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Efficient multiple time step method for use with Ewald and particle mesh
Ewald for large biomolecular systems

Ruhong Zhou
IBM Thomas J. Watson Research Center, Route 134 and P.O. Box 218, Yorktown Heights, New York 10598

Edward Harder, Huafeng Xu, and B. J. Bernea)

Department of Chemistry and Center for Biomolecular Simulation, Columbia University, New York,
New York 10027

~Received 30 March 2001; accepted 18 May 2001!

The particle–particle particle–mesh~P3M! method for calculating long-range electrostatic forces in
molecular simulations is modified and combined with the reversible reference system propagator
algorithm ~RESPA! for treating the multiple time scale problems in the molecular dynamics of
complex systems with multiple time scales and long-range forces. The resulting particle–particle
particle–mesh Ewald RESPA~P3ME/RESPA! method provides a fast and accurate representation of
the long-range electrostatic interactions for biomolecular systems such as protein solutions. The
method presented here uses a different breakup of the electrostatic forces than was used by other
authors when they combined the Particle Mesh Ewald method with RESPA. The usual breakup is
inefficient because it treats the reciprocal space forces in an outer loop even though they contain a
part that changes rapidly in time. This does not allow use of a large time step for the outer loop.
Here, we capture the short-range contributions in the reciprocal space forces and include them in the
inner loop, thereby allowing for larger outer loop time steps and thus for a much more efficient
RESPA implementation. The new approach has been applied to both regular Ewald and P3ME. The
timings of Ewald/RESPA and P3ME/RESPA are compared in detail with the previous approach for
protein water solutions as a function of number of atoms in the system, and significant speedups are
reported. ©2001 American Institute of Physics.@DOI: 10.1063/1.1385159#
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I. INTRODUCTION

In this paper we introduce a very efficient algorithm f
treating all-atom molecular dynamics in systems, like aq
ous protein systems, which have long-range forces and m
tiple time scales. The method discussed will also be of us
molecular dynamics simulations of complex materials.

Molecular dynamics simulations of all-atom models
proteins in water are of great current interest.1–3 To elucidate
protein folding pathways, for example, it will be necessary
simulate trajectories of duration longer than 1 microsecon2

The long-range electrostatic forces in biomolecular syste
make such simulations computationally intensive and lea
computational bottlenecks. The dynamics in such syste
usually has multiple time scales. The fast motions typica
the vibrations of intramolecular bonds require small~sub-
femtosecond! time steps for stable integration of the equ
tions of motion, and after propagating each short time s
all of the forces, including the long-range forces, must
recalculated. Since the calculation of the long-range force
the most CPU intensive part of molecular dynamics, mi
mizing this part of the computational effort can lead to
great reduction of the computational cost. For this reas
considerable effort has been expended in~a! devising meth-
ods for reducing the frequency with which the long-ran
forces must be recalculated and~b! devising methods for

a!Electronic mail: berne@chem.columbia.edu
2340021-9606/2001/115(5)/2348/11/$18.00

Downloaded 30 Jul 2001 to 128.59.112.46. Redistribution subject to AI
-
l-

in

.
s

to
s
f

-
p,
e
is
-

n,

reducing the computational effort required to compute th
forces themselves.

One way to reduce the large computational cost ass
ated with all-atom simulations is to use implicit solvent mo
els, such as the generalized Born~GB! model,4 together with
stochastic dynamics with terms representing solvent fricti
These models often generate very useful and interesting
sights for protein folding, but it is generally difficult, if no
impossible, to generate trustworthy chemical kinetic or tra
port information from this approach. For realistic simulatio
of protein folding dynamics, all-atom-based models with e
plicit solvent will be required. A method for reducing th
computational costs of calculating the long-range forces
all-atom models is to truncate them with a spherical or mi
mum image truncation. This approach is very common in
literature. Unfortunately, spherical truncation or minimu
image truncation is known to give rise to unphysic
effects,5,6 and it is now widely recognized that one shou
not truncate the long-range electrostatic forces.

The conventional Ewald method for calculating the fu
Coulomb interaction in periodic systems without truncati
has computational complexity that is at least of ord
O(N3/2). To speed up the calculation of these periodic lon
range electrostatic forces@see~b! above#, two general classes
of more efficient algorithms have been developed: one is
fast multipole methods~FMM!, first proposed by Greengar
et al.7 and then extended to periodic systems by Franci
et al.,8 which scales asO(N); and the other is the mesh
8 © 2001 American Institute of Physics
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based Ewald methods~such as PME or the equivalent P3M
variants based on the original work of Hockney! which in-
terpolate the point charges onto a mesh and then utilize
fast Fourier transform~FFT! to speed up the reciprocal spa
evaluation in the Ewald sum. These mesh-based meth
scale asO(N logN). Despite the improved computation
complexity of the FMM or mesh-based methods, the conv
tional Ewald method gives superior accuracy in determin
the electrostatic forces and potentials.

Deserno and Holm9 have written a comprehensive an
thoughtful analysis of various mesh-based Ewald metho
They compared the particle–particle particle–mesh Ew
method~or P3ME method! of Luty et al.10 with the particle
mesh Ewald ~PME! method of Darden and with th
smoothed particle mesh Ewald~or SPME! method of
Essmannet al.11 and concluded that both P3ME and SPM
are considerably more accurate than the PME method,
that the P3ME method is slightly more accurate than
SPME method for the same number of mesh points. For
reason we adopt P3ME in this paper, even though the dif
ences between the two methods are very small.

To reduce the frequency with which the long-range el
trostatic forces are calculated@see~a! above#, the reversible
RESPA method12 ~r-RESPA! proves invaluable. As alread
mentioned, in a previous publication13 we outlined a very
efficient method for combining Ewald with RESPA. In th
paper we showed that a subdivision of the force, in which
real-space part of the force was included in the inner loop
r-RESPA whereas the Fourier space part was combined
the outer loops, was inefficient. This followed because
Fourier space part contains contributions to the force wh
vary rapidly in time. These fast parts of the Fourier spa
contribution restrict the choice of the outer loop time st
and thus lead to more frequent calculations of the Fou
space part than necessary. In our new approach we sho
how a very simple subdivision of the real space and Fou
space forces leads to a time step for the loop with the Fou
space part that is longer than in the original subdivision.
a system as small as 216 water molecules we showed tha
new subdivision gave 25%–30% improvement over Ver
while the old subdivision only gave 11% for the same ac
racy, a comparison that should improve with system size

Unfortunately the inefficient Ewald r-RESPA strateg
was adopted by others. For example, this strategy was
by Procacciet al. to combine Ewald with RESPA14 and later
to combine particle mesh Ewald~PME! with RESPA.15 The
authors still use the real space/reciprocal space decom
tion for the electrostatic forces. The Fourier, or recipro
space~k-space!, forces in PME were put in the middle of
three-level ~near, medium, and long! distance-based rea
space force decomposition, which leads to the real lo
rangedk-space contributions being updated too often~even
more often than the ‘‘long’’-range real-space forces!, and the
short-rangedk-space contributions being updated not oft
enough.

