytic continuation
imaginary-time correlation functions, which are readily o
tained from PIMC, to real time. The analytic continuatio
involves a numerical inversion of a Laplace transform,
extremely unstable operation, and requires the use of sp
techniques such as maximum entropy~ME! or singular value
decomposition~SVD! to control the instability. In particular
the ME method was successfully used to compute absorp
spectra35–38 and more recently, accurate quantum react
rates.39 Generally, this approach was found to adequat
describe systems in which quantum coherences dissipate
idly.

Still, the method has several limitations. The imagina
time data need to be determined with high accuracy in or
to ensure the stability of the analytic continuation which
quires long and expensive PIMC simulations. Even th
there can be many different real-time decays that are
agreement with the same imaginary time data within the
tistical uncertainty. Another difficulty is that in imaginar
time, the entire time domain is folded onto a small region
the imaginary time axis~between 0 andb\), which further
contracts with increasing temperature.

In a recent paper40 we showed how approximate rea
time data obtained from centroid molecular dynamics can
used within the context of ME numerical analytic continu
tion. The principal drawback of such an approach is t
CMD is exact only for systems with purely harmonic inte
actions, and the deviations from the exact results can be q
severe for systems with very anharmonic interactions.

In this paper we present a way of combining the nume
cal analytic continuation approach with the real-time p
integral simulations as a feasible method for comput
quantum time correlation functions. Such an approach
recently suggested by Kim and Doll41 as a way to improve
the quality of analytic continuation methods. In Sec. II w
present a symmetrized form of the time correlation funct
suitable for PIMC simulations, and in Sec. III discuss t
simulation methods used. In Sec. IV we formulate the a
lytic continuation problem, and briefly outline the maximu
entropy method used to perform it in Sec. V. We present
results for several test systems in Sec. VI. We conclude
Sec. VII.
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II. SYMMETRIZED TIME CORRELATION FUNCTION

A general quantum time correlation function is given

CAB~ t !5^A~0!B~ t !&5
1

Z
Tr~e2bHAeiHt /\Be2 iHt /\!, ~1!

where A and B are quantum mechanical operators cor
sponding to measurable observables,H is the Hamiltonian of
the system, andb51/kT is the inverse temperature. For re
sons of simplicity, in this work we study autocorrelatio
functions of operators which are a function of position on
A5B5A(x). We use one-dimensional notation for clarit
and generalization to multidimensional space is straight
ward. In the position representation, Eq.~1! takes the form

CAA~ t !5
1

ZE dxdx8dx9dx9A~x8!A~x9!^xu2bHux8&

3^x8ueiHt /\ux9&^x9ue2 iHt /\ux&. ~2!

Direct application of the path integral formalism to Eq.~2!
would result in integrals over imaginary time paths conne
ing the statesx8 and x and pairs of forward and backwar
real-time paths, connectingx and x9 and x9 and x, respec-
tively. One should note that the latter two have no posit
definite weights due to the presence of real-time propaga
with purely imaginary phases. As a result, stochastic imp
tance sampling methods cannot be used to evaluate t
integrals directly. Attempts to use stationary phase filter
techniques which introduce artificial positive defini
weights have met with limited success.14–17

A form that appears much more suitable is the symm
trized time correlation function,42–44

GAA5 K A~0!AS t1
ib\

2 D L
5

1

Z
Tr~AeiH (t1 ( ib\/2)/\Ae2 iH (t2 ( ib\/2)/\!, ~3!

which is obtained by shifting the domain of the quantu
time correlation function from the real time axis b
2 ib\/2. As the correlations are now measured betwe
points in the complex time plane,G(t) is also known as the
complex time correlation function.45 Introducing a complex
time tc5t2 ib\/2, one can write the symmetrized correl
tion function in position representation as

GAA~ t !5
1

ZE dxdx8A~x!A~x8!^x8ue2 iH tc /\ux&

3^xueiH tc* /\ux8&. ~4!

The propagation forward and backward along the real ti
axis, followed by that along the imaginary time axis~the
Kadanoff–Baym contour!46 present inC(t) has now been
replaced by the propagation along a contour in the comp
time plane consisting of a forward propagation fromx to x8
by tc and backward propagation tox by tc* . The difference
between the two contours is illustrated in Fig. 1.

The complex time propagators can now be expresse
path integrals,
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1077J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Quantum time correlation functions
^x8ue2 iH tc /\ux&5E
x

x8
Dx~z!e~ i /\!S[x(z);tc] , ~5!

with S@x(z);tc# being the classical action along the compl
time path,

S@x~z!;tc#5E
0

tc
dzF1

2
mẋ~z!22V~x~z!!G . ~6!

The principal advantage of the symmetrized time cor
lation functions is that in the path integral formulation, t
complex time paths now do have a positive definite weig
and importance sampling techniques can be used to eva
the necessary path integrals. Of course, the ‘‘sign proble
is still present since the complex phases have imaginary
tributions. However, since the imaginary parts of the ph
contributions for forward and backward complex time pa
have opposite signs, the resulting cancellation should m
the problem less severe, as was pointed out by Thirum
and Berne.42 Another advantage is that the forward and ba
ward complex time contours form a cyclic path with equiv
lent weights, which allows efficient sampling methods su
as staging47 to be used to evaluate the integrals.

It should be also noted that, while the quantum tim
correlation function of Hermitian operators is a compl
function of time, its symmetrized counterpart is a purely re

FIG. 1. A schematic representation of the propagation contour in the c
plex time plane.~a! is the Kadanoff–Baym contour arising in real-tim
quantum correlation functions and~b! is the propagation contour appearin
in the symmetrized time correlation function. The arrows indicate the di
tion of propagation.
Downloaded 09 Jan 2001  to 128.59.112.46.  Redistribution subject to
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symmetric function. In addition, the transformation fro
G(t) to C(t) is nontrivial and involves further difficulties
which will be addressed in a later section.

We conclude this section by considering the symm
trized time correlation function of a system bilinear
coupled to a harmonic dissipative environment. This imp
tant model48 has been used extensively to study processe
condensed phase. The model allows the Hamiltonian to
split as follows:

H5HS~p,x!1HE~pa ,xa!1HI~x,xa!, ~7!

where (p,x) represent the system coordinates and (pa ,xa)
are the harmonic degrees of freedom describing the envi
ment. The path integrals over the latter can be perform
analytically, and the propagator matrix elements in Eq.~4!
are expressed as integrals over the system paths o
whereas the effects of the environment are contained in
Feynman–Vernon influence functional.49 The influence func-
tional gives rise to interactions that are nonlocal in time a
involve couplings between different points along the co
plex time contour. For a harmonic environment, which
characterized by a spectral densityJ(v), the symmetrized
correlation function is given by

GAA~ t !5
1

ZE dxdx8A~x8!A~x8!E
x

x8
Dx~z!

3E
x8

x

Dx8~z!e( i /\)$S[x(z);tc] 2S[x(z);tc* ] %I @x~z!#, ~8!

where the influence functionalI @x(z)# is a functional of the
complex time path given by50

I @x~z!#5expH 2
1

\E dzE
z.z8

dz8x~z!L~z2z8!x~z8!J ,

~9!

with the integrations over complex timez evaluated along
the contour in Fig. 1~b!. L(z2z8) is the force autocorrelation
function of the environment,

L~z2z8!5
1

pE0

`

dvJ~v!

coshFb\v

2
2 iv~z2z8!G

sinhS b\v

2 D .

~10!

III. PIMC SIMULATIONS

For the purpose of computer simulations, each of
complex time propagators in Eq.~4! is expressed as a prod
uct of P short time propagators overe5tc /P5e r1 i e i . In-
serting complete sets of states gives

GAA~ t !5
1

ZE dx1¯dx2PA~x1!A~xP11!

3^xP11ue2 iH e/\uxP&¯^x2ue2 iH e/\ux1&

3^x1ueiH e* /\ux2P&¯^xP12ueiH e* /\uxP11&. ~11!

-

-
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A. Standard position basis representation of path
integrals

Most of the simulations in this work were performe
using the symmetric Trotter51 splitting, with the short time
approximation for the free particle propagator as shown
Eq. ~12!,

^xj 11ue2 iH e/\uxj&'A m

2p i\e
expH i

\

m

2e
~xj 112xj !

2

2
i

\
eS V~xj 11!1V~xj !

2 D J . ~12!

Inserting this into Eq.~11! the expression forG(t) becomes

GAA~ t !5
1

ZE dx1¯dx2P A~x1!

3A~xP11!r~x1 , . . . ,x2P ;e!eif(x1 , . . . ,x2P ;e),

~13!

with the partition function given by

Z5E dx1¯dx2P r~x1 , . . . ,x2P ;e!eif(x1 , . . . ,x2P ;e).

~14!

r(x1 , . . . ,x2P ;e) is a positive definite function of the pat
given by

r~x1 , . . . ,x2P ;e!

5S m

2pueu2
DP

expH me i

2ueu2\
(
j 51

2P

~xj 112xj !
21

e i

\ (
j 51

2P

V~xj !J ,

~15!

while the phase information is contained
f(x1 , . . . ,x2P ;e),

f~x1 , . . . ,x2P ;e!

5S me r

2ueu2\
D F (

j 51

P

~xj 112xj !
22 (

j 5P11

2P

~xj 112xj !
2G

2
e r

\ F (
j 52

P

V~xj !2 (
j 5P12

2P

V~xj !G . ~16!

Since it is positive definite,r(x1 , . . . ,x2P ;e) can be used as
a weight in importance sampling. For this purpose,G(t) is
expressed in terms of averages overr as

GAA~ t !5
^A~x1!A~xP11!eif&r

^eif&r
, ~17!

where for a function of the pathf the average overr is
understood to be

^ f &r5
*dx1¯dx2Pf ~x1 , . . . ,x2P!r~x1 , . . . ,x2P ;e!

*dx1•••dx2Pr~x1 , . . . ,x2P ;e!
.

~18!

The two averages in Eq.~17! were evaluated using the sta
ing PIMC algorithm.47 For some of our model systems, n
tably the one-dimensional cases, weighted histogram an
sis method52 ~WHAM ! and umbrella sampling53 from the
Downloaded 09 Jan 2001  to 128.59.112.46.  Redistribution subject to
n

ly-

zero-time distribution were used to optimize the averag
over configurations. This method has been used before54 in
the context of symmetrized time correlation functions, a
details are available therein.

For the models involving systems coupled to a dissi
tive environment, the influence functional was discretized

I ~x1 , . . . ,x2P!5expH 2
1

\ (
j 51

2P

(
k51

j

xja jkxkJ , ~19!

where the coefficientsa jk are given by

a jk5H D jL~zj2zk!Dk, j Þk,

1
2D jL~zj2zk!Dk, j 5k,

~20!

with the time stepD j determined by

D j5H i e i , j 51,P11,

e, 2< j <P,

2e* , P12< j <2P.

~21!

The same Trotter factorization was used in the imagin
time correlation functions in position basis representati
where the discretized expression for these is obtained by
ting the real part ofe in Eqs. ~15! and ~16! to zero. In this
case, the phase factorf vanishes, and the expression b
comes

CAA
i ~ u j 2kue i !

5
*dx1¯dx2PA~xi !A~xj !r~x1 , . . . ,x2P ;e i !

*dx1¯dx2Pr~x1 , . . . ,x2P ;e i !
, ~22!

which is then evaluated through staging PIMC simulation

B. Discretized variable representation of path
integrals

It is often advantageous to use the discrete variable
resentation~DVR! in the path integration which provide
substantial reduction in the configuration space. The orig
coordinate representation can be recovered, if desired
means of the one-dimensional DVR transformation,

ux8&5 (
n51

M

bnuun&,

bn5^unux8&5 (
n851

M

^unuFn8&^Fn8uun&, ~23!