To overcome the bottlenecks in MD simulations due
multiple time scales and long-range forces, we combine
r-RESPA16 multiple time step method with the P3M
method. The basic strategy for subdividing the forces in s
Downloaded 30 Jul 2001 to 128.59.112.46. Redistribution subject to AI
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tems with Ewald boundary conditions, as suggested in a
per by Stuartet al.,13 will be utilized here in the P3ME
method and obviously can be readily applied to the PM
method as well, since P3M and PME are very similar. In t
paper, we combine the new subdivision of the forces w
Ewald and P3ME and use it for timings on several differe
protein solutions. We compare the new and old strategies
show that the new one gives significant improvements
speed. Our new scheme should work equally well with
PME method.

The paper is organized as follows: Section II reviews o
proposed RESPA split for the Ewald method. Section III d
scribes the newly modified P3ME method and its differen
from the PME method, and gives the details of how an e
cient and physically sound coupling with RESPA can
achieved for P3ME. Results and discussions are summar
in Sec. IV and conclusions are presented in Sec. V.

II. COMBINING r-RESPA WITH THE EWALD METHOD

Multiple-time scale methods such as r-RESPA are ba
on subdividing the interparticle forces into a hierarchy ran
ing from the fastest to the slowest parts. This allows the m
slowly varying forces to be integrated with a fairly long tim
step, while still using smaller time steps for the forces wh
change more rapidly. This results in faster simulation spe
than are obtainable using single-time step methods, and
time savings can be used to study larger systems, for lon
simulation times. This increase in efficiency springs from t
fact that the slowest parts of the force~usually the longest-
range part of the force field! is recalculated after the larges
time step rather than after the short time steps used in c
ventional methods. Various implementations of the r-RES
method have been applied to a wide variety of systems,
sulting in speedups by factors of 4 to 15.

Clearly, the choice of how to subdivide the forces
critical, and the most useful split is often dictated by t
physics of the problem at hand. Occasionally, however, s
eral different choices seem appropriate, and sometimes
most obvious factorization does not turn out to be the m
efficient. The aim of this section is to outline the most ef
cient split for systems with long-range electrostatic forc
treated by Ewald summation. In subsequent sections we
adopt this strategy for more complex systems such as pro
solutions using mesh-based methods such as P3ME
PME.

For a system which interacts through pairwise addit
forces, if we can subdivide the forceFi j between particlesi
and j into fastFi j

( f ) and slowFi j
(s) parts, such that

Fi j
~s!1Fi j

~ f !5Fi j , ~1!

the r-RESPA integrator corresponding to the Verlet veloc
is13

v←v1F ~s!
Dt

2m

do i 51, n
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2350 J. Chem. Phys., Vol. 115, No. 5, 1 August 2001 Zhou et al.
v←v1F ~ f !
dt

2m

x←x1vdt

v←v1F ~ f !
dt

2m

end do

v←v1F ~s!
Dt

2m
.

Note that while the velocities will be updated on two diffe
ent time scales, the positions will be updated using only
smallest time step. This type of RESPA algorithm is refer
to as a force-based split.

Let us now apply the above to a periodic box contain
charged Lennard-Jones particles using Ewald summa
The same approach can be used for more complex sys
such as protein solutions, as we show next. For now
simpler system will suffice for presenting the main ide
Since Ewald sums are used to evaluate long-ranged Cou
bic interactions, it seems natural to use them as a basis
separating near~fast! and far~slow! forces in a RESPA split.
A straightforward application of this idea does indeed p
vide a noticeable speedup,14 but, as we have suggeste
before,13 a less obvious split provides for an even more e
cient propagator.

In general, the technique of Ewald sums17 is useful in
systems with large partial charges, since the long-ran
Coulomb interactions do not converge sufficiently wh
summed over a single unit cell. The slowly~and condition-
ally! converging sum of electrostatic interactions

Vel5
1

2 (
n

(
i

( 8
j

qiqj

ur i j 1nLu
, ~2!

is rearranged so that part of it is summed in real space,
the rest is summed in Fourier space18

Vel5
1

2 (
i

(
j Þ i

qiqj

erfc~ar i j !

r i j

1
1

2 (
i

(
j

(
kÅ0

1

pL3

4p2

k2 qiqje
2k2/4a2

cos~k•r i j !

2
a

Ap
(

i
qi

2, ~3!

where the metallic boundary condition is used.
With a suitable choice for the screening parametera,

both sums can be made to converge reasonably quick19

More specifically,a is always chosen so that the first term
the expression above~the real-space sum! is adequately con-
verged within a radius of no more thanr 5L/2, whereL is
the side length of the cubic unit cell. Therefore, the first te
includes primarily short-ranged interactions. The seco
term ~the k-space sum!, on the other hand, results from
Fourier expansion of the potential due to an infinite array
Gaussian charges, much of which is considerably long
ranged than the real-space sum. Under the usual assum
Downloaded 30 Jul 2001 to 128.59.112.46. Redistribution subject to AI
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that long-ranged forces may be updated less frequently
short-ranged forces, it thus seems reasonable to separat
real- andk-space sums in a RESPA split. For example, if w
rewrite the Ewald sum in the form

Vel5
1

2 (
i

(
j

Vi j
el , ~4!

where

Vi j
el5qiqjF ~12d i j !

erfc~ar i j !

r i j

1
1

pL3 (
kÅ0

4p2

k2 e2k2/4a2
cos~k"r i j !2d i j

2a

Ap
G , ~5!

then we can separate the real-space andk-space parts of the
potential

Vi j
el5Vi j

rs1Vi j
ks, ~6!

with

Vi j
rs5~12d i j !qiqj

erfc~ar i j !

r i j
, ~7!

and

Vi j
ks5qiqjF 1

pL3 (
kÅ0

4p2

k2 e2k2/4a2
cos~k"r i j !2d i j

2a

Ap
G .

~8!

With these definitions, we may define a RESPA split with

Fi j
~ f !52¹ r i j

Vi j
rs1Fi j

LJ ~9!

whereFi j
LJ is the short range Lennard-Jones Force, and

Fi j
~s!52¹ r i j

Vi j
ks, ~10!

and use the r-RESPA integrator to propagate the dynam
~The real-space forces could also be further subdivided
distance classes, if desired.! Such an approach seems pe
fectly reasonable, given the disparity in distances over wh
the terms in the real- andk-space sums act. Indeed, an a
proach very similar to this has been used recently in lar
scale Ewald simulations of proteins.14

Although this particular RESPA split is moderately su
cessful, it is not necessarily the best choice. The reason
this is that the ‘‘long-ranged’’k-space sum still contains
some fraction ofeverypair interaction, even the most shor
ranged. This can be seen by re-expressing Eq.~2! as

Vel5
1

2 (
n

(
i

( 8
j

qiqj

ur i j 1nLu @erfc~aur i j 1nu!

1erf~aur i j 1nLu!#, ~11!

where we have used the identity

erfc~x!1erf~x!51, ~12!

in Eq. ~2!. For typical values of the screening parametera,
the erfc(aur i j 1nu) decays to zero so quickly that we ca
ignore interactions between particles in different prima
cells, thereby takingn50 in the sum with the complimentar
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2351J. Chem. Phys., Vol. 115, No. 5, 1 August 2001 Efficient multiple time step method
error functions. Comparison of Eq.~11! with Eq. ~3! shows
that the reciprocal space part given in Eq.~8! implicitly con-
tains the erf(aur i j 1nu) terms. As we later show, this functio
will vary strongly with r i j when ur i j u'a21. Thus, the
breakup of the forces suggested in Eqs.~9! and ~10! is not
optimal as the reciprocal space part of the force will va
rapidly for pairs that are close to each other. The presenc
these short-ranged interactions in thek-space sum will limit
the size of the large time stepDt more than would be nec
essary if the slow piece of the propagator were truly lon
ranged. Indeed, in the published report which uses
propagator, thek-space forces required a time step whi
was shorter than that used for some of the real-sp
forces.14

A better alternative would be to remove the fast part
the erf(x) contributions from the reciprocal space terms
Eq. ~8! and add it to the real-space term in Eq.~7!. The term
to be subtracted and added is

D5~12d i j !
qiqj

r i j
erf~ar i j !h~r i j !, ~13!

where h(x) is defined such thath(x)51 if x<L/2 and
h(x)50 if x>L/2, whereL/2 is a minimum image cutoff.
Adding D into Eq. ~7!, and substituting the identity given i
Eq. ~12! into the resulting equation allows us to write th
new real-space part containing the rapidly varying part of
potential as

Vi j
0 5~12d i j !qiqj

1

r i j
h~r i j !. ~14!

It should be noted that Eq.~14! is equivalent to the usua
minimum image real space energy with a short-range cu

In place of the reciprocal space contribution to the e
ergy, we now have a potential contribution that varies slow
with pair separations

Vi j
n 5qiqjF2~12d i j !

erf~ar i j !

r i j
h~r i j !

1
1

pL3 (
kÅ0

4p2

k2 e2k2/4a2
cos~k"r i j !2d i j

2a

Ap
G . ~15!

This new breakup of the potential leads to a subdivision
the forces on the basis of the distance over which they
regardless of whether they are real-space ork-space forces.
Somewhat surprisingly, this can be implemented with l
computation than for the real-space/k-space split described
above. The full pair potential is now

Vi j
el5Vi j

0 1Vi j
n . ~16!

Note that the calculation ofVn is nearly equivalent to the
calculation of the full Ewald sum, with the substitution of
standard error function for its complement. Thus,Vn is sig-
nificantly more expensive to compute thanV0, which in-
volves no special functions and can even be obtained a
cost during the time steps in whichVn must be calculated
Furthermore, all of the terms inVi j

n are truly long-ranged,
acting at distances beyond the cutoff in real space. This is
Downloaded 30 Jul 2001 to 128.59.112.46. Redistribution subject to AI
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ideal situation for a RESPA split, since the most expens
part of the calculation is also the most long-ranged.

Using this division of the potential, we can define
RESPA split which separates the ‘‘fast’’ force due to only t
most short-ranged interactions

Fi j
~ f !52S~r i j !¹ r i j

Vi j
0 1Fi j

LJ , ~17!

from the the remaining ‘‘slow’’ forces

Fi j
~s!52@12S~r i j !#¹ r i j

Vi j
0 2¹ r i j

Vi j
n , ~18!

where the switching functionS(r ) is equal to unity atr
50, and smoothly decreases to zero beyond some cutoff
tance. The use of a switching function is a common meth
used to minimize the energy conservation errors that
typically associated with abrupt cutoffs, such as the one
plicit in Vi j

0 .20,21 This subdivision of the forces can then b
used in the force-split r-RESPA propagator outlined in t
pseudocode in the beginning of this section.

In a previous paper we applied this new split to ne
water, a system known not to benefit from RESPA as mu
as other systems, and found that using the first split led to
11% speedup over velocity Verlet, whereas the new split
to a speedup of between 25% and 35% speedup over velo
Verlet. In this paper we demonstrate much more impress
speedups in protein systems.

For solvated protein systems, the force~potential! can be
expressed as a sum of several terms

F~x!5Fstret~x!1Fbend~x!1F tors~x!1FvdW~x!

1Felec~x!, ~19!

where Fstret, Fbend, F tors, FvdW, and Felec represent the
forces for stretching, bending, torsion, van der Waals, a
electrostatic interactions, respectively.

The forces are separated according to their intrinsic
ferences in time scales.

F0~x!5Fstret1Fbend~x!1F tors~x!, ~20!

F1~x!5FvdW
near~x!1Felec

near~x!, ~21!

F2~x!5FvdW
med~x!1Felec

med~x!, ~22!

F3~x!5FvdW
far ~x!1Felec

far ~x!. ~23!