^unuxuun8&5 x̃ndn,n8 ,

where $un ; x̃n ,n51, . . . ,M % are DVR eigenstates and e
genvalues, respectively, obtained from diagonalizing the
sition matrix of the M lowest eigenstates,$Fn ;En ,n
51, . . . ,M %. The discretized path integral expression of t
symmetrized correlation function, Eq.~11!, for the system
coupled to a harmonic environment takes the form
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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GAA~ t !5
1

Z (
k0

M

••• (
k2P11

M

d0,2P11dP,P11A~ x̃0!A~ x̃P!

3 )
j 5P11

2P

^ukj 11
ueiH Se* /\uukj

&

3)
j 51

P

^ukj
ue2 iH Se/\uukj 21

&I ~ x̃0 , . . . ,x̃2P11 ;e!

~24!

resulting from symmetric Trotter splitting of the tota
Hamiltonian55 into a system dependent and system indep
dent parts, which allows larger time stepe, i.e., a smallerP,
than the standard Trotter split. Also, larger time steps can
used in quasiadiabatic path integration19 ~QUAPI! in which a
counterterm corrected reference system potential is use
addition to tremendous reduction of configuration space
system-specific DVR also has the benefit of calculating
short-time system propagator in an exact manner such t

^uue2 iH Se/\uu8&5 (
n51

M

e2 iEne/\^uuFn&^Fnuu8&. ~25!

More accurate expressions for discretized influence fu
tional coefficients and further details of this method can
found elsewhere.55

While for some cases full discretized space integratio
possible, most problems still require the stochastic samp
method. For Monte Carlo importance sampling, analytic
pression for the sampling function and phase of Eqs.~15!
and~16!, however, are no longer available in the discretiz
formalism. In this study, we used the absolute value of co
plex integrand without the operators as the sampling fu
tion,

r~ x̃0 , . . . ,x̃2P11 ;e!

5Ud0,2P11dP,P11 )
j 5P11

2P

^ukj 11
ueiH se* /\uukj

&

3)
j 51

P

^ukj
ue2 iH se/\uukj 21

&I ~ x̃0 , . . . ,x̃2P11 ;e!U. ~26!

IV. ANALYTIC CONTINUATION PROBLEM

The real-time, symmetrized, and imaginary time form
of the quantum time correlation function are related to e
other via analytic continuations in the complex time plane56

Of these, the real-time quantum correlation function is
one directly related to the physically measurable dynam
quantities, and obtaining it is the primary goal of this wo
To establish the relationship to the other forms it is usefu
introduce the power spectrum,I (v), which is a Fourier
transform of the real-time correlation function

C~ t !5
1

2pE2`

`

dv eivtI ~v!. ~27!
Downloaded 09 Jan 2001  to 128.59.112.46.  Redistribution subject to
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If one performs an analytic continuation to the imagina
time axis by lettingt→ i t, one obtains the imaginary tim
correlation function which is a two-sided Laplace transfo
of the power spectrum

Ci~t!5E
2`

`

dv e2vtI ~v!. ~28!

In order to computeC(t) from Ci(t) it is necessary to obtain
I (v) by performing an inverse transform of Eq.~28!. Typi-
cally, the value ofC(t) is available from computer simula
tions at several values oft with finite statistical errors. In
this case, the inverse transform must be performed num
cally, which is a highly unstable operation. Inverse Lapla
transformation of noisy data is an ill-posed problem due
the highly singular nature of the Laplace kernel. As a con
quence, specialized methods need to be used in order to
trol the numerical instability.

Methods based on maximum entropy and singular va
decomposition have been employed for this purpose fo
range of systems, such as quantum lattice models,57 and an
excess electron solvated in water,36 helium, and xenon.35

More recently, vibrational relaxation38 and quantum reaction
rates39 have been studied as well. In all the cases it w
found that very accurate data forC(t) are necessary in orde
to obtain satisfactory results. Even then, the real-time co
lation functions were accurate over relatively short times,
the method was limited to cases in which quantum corre
tions decay on that time scale.

The primary obstacle limiting the usefulness of imag
nary time correlation functions is that their domain is r
stricted to between 0 andb\. Moreover, for most cases o
physical interest,C(t) is symmetric aroundt5b\/2, so that
all of the correlation information is actually contained b
tween 0 andb\/2. Hence the domain ofC(t), which spans
the entire real-time axis has been compressed into a s
finite interval on the imaginary time axis. It is precisely th
fact that is responsible for the sensitivity of the the real-tim
correlation functions to small variations in their imagina
time counterparts. This causes the instability of the num
cal analytic continuation. The problem becomes more sev
at higher temperatures, when the imaginary time dom
contracts drastically, vanishing completely in the classi
limit.

One way to avoid this limitation is to use the symm
trized time correlation function.G(t) is obtained by shifting
the domain ofC(t) to a line in the complex plane throug
analytic continuationt→t1 ib\/2. For Hermitian operators
G(t) is real and symmetric in time, so the relationship
I (v), and thereforeC(t) is given by

G~ t !5
1

pE0

`

dv cos~vt !e2b\v/2I ~v!. ~29!

Following the procedure used for imaginary time correlati
functions, one can perform a numerical analytic continuat
to obtainC(t) by inverting Eq.~29!. The integration kernel
is still ill-behaved but to a lesser degree than in Eq.~28!.
Hence, the resulting real-time correlation functions should
less sensitive to the statistical errors in simulation data
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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G(t). The reason for this is that the domain ofG(t) is not
restricted to an interval, but extends over all values of r
time t, and the temperature affects only the imaginary ti
component of the complex time argument, or the degree
displacement from the real-time axis. Thus, in a sense
complex time correlations contained inG(t) represent a
compromise between conditions favorable to simulation,
those favorable to the analytic continuation:

~1! The presence of the real time component extends
domain, thereby reducing the numerical instability of t
analytic continuation; nonetheless it introduces oscil
ing phase factors into the path integrals.