The fast varying bonded forces are included inF0(x), the
innermost ‘‘reference’’ propagator. The nonbonded forces
separated into three different shells, near-range@F1(x)#, in-
termediate range@F2(x)#, and far range@F3(x)# according
to the pair distance. In practice,F1(x) can be defined as va
der Waals and direct-space electronic forces with pair d
tance less than 7Å,F2(x) as van der Waals and direct-spa
electrostatic forces with pair distance between 6 and 10
~there is some overlap due to the switching function appl
between 6 and 7 Å.!. Procacciet al. took the outermost shel
F3(x) to be the wholek-space electrostatic force~van der
Waals forces can be omitted after 10 Å, since they are sh
range forces! and later on also tried to break the real-spa
part into three regions~near, medium, and far!, and then put
the wholek-space contribution in the medium region of th
real space~see below for more discussions!. This breakup is
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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equivalent to the less efficient split discussed above and
be denoted as ‘‘RESPA1’’ in the following Results section

As shown above, a better choice is to assign theentire
Coulomb interaction between nearby atom pairs to the
propagator, including both real- andk-space contributions
Forces acting between distant atoms~atoms in different pe-
riodic cells! can then be assigned to the slow propaga
Thus, all pair forces are subdivided based on the basis o
distance over which they act, regardless of whether they
real-space ork-space forces as specified above, and we w
denote this split as ‘‘RESPA2’’ in the results section.

We use the same notation used in a previous pap20

(n1 ,n2 ,n3), to indicate different combinations of time sca
separation. That is, if the time step isdt for bonded forces
@F0(x)#, then the time step isn1dt for near-region van de
Waals and electrostatic forces@F1(x)#,n1n2dt for medium-
region van der Waals and electrostatic forces@F2(x)#, and
n1n2n3dt for far-region electrostatic forces@F3(x)#. See the
previous paper by Zhou and Berne for more details.20

III. INGREDIENTS OF THE P3ME METHOD

Mesh-based Ewald methods, including P3M Ewald, p
vide an approximation to the reciprocal space term of
Ewald sum by assigning the point charges to a finite-si
grid. The other terms in the Ewald sum are left unchang
The Fourier transforms used to evaluate the reciprocal sp
contribution are now reduced to the discrete finite Fou
transform~DFT!. The DFT can be evaluated using the fa
Fourier transform algorithm~FFT!,22 the benefit being the
FFT algorithms’ favorableN logN scaling. If one chooses
large enough value for the Ewald parametera ~sufficiently
small real space cutoff!, the N logN scaling extends to the
entire calculation. The procedure for calculating the elec
statics using P3ME consists of four steps as outlined by
serno and Holm:9

~1! Assigning charges to the grid;
~2! Solving Poisson’s equation on the grid;
~3! Differentiation to determine the forces; and
~4! Interpolating the forces on the grid back to particles.

These items are covered in detail in Deserno’s paper,9 and
we merely highlight the procedure that we follow. We ass
charges to mesh points using the assignment functionW(x).
The choice ofW(x) used in all P3M methods is a splin
scheme.23 The spline orderP determines the number of gri
points to which each charge is assigned in each coordi
direction. The weight functions up to orderP57 have been
tabulated in a paper by Deserno.9

The second step involves solving Poisson’s equation
the mesh-based charge density. Following the notation u
by Hockney and Eastwood,23 one can define an influenc
function, G(r p), such that the potential on the mes
FM(r p), is given by the inverse FFT of

F̃M~k!5G̃~k!r̃M~k!, ~24!

where the functionr̃M(k) is the finite Fourier transform o
charge densityrM(r p). The choice of influence functionG is
the principal difference between the various mesh-ba
Downloaded 30 Jul 2001 to 128.59.112.46. Redistribution subject to AI
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methods. The choice ofG used for P3M in the original pub
lication by Hockney and Eastwood,23 derived to minimize
errors from discretization, was

G̃opt~k!5

D̃~k!•(
n

R̃~kn!@W̃~kn!/Vc#
2

uD̃~k!u2F(
n

@W̃~kn!/Vc#
2G2 . ~25!

The functionD̃(kn) isthe Fourier transform of the differen
tial operator and depends on the differentiation scheme
is chosen. The functionR̃(kn) is the Fourier transform of the
true reference force

R̃~k!52 ik
4p

k2 e2k2/4a2
. ~26!

This optimized functionGopt thus provides the closes
mesh-based approximation to the continuous value assum
that finite difference differentiation is used to calculate t
forces. It is important to note that if the differentiatio
method is not periodic, a more general form of the influen
function should be used. Nevertheless, this form has b
used even for nonperiodic differentiation schemes.9

The influence function used in this paper@Eq. ~27!# ex-
tends thisGopt function to properly treat all differentiation
methods~finite difference differentiation, differentiation in
Fourier space, or gradient differentiation! for determining the
forces~see Deserno and Holm9 for details!

G̃opt~k!5

(
n

D̃~kn!•R̃~kn!@W̃~kn!/Vc#
2

(
n

@W̃~kn!/Vc#
2(

n
uD̃~kn!u2@W̃~kn!/Vc#

2

.

~27!

It is worth noting that Eq.~27! reduces to Eq.~25! only when
the differential operatorD̃(k) is periodic in the alias sum
over n and can therefore be taken out of the sum. This
valid when finite difference is used for the differentiatio
However, using the nonperiodic continuous differential o
eratorik as employed by the Fourier and gradient methods
differentiation, discussed below, requires the form ofG̃
given in Eq.~27!. In practice, force calculations by Desern
et al.9 using the incorrect form given by Eq.~25!, still give
more accurate results than both the PME and SPME m
ods. Correcting the influence function to that in Eq.~27!
provides a further improvement to the force accuracy~the
differences are, however, small and all but disappear
higher-order assignments and grid densities!. Although
somewhat complicated,Gopt need only be precomputed a
the outset of the simulation since there is no dependenc
particle positions.