~2! The imaginary time component allows importance sa
pling to be used to evaluate the oscillatory integr
present inG(t); however the presence of the imagina
time component is the cause of the numerical instabi
in the inversion.

Hence, it is plausible to expect that by applying the M
numerical analytic continuation method to the symmetriz
time correlation data, or perhaps in combination with ima
nary time data, one will be able to compute real-time qu
tum correlation functions for longer times.

V. MAXIMUM ENTROPY METHOD

The maximum entropy58,59 ~ME! inversion method has
been shown to be useful for many problems in which ther
incomplete and noisy data. The method itself requires o
the knowledge of the transformation which relates the d
and the solution. Furthermore, prior knowledge about
solution is included in a logically consistent fashion. A
such, ME is ideally suited for solving ill-posed mathematic
problems. A particularly important class of such proble
involves inverting integral equations of the type,

D~t!5E dvK~t,v!A~v!, ~30!

whereK(t,v) is a singular kernel. Equations~27! and ~28!
which relate the real-time and imaginary time correlati
functions with the power spectrum belong to this class. If
data setD(t) is noisy and incomplete, the solutionA(v),
also referred to as the map, cannot be determined uniqu
Maximum entropy criteria provide a method for determini
the most probable inversion consistent with the data. T
method is based on Bayesian inference. Typically, the d
are known only at a discrete set of points$t i%, and we like-
wise seek a solution at a discrete set of points$v j%. The
maximum entropy method selects a solution which ma
mizes the probability of the mapA given a data setD,
known as the posterior probability,57,58

P~AuD!}exp~aS2x2/2!5eQ. ~31!

Herex2 is the standard mean squared deviation from the d

x25(
j ,k

S D j2(
l

K jl Al D @C21# jkS Dk2(
l

KklAl D ,

~32!

whereCjk is the covariance matrix,
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1

M ~M21! (l 51

M

~^D j&2D j
( l )!~^Dk&2Dk

( l )!, ~33!

with M being the number of measurements.
S is the information entropy, the form of which is ax

omatically chosen to be

S5(
k

DvS Ak2mk2Ak ln
Ak

mk
D . ~34!

In this formulation the entropy is measured relative to a
fault modelm(v) which can contain prior information abou
the solution anda is a positive regularization parameter.

Finding a mapA which maximizes the posterior prob
ability is a maximization problem inN variables, whereN is
the number of points$vk% at which the solution is evaluated
The solution obtained in this way is still conditional on th
arbitrary parametera, which can be interpreted as a regula
ization parameter controlling the smoothness of the m
Large values ofa lead to a result primarily determined b
the entropy function and hence the default model. Smalla in
turn lead to a map determined mostly by thex2 and thus to a
closer fitting of the data. The principal drawback is th
along with the data, the errors would be fit as well.

In this study a is obtained according to the L-curv
method.60,61The value ofa is selected by constructing a plo
of log@2S(A)# vs logx2. This curve has a characterist
L-shape, and the corner of the L, or the point of maximu
curvature, corresponds to the value ofa which is the best
compromise between fitting the data and obtaining a smo
solution.

We employ a maximization algorithm due to Bryan,62

which reduces the space in which the search for the solu
is performed. The kernel is first factored using singular va
decompositionK5VSUT. The singular nature of the kerne
ensures only a small number of eigenvalues ofS will be
nonsingular. Since the space spanned by the rows ofK is the
same as that spanned by the columns ofU associated with
nonsingular eigenvalues, the search for the solution can
performed in this singular space of dimensionalityNs ,
whereNs is the number of nonsingular eigenvalues. The
lution in singular space is expressed in terms of the vectou,
which is related to theN dimensional map space via

Aj5mj expS (
l 51

Ns

U jl ul D . ~35!

This exponential transformation is useful since it ensures
positivity of the solution.

In this study we use a flat default map, which satisfie
known sum rule, such as the integral overA(v). Other
choices ofm(v) and their effect on the quality of the resul
will be the subject of future investigation.

One should note that the important precondition to
successful application of the ME method is that the data
Gaussian distributed and independent. Thus care mus
taken to ensure that the simulation data satisfies these co
tions as closely as possible. Ideally, there should be no
relation between different data points. If the simulati
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 2. Analytic continuation results for the linear ha
monic oscillator of frequencyv0510.0 a.u. at the in-
verse temperatureb51.0 a.u. In~a! we show the imagi-
nary time correlation function computed by PIMC
simulation~circles! compared to the exact result~dotted
line!. In ~b! we show the same for the symmetrized tim
correlation function, computed by PIMC up tot50.3
a.u. In ~c! we show the power spectra obtained by M
continuation of imaginary time data~broken line! and a
combination of symmetrized and imaginary time da
~solid line!. In ~d! we show the real parts of the corre
sponding real-time correlation functions compared
the exact result~dotted line!.
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method does introduce correlation, the nature and the ex
of the correlations needs to be expressed in terms of
covariance matrix.

VI. RESULTS FOR SEVERAL BOUND QUANTUM
SYSTEMS

The approach described in the previous section w
tested by computing quantum time correlation functions
several bound systems. In all cases, we computed the p
tion autocorrelation functions, that is we takeA(x)5x in Eq.
~2!. These are directly related to absorption spectra in
dipole limit, with the photon absorption cross section giv
by

s~v!5S 4p

\c Dv~12e2b\v!I ~v!, ~36!

whereI (v) is given by Eq.~27!. In most cases, we used th
standard position basis representation, with the Trotter s
of the short time propagator shown in Eq.~12! to discretize
the path integrals required to compute the symmetrized t
correlation functionsG(t) and the corresponding imaginar
time correlation functionsCi(t). This approach was chose
to keep the method computationally simple, applicable t
wide variety of systems, and to avoid using anya priori
approximations. In a few cases we computedG(t) using a
more advanced approximation to the propagators, base
QUAPI with DVR expansion.