The RESPA split proposed in this paper~Sec. II! for the
Ewald method is unchanged when replacing Ewald with
P3ME approximation. The P3ME approximation appli
only to the reciprocal space term and thus has no effec
the division of the potential. The only difference will lie i
choice ofa and appropriate cutoffs that are to be used.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. RESULTS AND DISCUSSION

The efficient MD algorithm proposed above can be a
plied to many biosystems, especially for those large prote
in explicit solvent molecules with periodic boundary cond
tions, which are unlikely to be accessible by standard me
ods due to limited computational resources today. In t
paper, we will apply it to seven different sized solvated p
tein systems: ab-hairpin from protein G~2gb1! in 30.0 Å
water box~2521 atoms!, protein G~2gb1! in 36.0 Å water
box ~4276 atoms!, CRO repressor insertion mutant~1orc! in
42.0 Å water box~6911 atoms!, H-ras P21 protein~121p! in
50.0 Å water box~11 717 atoms!, L-* arabinose binding pro
tein ~8abp! in 62.0 Å water box~22 716 atoms!, and Fe-only
hydrogenase~1feh! in 84.0 Å water box~56 929 atoms!. All
the solvated protein systems are neutralized by add
counter ions, Na1 or Cl2, whenever the protein system
have net charges. The details of these protein systems
summarized in Table I.

Before performing a production MD run, we need
apply some primary modifications to the initial x-ray
NMR structures from the PDB bank. First, all of the missi
H atoms~possible missing heavy atoms too! are added to the
protein systems by IMPACT. Then, a water box of specifi
size is generated from a pre-equilibrated smaller water b
and water molecules that overlap with the atoms on the p
tein are removed automatically. The solvated system is t
minimized with the conjugate gradient method for a fe
hundred steps to remove any bad contacts due to
H-addition and water box generation. The minimized str
ture is then smoothly heated from 0 to 310 K with all prote
atoms fixed in space, so only water molecules are be
equilibrated. After 30 ps of MD equilibration of the wate
the protein atoms are also allowed to move and the t
system is equilibrated from 0 to 310 K for another 30 p
During this equilibration stage, the velocities are resca
using the Berendsen velocity rescaling method~with relax-
ation time 0.01 ps!,24 and are also periodically~every 1 ps!
resampled by the Andersen~BGK! thermostat method,25 i.e.,
resampled from the Maxwell–Boltzmann distribution at t
target temperatures.

The accuracy of the P3M calculation is measured us
the relative rms force error

DF5A( i@Fi2Fi
exact#2

( i~Fi
exact!2 , ~28!

TABLE I. Protein systems used in this study. Each protein is solvated
water box which is generated from a pre-equilibrated smaller water box,
then equilibrated for 30 ps with protein atoms frozen in space, and fin
equilibrated for another 30 ps with all atoms relaxed.

System Protein size Net charge Ions Water box Total s

hairpin 256 32 3 Na1 30.0 2 521
2gb1 855 42 4 Na1 36.0 4 276
1orc 1181 31 3 Cl2 42.0 6 911
121p 2619 82 8 Na1 50.0 11 717
1akz 4128 51 5 Cl2 55.0 15 704
8abp 4674 32 3 Na1 62.0 22 716
1feh 11238 42 4 Na1 84.0 56 929
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where Fexact is calculated by a well-converged Ewald su
and Fi is the force on particlei calculated using P3M. The
RMS errorDF, is calculated for an equilibrated system
2744 SPC water molecules in a cubic box of edge 43.5
with 10.0 Å cutoff in real space. The calculation ofDF was
carried out and plotted as a function of the Ewald parame
a in Fig. 1. TheDF curves are calculated for various met
ods of differentiation, and mesh sizeNp equal to 44~grid
spacing 0.989 Å! and 88~grid spacing 0.494 Å!. The assign-
ment scheme used to compute the curves in Fig. 1 is a th
order spline (P53). From Fig. 1, we can see that by selec
ing a between 0.30 and 0.40 Å21, the relative rms force
errors can be controlled well below 1023 by using a grid
spacing of 0.494 Å~mesh size 88!. In the following solvated
protein simulations, we use gradient differentiation with
grid spacing of 0.50 Å, which always seems to be able
control DF to within 1023, thereby guaranteeing a stab
molecular dynamics integration.20

The influence function used in this paper, Eq.~27!, is
compared to that used by Deserno, Eq.~25! in Fig. 2, for
differentiation using theik operator. We call the influence
functional given in Eq.~27! Gopt.newand in Eq.~25! Gopt.old.
The magnitude of the difference between the propagator
plotted against the square of the reciprocal space wave ve
uku2. ~The difference is averaged over allk vectors whose
magnitude isuku.! The calculations are for mesh sizeNp

516, 20, and 32, for a 20 Å water box. In Fig. 2 the old a
new Gopt’s are compared for an assignment orderP53
~main! and P52 ~inset!. There is a significant difference
between the propagators forP52 assignment for smalluku2.
It is clear that theP52 spline should not be used wit
Gopt.old @Eq. ~25!# since the errors in the force calculation w
be too large.23 The third-order spline is a more commo
method of assignment and the main plot in Fig. 2 shows h
small the difference between the influence functions

FIG. 1. rms force error as a function of Ewald parametera(Å 21). The rms
error DF @Eq. ~28!# is shown for Np540, dash-dot line and for Np564,
solid line, where Np is the mesh size. Fourier space differentiation is with
symbol, while gradient differentiation is represented by anx and finite
2-point differentiation uses the square symbol. All curves are calcula
using theP53 spline assignment scheme. The system is 2744 equilibr
SPC water molecules in a 43.5 Å cubic box.
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comes. The convergence of the old and newGopt continues
for higher assignment orders. This comparison displays
convergence of the influence functions for large grid den
ties. This is expected, since they should converge to the s
continuous value for infinitesimal grid spacings. In the fo
lowing simulations for protein systems, a grid spacing
0.50 Å andP53 will be used, unless otherwise explicitl
specified.

In order to effectively compare various algorithms
MD, we also need to define some accuracy measures fo
MD simulations. Two energy conservation parameters
commonly used to describe the stability of a constant-ene
MD simulation.26,27 One is the total energy fluctuationDE,
defined by

DE5
1

NT
(
i 51

NT UE02Ei

E0
U, ~29!

whereEi is the total energy at stepi, E0 is the initial energy,
and NT is the total number of time steps. This quantity h
been shown to be a reasonable measure of accuracy in
vious simulations,8,20,26,27 and a value ofDE<0.003, i.e.,
log(DE),22.5, gives an acceptable numerical accuracy. A
other common measure of the accuracy is the ratio of the
deviation of the total energy to the RMS deviation of t
kinetic energy28

R5
DErms

DKErms
. ~30!

We favor the parameter log(DE) overR, because theR value
cannot effectively measure the total energy drift during M
simulations, while log(DE) is extremely sensitive to the en
ergy drift.

FIG. 2. Magnitude of difference betweenG(k)optold used in paper by De-
serno, Eq.~25!, andG(k)optnewused in this paper, Eq.~27!. Main plot is for
P53 order spline assignment scheme and inset shows plot forP52 order
spline. Both plots show curves for grid sizes of Np516, 20, and 32. Box
length is 20 Å. Note that the pronounced difference in the curves foP
52 assignment all but disappears for theP53 assignment.
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In biomolecular simulations one typically subjects t
system to holonomic constraints to keep the bond leng
fixed during the simulation. Moreover, many water mod
have been parametrized assuming rigid geometries. Th
constraints allow for larger time steps since the fast bo
vibrations are frozen. The use of r-RESPA integrators, on
other hand, allows the use of a short time step for the rap
varying bonding forces, and a large time step for the n
bonding forces, the most expensive part of calculations,
frequently. However, since many force fields have been
rametrized assuming rigid bonds, it is useful to allow f
these constraints. All the bond lengths will thus be co
strained to their equilibrium distances in the simulatio
done in this paper. Since it is only inside the innermost lo
that the coordinates are updated, to satisfy the holono
constraints we apply coordinate corrections with t
SHAKE29 algorithm. It would also be a simple matter t
implement the more rigorous RATTLE method. It should
noted that when SHAKE~or SHAKE/RATTLE! is used, the
resulting RESPA integrator is no longer reversible. Since
CPU time spent doing these updates scales linearly with
number of atoms, the overhead involved is negligible
large systems where the nonbonded force calculation c
sumes well over 90% of the time.

As briefly discussed in Sec. II, the k-space forces
Ewald or other mesh-based Ewald methods have ‘‘sh
ranged’’ contributions within them. To have a quantitati
view of how the short-/long-range contributions are distr
uted in the reciprocal space, we plotted the error functi
erf(x)512erfc(x), wherex5ar i j , versus the pair distanc
r i j for a values ranging from 0.10 to 0.40 Å21 in Fig. 3.
When the parametera increases, the complementary err
function, erfc(arij), decreases faster to zero with the pair d
tance; in other words, the error function, erf(arij), increases
faster to 1.0 with the pair distance. As mentioned in Sec.
the complementary error function portion of a Coulomb p
interaction is included in the real space, while the error fu

FIG. 3. Distribution of the error function erf(ar)51.02erfc(ar).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion portion is included in the reciprocal space. So, the b
ger the erf(x), the larger the truly short-ranged contribution
the reciprocal-space forces. As we can see from the figur
a50.30 Å21 ~most systems studied here will usea from
0.30 to 0.40 Å21; see below!, more than 90% of the Cou
lomb interaction is calculated in the reciprocal space fo
pair with pair distance of 5.0 Å. Even with ana as small as
0.10 Å21, there is still 52% contribution included in the re
ciprocal space for the same pair. This clearly shows that
reciprocal-space forces include ‘‘very short-ranged’’ con
butions even for the nearest pairs in a typical force fie
Thus, it can not be simply treated as ‘‘long-ranged’’ force
We noted that the authors of the previous approach h
probably noticed this problem,15 since they tried to put the
whole reciprocal-space contribution in the middle of a thr
stage real-space decomposition~0–5.3 Å, 4.3–7.3 Å, and
6.9–10.0 Å; there are some overlaps due to the switch
function! to somewhat offset the influence from the sho
range portion of the reciprocal-space forces. However,
makes the algorithm inefficient for two reasons:~a! in the
reciprocal space, pairs closer than 10 Å are updated even
often than the truly long-range pairs more distant than 10
in the primary simulation box as well as contributions fro
all the distant replica boxes~for large solvated protein sys
tems, these form the majority of the electrostatic inter
tions!; and~b! in the Ewald method the expensive reciproc
space forces are updated in the intermediate loop in RES

Table II lists the detailed results for Ewald’s combinati
with the two RESPA approaches. L-* arabinose binding pro
tein ~8abp, 22 716 atoms! is selected as an example to illu
trate the results. There are two parameters in the Ew
method,a andkmax. If one wants to use a short cutoff in th
real-space sum, one needs to use a largea to converge the
real space faster, but then the reciprocal space sum will c
verge slower, and morek vectors will be needed in the
reciprocal-space sum, and vice versa. The optimized Ew
parameters will balance these two summations, and the t
cal values fora is about 5.5/L ~L is the box length! andkmax

about 5–10.30 However, when coupling with RESPA, w

TABLE II. Comparison of energy conservation and associated CPU ti
for Ewald/Verlet, Ewald/RESPA1~real/reciprocal-space decomposition!,
and Ewald/RESPA2~truly short-/long-range decomposition!. Here,Dt ~fs!
is the overall time-step or the outermost time step~the innermost time step
is 0.5 fs in RESPA!, $n% represents the combinations of decomposition
RESPA1 and RESPA2.Ttotal is the total CPU time which is collected from
1ps MD runs for protein 121p on IBM SP2 machine.

Method $n% Dt log(DE) Ttotal

Ewald/Verlet ¯ 1.0 23.22 25.11
¯ 2.0 21.98 12.65
¯ 3.0 N.A.

Ewald/RESPA1 ~2,2,2! 4.0 23.56 8.073
~2,2,3! 6.0 23.04 5.668
~2,2,4! 8.0 22.21 4.338
~2,3,3! 9.0 21.97 3.987

Ewald/RESPA2 ~2,2,2! 4.0 23.72 7.358
~2,2,3! 6.0 23.59 4.670
~2,2,4! 8.0 23.31 3.781
~2,3,3! 9.0 23.12 3.173
~2,3,4! 12.0 22.72 2.540
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will use a relatively short cutoff in the real space~10.0 Å!,
and use a largera ~from 0.30 to 0.40 Å21! and a largerkmax

~from 6 to 15!, for two reasons: first, the RESPA algorith
will update thek-space forces less frequently, so the balan
between the real space andk-space is biased to thek-space
now; second is particularly for P3ME, since FFT is used
the P3ME method, which makes thek-space sum extremely
fast; thus, we want to use a smaller cutoff in real space
balance thek-space part. So, in order to optimize Ewald a
P3ME’s real-space andk-space forces in this multiple time
step ‘‘environment,’’ we adopted slightly different param
eters from the normal Ewald optimization. For this prote
a50.35 andkmax512 are used to get optimal results. W
denote RESPA1 for the RESPA decomposition based on
real-space andk-space forces which was previously propos
by others, and RESPA2 for our new approach based on
true short- and long-range contributions in Ewald sum.