The simulations were performed using the staging PIM
method. The correlation function data was block-average
remove the correlations between successive Monte C
steps, and the length of blocks was adjusted to ensure
Downloaded 09 Jan 2001  to 128.59.112.46.  Redistribution subject to
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Gaussian distribution of the data. This was checked by co
puting the skewness and the kurtosis of the block avera
for each imaginary time data point$t i%. In all cases it was
found that the data are within the norm of a Gaussian dis
bution. The corresponding covariance matrix was compu
from the block averages using Eq.~33!.

For imaginary time correlation functions, the data for
values of imaginary time are obtained from a single simu
tion. This introduced strong correlations between data
different imaginary times. Hence, large numbers of bloc
were required to accurately evaluate the off-diagonal cov
ance matrix elements. This was necessary since strong
relations between data lead to an unstable spectral analys
the covariance matrix with eigenvalues spanning several
ders of magnitude. On the other hand, symmetrized t
correlation functions were computed by performing a se
rate simulation for each value of real time. As a result, th
are no correlations between data points corresponding to
ferent times, the covariance matrix is diagonal, and sma
numbers of blocks were required. Such data is theref
more suitable for ME inversion.

A. One-dimensional systems

We first tested the method on two nondissipative o
dimensional bound systems. In both of these cases the s
tral densities of the quantum position autocorrelation fu
tions consist of discrete lines corresponding to vario
quantum transitions, and as a consequence, the correl
functions will not dephase, but will oscillate indefinitely. Th
exact results were computed by matrix diagonalization of
corresponding Hamiltonians.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1082 J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Krilov, Sim, and Berne
The first system considered is a linear harmonic osci
tor of frequencyv0510 a.u. at the inverse temperatureb
51.0 a.u. In Figs. 2~a! and 2~b! we show the imaginary time
and symmetrized correlation functions computed by PIM
simulations. The imaginary time path integrals were d
cretized intoP564 slices, and a total of 23106 configura-
tions were generated, which were divided into 200 bloc
For G(t), the complex time paths were discretized intoP
532 slices per path, and the averages were obtained f
253107 configurations by umbrella sampling from the zer
time distribution to increase the efficiency of the averag
and reduce statistical errors due to phase oscillations.
data was computed at intervals ofDt50.01 a.u. up tot
50.3 a.u.

Figure 2~c! shows the power spectra obtained by M
analytic continuation of the imaginary time data, and t
simultaneous analytic continuation using both the imagin
time and symmetrized time correlation functions. The r
parts of the corresponding real-time correlation functions
shown in Fig. 2~d! in comparison with the exact results. Th
continuation of the combination of imaginary and symm
trized time correlation data leads to a significant impro
ment over using imaginary time data alone. In particular,
spectral line atv5v0 is significantly narrowed, leading to
longer decoherence time. As a consequence, correct co
ence behavior is retained for more than eight oscillation
riods, while imaginary time results decohere significantly
ter three periods.

We next examined an anharmonic system, namely a o
dimensional quartic oscillator, given by the Hamiltonian

H5
p2

2m
1ax4. ~37!

The calculations were performed form51836.15 a.u.~cor-
responding to the mass of a proton! anda50.001 194 a.u. at
the temperature of 200 K (b51578.78 a.u.!. In this regime,
the dynamics are dominated by the two-stateu1&→u2& tran-
sition, with a small contribution from theu1&→u3& transi-
tion. The relative intensities are shown in Fig. 3~a!. The
imaginary time path integral was discretized intoP564
slices, and a total of 106 configurations were generate
which were divided into 100 blocks. The symmetrized tim
correlation function was calculated from a total 106 configu-
rations, with 23106 configurations sampled from each of th
respective distributions att/b\50, 0.1, 0.2, 0.3 and 0.4
which were stored on disk. WHAM was then used to extr
averages from these configurations in the effort to impro
the averaging and reduce statistical error. The val
of G(t) were computed at intervals ofDt515.8 a.u. up to
t5710.5 a.u.

As in the case of the harmonic oscillator, ME inversi
was performed using imaginary time data alone, and usin
combination of short time symmetrized and imaginary tim
correlation data. The resulting power spectra and the
parts of the corresponding time correlation functions
shown along with the exact results in Figs. 3~a! and 3~b!.
Once again, the use ofG(t) improves the results, giving a
better reproduction of the principal transition. The corre
tion function thus obtained is very accurate over five perio
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or more thant58000 a.u. In comparison, the result bas
solely on imaginary time data starts dephasing alreadyt
53000 a.u. However, neither result is able to capture
effect of the small contribution from the second transition

In both one-dimensional systems examined, the ME a
lytic continuation was able to extract accurate real-time c
relation functions for time intervals up to ten times long
than the range of the symmetrized time correlation data s
plied from the simulation. Although these results are ve
encouraging, it should be noted that both of these syst
are dominated by a single frequency. It should be noted
the contributions from the higher state transitions beco
more important at high temperatures. However, real-ti
path integrals in the standard position basis representa
are much harder to converge in these cases due to hi
frequency oscillations of the integrands, and hence can
evaluated only for very short times without incurring pr
hibitive computational costs. Thus, it would be difficult
obtain the data at the sufficiently long times required for
resolution of the discrete spectral lines through analytic c
tinuation. Similarly, the imaginary time correlation function
are harder to compute at higher temperatures due to the
creased stiffness of the harmonic bonds. Moreover, the

FIG. 3. Analytic continuation results for the quartic oscillator potential
the temperature of 200 K. In~a! we show the power spectra of the positio
correlation functions computed by ME analytic continuation of imagina
time data~broken line! and the combination of imaginary and symmetrize
time correlation data~solid line!. The solid bars show relative intensities o
the two principal transition lines active at this temperature. In~b! we show
the real parts of the corresponding real-time correlation functions in c
parison with the exact result~dotted line!.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 4. Analytic continuation results for a harmoni
oscillator coupled to a harmonic environment. In~a! we
show the power spectra and in~b! the real parts of the
corresponding real-time position correlation function
obtained by ME continuation of imaginary time dat
~broken line!, symmetrized time correlation dat
~dotted–dashed line! and the combination of the two
~solid line! in comparison with the exact result~dotted
line!. The symmetrized time correlation function da
was included up tot50.5 a.u. In~c! and ~d! we show
the same results using symmetrized time correlat
data up tot51.0 a.u.
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method was designed and shown to give best results for
tinuous smooth spectra,38,40 which are the characteristic o
most physical condensed phase systems. In the next two
sections we test the method for systems that are coupled
dissipative environment in which the dynamics is charac
ized by a broad range of frequencies.

B. Harmonic oscillator coupled to harmonic
environment

In addition to being a classic model for vibrational r
laxation processes, this is the only many body system
which exact solutions for quantum position autocorrelat
functions are available. In particular, it was shown that
classical photon absorption cross section, obtained in clo
form by solving the generalized Langevin equation63 is equal
to the quantum one.64 As such, this system was subject
investigation using ME analytic continuation metho
previously.38 The total Hamiltonian is given by

H5
p2

2m
1

1

2
mv0

2 x21(
a

S pa
2

2ma
1

1

2
mava

2xa
2D2x(

a
caxa , ~38!

where (x,p) correspond to the system, in this case the h
monic oscillator and (xa ,pa) correspond to a harmoni
mode of the environment with massma and frequencyva .
We use the influence functional approach and express
properties of the environment in terms of the spectral den
function J(v),

J~v!5
p

2 (
a

ca
2

mava
d~v2va!, ~39!

which was computed from the classical friction kernelz(t),

J~v!5vE
0

`

dt cos~vt !z~ t !. ~40!
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The analytic form of the friction kernel was chosen to
simulation data for a fluid of Lennard-Jones particles, and
given by38

z~ t !5z0$e
2a1( f t)2

@11a1~ f t !4#1a2~ f t !4e2a2( f t)2
%. ~41!

The particular parameters chosen arez05225, a151.486
3105, a25285, a15903 anda2575.0. In this study we
consider the case of low damping (f 50.2) at the inverse
temperatureb50.25 a.u. The bare oscillator frequencyv0

was chosen to be 20 a.u. Under these conditions, the sy
couples weakly to the environment, and exhibits comp
relaxation dynamics, which is evident from the line shape
the power spectrum of the position autocorrelation funct
shown in Figs. 4~a! and 4~c!. Two principal features are a
sharp peak at the oscillator frequency, and a broad low
tensity phonon band extending over the entire low freque
region. As a result, the system exhibits a long relaxation ti
and the correlation functions were difficult to obtain by M
analytic continuation of imaginary time data alone.38 There-
fore, it is an appropriate test for the new approach.

The influence functional coefficients were comput
from J(v) using Eq.~10! and Eq.~20!. The PIMC simula-
tions were then performed to evaluate the path integral
Eq. ~8! as well as the ones arising in corresponding ima
nary time correlation function expression. The imagina
time path integral was discretized withP5128 time slices,
and the correlation function was computed from a total
23107 configurations divided into 200 blocks. The symm
trized correlation function was computed at intervals ofDt
50.005 a.u. up to a total time oft50.25 a.u.~corresponding
to b\). A separate simulation was performed for each va
of t, and the numbers of configurations ranged from 108 to
23108 for the longest times. The complex paths were d
cretized withP58 slices each~for a total of 16 time slices!
in each simulation.

Two sets of data were used as input for ME inversion.
the first case, symmetrized time correlation data was
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1084 J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Krilov, Sim, and Berne
cluded up tot50.125 a.u., which is the same as the ima
nary time range. The ME inversions were performed us
imaginary time data alone, symmetrized time correlat
function alone and the combination of the two. The resu
for power spectra and the real parts of the correspond
position autocorrelation functions are shown in Figs. 4~a!
and 4~b! in comparison with exact results. The same pro
dure was then performed usingG(t) data for up tot50.25
a.u., or twice the range of the first case, with the res
shown in Figs. 4~c! and 4~d!.

In both cases, including symmetrized time correlati
function data leads to an improvement. The continuation
ing imaginary time data results in a real-time correlati
function accurate tot50.3 a.u., or on the order ofb\. This
is superior to the results using onlyG(t) data in the first case
~i.e., data up tot50.125 a.u.!, but in the second case, con
tinuation using longer time symmetrized correlation functi
data~up to t50.25 a.u.! yields a real-time correlation func
tion accurate tot50.45 a.u. In particular, the low frequenc
portion of the spectrum is well reconstructed. This behav
is not unexpected, as the power spectrum ofG(t) is related
to I (v) through G(v)5e2b\v/2I (v), it is thus primarily
determined by the low frequency region ofI (v).

The continuation using the combination of imagina
and symmetrized time correlation functions in both ca
leads to improvement over that using the either data alone
particular, major improvement is observed in the first ca
where qualitative accuracy is observed up tot51.0 a.u. In
the second case, as longer timeG(t) is used, this data tend
to dominate the ME inversion, and hence the results of c
tinuation of the combined data are similar, although som
what better than usingG(t) alone. In general, using symme
trized correlation functions doubles the time interval ov
which the analytically continued correlation functions are
curate, and results in qualitative accuracy over much lon
times.

It should be noted, that in order to reduce the statist
errors~which increases rapidly with the number of integr
tion variables! in PIMC simulations ofG(t), a relatively
small number of time slices was used, which introduc
some discretization error. Thus a part of the error in real-ti
correlation functions~particularly the slight shift of the prin-
cipal peak in the power spectrum! can be attributed to this
fact. This part of the error is systematic and will decreas
the Trotter number is increased.

C. Quartic oscillator coupled to harmonic environment

We next examine a highly anharmonic system, name
quartic oscillator interacting with a dissipative environme
The Hamiltonian is given by

H5
p2

2m
1ax41(

a
S pa

2

2ma
1

1

2
mava

2xa
2 D 2x(

a
caxa ,

~42!

with the system parameters same as those of a quartic o
lator described in a previous section. The environmen
characterized by an Ohmic spectral density

J~v!5hve2v/vc, ~43!
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with the cutoff frequencyvc54.55631024 a.u., and the
coupling strengthh512.55 a.u., which again leads to a rel
tively weak coupling with the system characterized by lo
relaxation times, and therefore a difficult regime for analy
continuation methods.