As we can see from Table II, the Verlet algorithm show
poor energy conservation when the time step is increa
above 2.0 fs. The total energy drifts even at this 2.0 fs ti
step, and the system blows up at a time step of 3.0
RESPA1 can push the time step to 6 fs by using t
log(DE),22.5 criterion, and RESPA2 can go to time ste
9–12 fs with the same accuracy. The obvious reason for
smaller outer time step in RESPA1 is that there are tr
short-range contributions to the reciprocal space forces a
small time step is thus required to handle these short-ra
contributions. In general, the time steps used in any RES
subdivision have to mimic the intrinsic time scales within t
various force contributions. The RESPA2 algorithm acc
rately captures the short- and long-range contributions to
electrostatic forces in the Ewald sum; thus, a larger time s
can be used in RESPA2 than in RESPA1. Using Verlet w
time step 1.0 fs as benchmark for accuracy, we compared
CPU times for the three algorithms, Verlet with time step 1
fs, RESPA1 with time step 6.0 fs, and RESPA2 with times
9.0 fs. The speedup of RESPA1 over Verlet is about 4.4
the speedup of RESPA2 over Verlet is about 7.9 for t
protein system, amounting to a factor of 2 speedup
RESPA2 over RESPA1 for Ewald coupling. This speed
comes mainly from two factors: one obviously from th
larger time step used, and the other from the fact that
expensive evaluation of the error function or complement
error function is now included in the outermost loop
RESPA2 which is less often updated than in RESPA1.

Table III lists the CPU and energy conservation resu
for 8abp using the P3ME method. Except for the CPU ti
ing, the energy conservation results are very close to th
found from Ewald method. A grid spacing of 0.5 Å is used
P3ME for mesh generation, and the parametera
50.35 Å21 is used, which is the same as in the Ewa
method. We do not need to use an explicitkmax in P3ME
method, since it is implicitly included in the mesh generati
for the FFT transformation. We use the gradient different
tor for the force calculations in P3ME. The relative rms for
errors are always controlled within 1023 with respect to the
Ewald method. Again, with an accuracy level of log(DE)
,22.5, a time step of 6 fs can be used in RESPA1, and 9
fs in RESPA2. Using P3ME/Verlet with a time step of 1.0

s
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as benchmark, P3ME/RESPA1 with a time step of 6.0 fs
P3ME/RESPA2 with a time step of 9.0 fs can give comp
rable accuracies. The CPU speedup of RESPA1 and RES
over Verlet is 3.3 and 4.8, respectively. Again, the CPU s
ings are from~i! the bigger time step used in RESPA2, a
~ii ! the expensive error function evaluations being update
the outermost loop. However, since the FFT routines use
P3ME is very fast, the overall CPU cost of the reciproc
space forces is much smaller than that in the Ewald meth
This makes the CPU cost for real-space forces and bon
forces no longer negligible in the P3ME method, so the ov
all savings from RESPA in P3ME is not as impressive as
the Ewald case. Nevertheless, RESPA2 is still about 5
more efficient than RESPA1 for this case.

A clearer view of the energy conservation versus ti
step used in the three algorithms, Verlet, RESPA1, a

FIG. 4. Comparison of the energy conservation for P3M/Verlet, P3
RESPA1 ~real-/reciprocal-space decomposition!, and P3M/RESPA2~truly
short-/long-range decomposition! algorithms for protein 121p.

TABLE III. Comparison of energy conservation and associated CPU tim
for P3ME/Verlet, P3ME/RESPA1~real-/reciprocal-space decomposition!,
and P3ME/RESPA2~truly short-/long-range decomposition!. Here,Dt ~fs!
is the overall time step or the outermost time step~the innermost time step
is 0.5 fs in RESPA!, $n% represents the combinations of decomposition
RESPA1 and RESPA2.Ttotal is the total CPU time which is collected from
1ps MD runs for protein 121p on IBM SP2 machine.

Method $n% Dt log(DE) Ttotal

P3ME/Verlet ¯ 1.0 23.20 4.386
¯ 2.0 22.02 2.210
¯ 3.0 N.A.

P3ME/RESPA1 ~2,2,2! 4.0 23.55 2.012
~2,2,3! 6.0 23.07 1.333
~2,2,4! 8.0 22.22 1.139
~2,3,3! 9.0 21.99 0.9187

P3ME/RESPA2 ~2,2,2! 4.0 23.70 1.901
~2,2,3! 6.0 23.61 1.172
~2,2,4! 8.0 23.32 1.010
~2,3,3! 9.0 23.12 0.9094
~2,3,4! 12.0 22.69 0.7817
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RESPA2 are also plotted in Fig. 4. The P3ME method is u
for the calculation of the electrostatic interactions. As me
tioned above, except for the CPU differences, there is li
difference in the energy conservation in the Ewald or P3M
methods. In other words, the plot will look the same for t
Ewald method. As we can see from the figure, even with
the bond lengths being constrained with SHAKE, the Ver
algorithm still does not generate stable MD trajectories wh
the time step is increased beyond 2.0 fs, while RESPA a
rithms allow one to use much larger time steps. RESPA2
consistently better than RESPA1 for time steps starting fr
2.0 fs for the reasons detailed above. This clearly shows
the time steps in the RESPA force decomposition have
closely follow the intrinsic time scales in the various for
components. The truly short-range forces must be upda
with smaller time steps, while the truly long-range forces c
be updated with much larger time steps.

In order to quantify the saving in CPU time for variou
sized systems, a total of seven solvated proteins have b
studied, with sizes ranging from 2521 atoms to 56 926 ato
The corresponding Verlet algorithm with time step of 1.0
is used as a benchmark for accuracy comparison in all ca
For most cases, RESPA1 uses a time step of 6.0 fs,
RESPA2 uses a time step of 9.0 fs. In the Ewald/RES
methods,a50.35 Å21 with a real-space cutoff of 10 Å is
used for various systems andkmax varies from 6~b-hairpin!
to 15 ~1feh!. The P3ME/RESPA methods use the samea as
in the Ewald sum for each system, and a fixed grid spac
of 0.5 Å is used for all systems to account for more k vect
in the Ewald sum for larger systems. The best possible
sults are reported for RESPA1 and RESPA2 when there
multiple choices for (n1, n2, n3) combinations for the sam
outermost time step. All the CPU timing is for 1.0 ps M
runs on IBM SP2 machines.