We have used two simulation approaches for this s
tem. First an approach identical to the one used for the
brational relaxation of the harmonic oscillator was imp
mented. The imaginary time path integral was discretiz
with P564 time slices, and the corresponding correlati
function computed from 107 PIMC configurations divided
into 200 blocks. The symmetrized time correlation functi
was calculated at intervalsDt531.6 a.u. (0.02b\) up to a
maximum time oft51578.78 a.u. (b\), using 53107 con-
figurations at short times and up to 83108 configurations for
the longest times. The complex time paths were discreti
with P58 slices for each of the two paths.

FIG. 5. Analytic continuation results for a quartic oscillator coupled to
harmonic environment at the temperature of 200 K. The symmetrized
correlation function data was included up tot5790 a.u. In~a! we show the
power spectra and in~b! the real parts of the corresponding real-time po
tion correlation functions computed by ME continuation of imaginary tim
data~broken line!, symmetrized time correlation data~dotted–dashed line!
and the combination of the two~solid line!. In ~c! we show the symmetrized
correlation functions calculated from the power spectra in~a! in comparison
with the exact result~empty circles!.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1085J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Quantum time correlation functions
The ME analytic continuation was then performed
before using the two correlation functions and their com
nation. In the first case we usedG(t) data up tot5790 a.u.
(0.5b\). The resulting power spectra are shown in Fig. 5~a!
and the real parts of the corresponding real-time correla
functions in Fig. 5~b!. Due to the presence of the anharmon
potential, the full dynamics cannot be obtained exac
However, it is possible to compute the symmetrized corre
tion functions up to intermediate times~several multiples of
b\) using a nonstochastic approach based on exact eva
tion of integrals in the discrete variable representation
path integrals in Eq.~24!. These are shown in Fig. 5~c! in
comparison with the symmetrized time correlation functio
computed from the power spectra in Fig. 5~a! using Eq.~29!.
In the second case, the same procedure was performed w
using longer time data forG(t) as input, up tot51580 a.u.,
which corresponds tob\ and approaches the limit attainab

FIG. 6. Analytic continuation results for a quartic oscillator coupled to
harmonic environment at the temperature of 200 K. The symmetrized
correlation function data was included up tot51580 a.u. In~a! we show the
power spectra and in~b! the real parts of the corresponding real-time po
tion correlation functions computed by ME continuation of imaginary tim
data~broken line!, symmetrized time correlation data~dotted–dashed line!
and the combination of the two~solid line!. In ~c! we show the symmetrized
correlation functions calculated from the power spectra in~a! in comparison
with the exact result~empty circles!.
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with this simulation scheme. The results of analytic contin
ation, as well as the corresponding exact integration data
G(t) are shown in Figs. 6~a!, 6~b!, and 6~c!.

The results show a similar trend to the one observed
the case of the harmonic oscillator vibrational relaxatio
The use of short time~up to a cutoff time oftc5790 a.u.!
G(t) data together with imaginary time data leads to a c
siderable improvement over the inversion using imagin
time data alone, more than doubling the time interval o
which the exact symmetrized correlation data is accura
reproduced, as can be seen in Fig. 5~c!. Using only imagi-
nary time data still gives better results than using only sh
time G(t) data. However, as shown in Fig. 6, if longer tim
G(t) data is used in the inversion, the result of a continuat
using a combination of imaginary and symmetrized time c
relation data is virtually identical to using the symmetriz
time correlation data alone. Both show a major improv
ment, accurately reproducing exactG(t) data up to t
56000 a.u., as can be seen in Fig. 6~c!, which is almost
fivefold longer than the range of accuracy of analytica
continued imaginary time data.

This effect was observed in case of the harmonic os
lator as well, the reason behind it being that the invers
data is increasingly dominated byG(t) as the domain of the
symmetrized correlation data is extended, up to a po
where the imaginary time data plays a negligible role. It
therefore interesting to observe whether a systematic
provement in accuracy of real-time correlation functions
sulting from analytic continuation can be achieved by s
cessively extending the domain ofG(t) used in ME
inversion.

For this purpose we used a specialized DVR ba
PIMC method described in Sec. III. Although limited to sy
tems in which the interaction with the environment can
expressed in terms of a quadratic influence functional,
thus less general then the standard approach used so far
method allows integrals over continuous variables extend
over all space to be reduced to a sum over a finite numbe
paths. In addition, quasiadiabatic modification19 was applied
to the path integrals which allowed fewer time slices to
used. Both of these serve the purpose of dramatically red
ing the size of the space that must be stochastically samp
which in turn results in fewer phase cancellations and
slower growth of statistical errors with time. Hence, usi
this method one is able to computeG(t) for considerably
longer times thanb\ which is more or less the limit attain
able using the standard position basis discretization. Thi
particularly important in simulating systems at higher te
peratures, asb\ then corresponds to a very short time.

We have computed the symmetrized time correlat
function for the dissipative quartic oscillator at two tempe
tures, 200 K, which was discussed above, and at 1000 K.
the latter it was very difficult to obtain converged results
sufficiently long times using the standard method. We ha
used MC importance sampling to evaluate the sums o
paths in Eq.~24!, using the sampling function given by Eq
~26!. For the lower temperature case, 4 DVR states w
used and the complex paths were discretized into 8 t

e
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slices par path, while for the higher temperature case
used 7 DVR states and 6 time slices par path.

With these parameters we were able to obtain conver
results forG(t) up to t53000 a.u. for the low temperatur
case andt52000 a.u. for the high temperature case. We u
ME analytic continuation to compute the real-time corre
tion functions from symmetrized correlation functions, f
several sets ofG(t) with increasing cutoff timetc . The re-
sults for the power spectra, and the real-time and sym
trized time correlation functions computed from the form
are shown in Figs. 7~a!, 7~b!, and 7~c!, respectively, for the
lower temperature case and Fig. 8 for the higher tempera
one.