Figure 5 shows the CPU timings for Ewald/Verle
Ewald/RESPA1, and Ewald/RESPA2 for 1.0 ps MD of a
seven protein systems. Ewald/RESPA1 is about 3–5 tim
faster than Ewald/Verlet, and Ewald/RESPA2 is about 6
times faster than Ewald/Verlet with the same accuracy le
of log(DE),23.0. The CPU saving of RESPA vs velocit
Verlet springs from the fact that in RESPA one can use
much larger time step than in velocity Verlet for the lon
range nonbonded forces. The savings of RESPA2 o
RESPA1 results from the reasons discussed above. The o
all speedup of Ewald/RESPA2 is about a factor of 2 over
previously proposed Ewald/RESPA1. The P3ME/Verl
P3ME/RESPA1, and P3ME/RESPA2 comparisons are sho
in Fig. 6. Similar to those in the Ewald method, P3M
RESPA1 is about 2–4 times faster than P3ME/Verlet, a
P3ME/RESPA2 is 3–6 times faster than P3ME/Verlet. Co
pared to the RESPA speedup in the Ewald method,
RESPA speedup in P3ME is not as impressive because
CPU cost of FFT~we are using FFTW libraries from MIT,31

which are very efficient! in P3ME is much smaller than th
Ewald’s reciprocal space summation for large systems. T
results in a smaller difference between CPU times for
reciprocal-space vs the real-space evaluations, since the
cost of the real-space part is the same in both Ewald
P3ME. Nevertheless, our new approach RESPA2 for
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FIG. 5. CPU timing comparison for Ewald method with different integ
tors: Verlet, RESPA with real-space/reciprocal-space separation~RESPA1!,
and RESPA with truly short-/long-range separation~RESPA2!.

FIG. 6. CPU timing comparison for P3ME method with different integ
tors: Verlet, RESPA with real-space/reciprocal-space separation~RESPA1!,
and RESPA with truly short-/long-range separation~RESPA2!.
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RESPA decomposition is still about 50%–60% faster th
the previous RESPA1 approach.

Finally, in order to show how efficient our new algo
rithm P3ME/RESPA2 is compared to the standard algorith
widely used in MD packages, we replotted the graphs
Ewald/Verlet ~which is probably the most commonly use
algorithm!, P3ME/Verlet, and P3ME/RESPA2~our imple-
mentation of RESPA! in Fig. 7. As can be seen, the CP
speedups are dramatic from Ewald to P3ME and also d
matic from Verlet to RESPA. Using 1feh as an example,
CPU cost is 96.15 h/ps for Ewald/Verlet, 11.87 h/ps f
P3ME/Verlet, and 1.612 h/ps for P3ME/RESPA2. T
speedup from P3ME for this system is about a factor of
and the total speedup from the coupling of P3ME w
RESPA2 is about 59.6. It should be pointed out that we u
a relatively high accuracy level, log(DE),23.0, in the above
CPU comparison for constant-energy MD simulations.
some loss of accuracy can be tolerated, such as log(DE)
,22.5, something that might be desirable in consta
temperature MD simulations where velocities are resca
and/or resampled periodically, an even larger speedup
be achieved in P3ME/RESPA2 by using time steps up
12.0 fs.

V. CONCLUSION

In this paper we propose a strategy for efficiently tre
ing the multiple time scales and the long-range electrost
forces encountered in aqueous solutions of proteins as
as in many other systems of interest to materials scient
Our aim is to combine our method for handling multiple tim
scales, namely the RESPA method, with the Ewald and

FIG. 7. CPU timing comparison for standard method Ewald/Verlet vs
efficient algorithm P3ME/RESPA2 proposed in this paper.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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particle–particle particle–mesh Ewald~or P3ME! method
for efficiently calculating long-range electrostatic force
Several years ago we outlined a strategy for breaking up
electrostatic forces in Ewald~and now in P3ME! such that
only the fast~short-range! parts of the force are used in th
short time propagator of RESPA and only the slow pa
~long-range! are used in the long time step propagator. Th
this suggestion was overlooked in papers in which RES
was combined with Ewald and with particle mesh Ewa
~PME!. We call our new strategy RESPA2 and the less e
cient strategy by others RESPA1. When combined w
Ewald we call it Ewald/RESPA2 and when combined w
P3ME it is called P3ME/RESPA2. This new approach lea
to a better partitioning of the reciprocal-space forces fr
the real-space forces in RESPA. It correctly separates
truly long-range contributions to the reciprocal space for
from the short-range forces in Ewald or P3ME, and perfor
the force decomposition based on the intrinsic short-/lo
range contributions in the electrostatic interactions rat
than the more obvious real-space/reciprocal-space decom
sitions. We find that the new partitioning used in Ewa
RESPA2 and P3ME/RESPA2 gives large improvements o
Ewald/RESPA1 and P3ME/RESPA1. Since RESPA2 is
harder to use, and achieves larger speedups than RES
there is no reason not to adopt it.

The P3M method, which scales asO(N logN) by using
the fast Fourier transform~FFT! for the reciprocal-space in
teractions, is more efficient than the standard Ew
@O(N3/2)# method for simulation of biosystems with period
boundary conditions. We have derived and used an impro
influence functionGopt @cf. Eq. ~27!# This newly improved
P3ME gives slightly more accurate results over previou
proposed P3ME, too.

The timings performed in this paper indicate that t
Ewald/RESPA2 algorithm achieves approximately 6–8 tim
speedup over the Verlet algorithm for various solvated p
tein systems. The new approach achieves approxima
double the speed of Ewald/RESPA1. The timings perform
in this paper indicate that P3ME/RESPA2 with the improv
influence function is approximately 50%–60% faster th
the previous approach with the same accuracy level.

The efficient combination of the P3ME method with th
RESPA2 method results in an extremely fast molecular
namics algorithm, which is about 60 times faster than
standard method, Ewald with the Verlet integrator, for a s
vated protein system with 57 000 atoms. Since the CPU s
ing in P3ME/RESPA2 comes from algorithmic improv
ments, we expect to find comparable improvements
performance on platforms other than IBM SP2 machin
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and also in a parallel computing environment. Parallelizat
of this efficient MD algorithm is currently under develop
ment for the Blue Gene project.
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