For both temperatures a systematic improvement can
observed as the time domain of the simulatedG(t) data is
extended. This is evident in comparison with exactG(t) re-
sults in Figs. 7~c! and 8~c!, which are accurately reproduce
as the cutoff time is increased. It should be noted that

FIG. 7. Analytic continuation results for a quartic oscillator coupled to
harmonic environment at the temperature of 200 K. In~a! we show the
power spectra and in~b! the real parts of the corresponding real-time po
tion correlation functions computed by ME continuation of symmetriz
time correlation function data computed by simulation up to the cutoff ti
tc5800 a.u. ~broken line!, tc51600 a.u. ~dotted–dashed line!, and tc

52400 a.u.~solid line!. In ~c! we show the symmetrized correlation func
tions calculated from the power spectra in~a! in comparison with the exac
result ~empty circles!.
Downloaded 09 Jan 2001  to 128.59.112.46.  Redistribution subject to
e

d

d
-

e-
r

re

be

e

gain in the time range@i.e., the range over which the analyt
cally continued real-time results are accurate compared to
cutoff time up to which theG(t) data are available# appears
to increase with increasing cutoff time. As the computatio
effort for real-time path integrals increases exponentia
with time, this is particularly significant, as it allows one
compute accurate quantum time correlation functions for s
nificantly longer times than that could be attained by dir
simulation.

VII. CONCLUSION

We have presented a new method for obtaining quan
time correlation functions through maximum entropy n
merical analytic continuation using path integral Mon
Carlo simulations. Previous approaches focused on u
PIMC simulations to estimate dynamics in imaginary tim
These data were then numerically inverted to obtain re

e

FIG. 8. Analytic continuation results for a quartic oscillator coupled to
harmonic environment at the temperature of 1000 K. In~a! we show the
power spectra and in~b! the real parts of the corresponding real-time po
tion correlation functions computed by ME continuation of symmetriz
time correlation function data computed by simulation up to the cutoff ti
tc5500 a.u. ~broken line!, tc51000 a.u. ~dotted–dashed line!, and tc

51500 a.u.~solid line!. In ~c! we show the symmetrized correlation func
tions calculated from the power spectra in~a! in comparison with the exact
result ~empty circles!.
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time correlation functions. However, due to the highly s
gular nature of exponentially decaying inversion kernel, t
operation is highly unstable. As a result, even small stat
cal errors in imaginary time data can lead to large deviati
in analytically continued real-time correlation functions. T
reason for this instability is that the correlation informatio
spanning the entire real-time axis, is compressed into an
terval of @0,b\/2# in imaginary time. The problem become
particularly severe at higher temperatures, for which
imaginary time domain further contracts.

In order to alleviate this problem we have introduced
symmetrized time correlation function,G(t), the domain of
which has been displaced from the real-time axis
2 ib\/2. Hence, the domain of this correlation function li
in the complex plane, with its real part spanning all values
time, and the imaginary part a constant. As a result, the s
metrized form is related to the real-time correlation functi
via an analytic continuation operation which is numerica
more stable than in case of the imaginary time.

This benefit comes with a price, though, as the path
tegral that must be evaluated for the determinationG(t) con-
tains oscillating phase factors due to complex time corre
tions. Nonetheless, in contrast to the real-time correla
functions, the complex time paths do have a positive defi
weight, and PIMC methods can thus be directly used to co
pute G(t). We have described several simulation metho
based on position basis or DVR of the path integral that
be used to estimate the symmetrized time correlation fu
tions. The symmetrized time correlation data was then u
on its own or in combination with imaginary time data in
ME numerical analytic continuation procedure to comp
the corresponding real-time correlation functions.

We have tested the method for two one-dimension
nondissipative systems and two systems interacting wit
dissipative environment. In all cases, using the combina
of imaginary and symmetrized time correlation data in
analytic continuation process resulted in real-time correla
functions that were accurate over much longer times t
those obtained from imaginary time data on its own. In p
ticular, we observe that as the time domain~i.e., the cutoff
time up to which simulation data is available! of the symme-
trized time correlation data used in analytic continuation
lengthened, the range over which the real-time correla
functions are accurate increases substantially. Moreover
longer time domains, the symmetrized time correlation d
dominates in the ME inversion scheme, and combinat
with imaginary time data leads to the same result as us
G(t) data on its own. This clearly shows that expanding
time domain leads to a more stable inversion.

In contrast to analytic continuation utilizing only imag
nary time correlation data, analytic continuation using
symmetrized time correlation function can be systematic
improved by increasing the real-time cutoff. This is partic
larly evident in results for the quartic oscillator in Figs. 7 a
8, where using increasing values of the cutoff time for t
G(t) data leads to real-time correlation functions that
accurate over progressively longer times.

The main drawback of this approach is the difficulty
converging PIMC simulations forG(t) at large values of
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time, due to strong phase cancellations. Hence, using
standard simulation method based on primitive discretiza
of path integrals in position basis representation one
reach times longer thanb\ only with difficulty, as exceed-
ingly large numbers of Monte Carlo configurations need
be sampled. In particular, we note that that the rate of gro
of statistical error with time correlates strongly with the si
of the space~i.e., number of integration variables! that is
sampled. In case of the primitive discretization, we obse
that for Trotter numbers larger thanP560 it was difficult to
obtain converged results for even short times. On the o
hand, many quantum systems might require substanti
higher Trotter numbers to represent the continuum
equately.

Thus it is of considerable interest to investigate bet
discretization schemes which allow smaller number of ti
slices to be used and lead to a reduction of the overall in
gration space. An example of such a scheme is the DVR w
system specific propagators, described in Sec. III. Using
method it was possible to obtain converge results forG(t) at
much longer times, allowing more accurate reconstruction
real-time correlation functions. Generalizing this approa
will be a subject of future study. In addition, we plan to u
the methodology described in this work to study quant
reaction rates and transport coefficients.
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