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The particle—particle particle—me#R3M) method for calculating long-range electrostatic forces in
molecular simulations is modified and combined with the reversible reference system propagator
algorithm (RESPA for treating the multiple time scale problems in the molecular dynamics of
complex systems with multiple time scales and long-range forces. The resulting particle—particle
particle—mesh Ewald RESRR3ME/RESPA method provides a fast and accurate representation of
the long-range electrostatic interactions for biomolecular systems such as protein solutions. The
method presented here uses a different breakup of the electrostatic forces than was used by other
authors when they combined the Particle Mesh Ewald method with RESPA. The usual breakup is
inefficient because it treats the reciprocal space forces in an outer loop even though they contain a
part that changes rapidly in time. This does not allow use of a large time step for the outer loop.
Here, we capture the short-range contributions in the reciprocal space forces and include them in the
inner loop, thereby allowing for larger outer loop time steps and thus for a much more efficient
RESPA implementation. The new approach has been applied to both regular Ewald and P3ME. The
timings of Ewald/RESPA and P3ME/RESPA are compared in detail with the previous approach for
protein water solutions as a function of number of atoms in the system, and significant speedups are
reported. ©2001 American Institute of Physic§DOI: 10.1063/1.1385159

I. INTRODUCTION reducing the computational effort required to compute these
forces themselves.

In this paper we introduce a very efficient algorithm for One way to reduce the large computational cost associ-
treating all-atom molecular dynamics in systems, like aqueated with all-atom simulations is to use implicit solvent mod-
ous protein systems, which have long-range forces and mukls, such as the generalized B¢®B) model? together with
tiple time scales. The method discussed will also be of use iBtochastic dynamics with terms representing solvent friction.
molecular dynamics simulations of complex materials. These models often generate very useful and interesting in-

Molecular dynamics simulations of all-atom models of sights for protein folding, but it is generally difficult, if not
proteins in water are of great current inter€sStTo elucidate  impossible, to generate trustworthy chemical kinetic or trans-
protein folding pathways, for example, it will be necessary toport information from this approach. For realistic simulations
simulate trajectories of duration longer than 1 microsecond.of protein folding dynamics, all-atom-based models with ex-
The long-range electrostatic forces in biomolecular systemgjicit solvent will be required. A method for reducing the
make such simulations computationally intensive and lead t@omputaﬁona] costs of Ca|cu|ating the |0ng_range forces in
computational bottlenecks. The dynamics in such systemgjl-atom models is to truncate them with a spherical or mini-
usually has multiple time scales. The fast motions typical ofnum image truncation. This approach is very common in the
the vibrations of intramolecular bonds require smallib- |iterature. Unfortunately, spherical truncation or minimum
femtosecongtime steps for stable integration of the equa-image truncation is known to give rise to unphysical
tions of motion, and after propagating each short time stepaffects®® and it is now widely recognized that one should
all of the forces, including the long-range forces, must benot truncate the long-range electrostatic forces.
recalculated. Since the calculation of the long-range forces is  The conventional Ewald method for calculating the full
the most CPU intensive part of molecular dynamics, mini-coylomb interaction in periodic systems without truncation
mizing this part of the computational effort can lead to apag computational complexity that is at least of order
great reduction of the computational cost. For this reasonp(N22). To speed up the calculation of these periodic long-
considerable e_szort has been expepde(ﬂahdevising meth-  range electrostatic forcésee(b) abovd, two general classes
ods for reducing the frequency with which the long-rangesf more efficient algorithms have been developed: one is the
forces must be recalculated aifo) devising methods for 55t multipole method§FMM), first proposed by Greengard
et al” and then extended to periodic systems by Francisco
dE|ectronic mail: berne@chem.columbia.edu et al,® which scales a®©(N); and the other is the mesh-
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based Ewald methodsuch as PME or the equivalent P3ME tems with Ewald boundary conditions, as suggested in a pa-
variants based on the original work of Hocknayhich in-  per by Stuartet al,*® will be utilized here in the P3ME
terpolate the point charges onto a mesh and then utilize thmethod and obviously can be readily applied to the PME
fast Fourier transforndFFT) to speed up the reciprocal space method as well, since P3M and PME are very similar. In this
evaluation in the Ewald sum. These mesh-based methodsmper, we combine the new subdivision of the forces with
scale asO(NlogN). Despite the improved computational Ewald and P3ME and use it for timings on several different
complexity of the FMM or mesh-based methods, the convenprotein solutions. We compare the new and old strategies and
tional Ewald method gives superior accuracy in determiningshow that the new one gives significant improvements in
the electrostatic forces and potentials. speed. Our new scheme should work equally well with the

Deserno and Holthhave written a comprehensive and PME method.
thoughtful analysis of various mesh-based Ewald methods. The paper is organized as follows: Section Il reviews our
They compared the particle—particle particle—mesh Ewal@roposed RESPA split for the Ewald method. Section Il de-
method(or PBME methoyl of Luty et al® with the particle ~ scribes the newly modified P3ME method and its differences
mesh Ewald (PME) method of Darden and with the from the PME method, and gives the details of how an effi-
smoothed particle mesh Ewalor SPMB method of cient and physically sound coupling with RESPA can be
Essmanret al! and concluded that both P3ME and SPME achieved for P3ME. Results and discussions are summarized
are considerably more accurate than the PME method, aril Sec. IV and conclusions are presented in Sec. V.
that the P3ME method is slightly more accurate than the
SPME method for the same number of mesh points. For this
reason we adopt P3ME in this paper, even though the differ; coMBINING -RESPA WITH THE EWALD METHOD
ences between the two methods are very small.

To reduce the frequency with which the long-range elec-  Multiple-time scale methods such as r-RESPA are based
trostatic forces are calculaté¢dee(a) abovdg, the reversible on subdividing the interparticle forces into a hierarchy rang-
RESPA methotf (-RESPA proves invaluable. As already ing from the fastest to the slowest parts. This allows the more
mentioned, in a previous publicatibhwe outlined a very slowly varying forces to be integrated with a fairly long time
efficient method for combining Ewald with RESPA. In that step, while still using smaller time steps for the forces which
paper we showed that a subdivision of the force, in which theehange more rapidly. This results in faster simulation speeds
real-space part of the force was included in the inner loop ofhan are obtainable using single-time step methods, and the
r-RESPA whereas the Fourier space part was combined intidme savings can be used to study larger systems, for longer
the outer loops, was inefficient. This followed because thesimulation times. This increase in efficiency springs from the
Fourier space part contains contributions to the force whictact that the slowest parts of the foréesually the longest-
vary rapidly in time. These fast parts of the Fourier spacgange part of the force fields recalculated after the largest
contribution restrict the choice of the outer loop time steptime step rather than after the short time steps used in con-
and thus lead to more frequent calculations of the Fourieventional methods. Various implementations of the r-RESPA
space part than necessary. In our new approach we show&tethod have been applied to a wide variety of systems, re-
how a very simple subdivision of the real space and Fouriegulting in speedups by factors of 4 to 15.
space forces leads to a time step for the loop with the Fourier Clearly, the choice of how to subdivide the forces is
space part that is longer than in the original subdivision. Fogritical, and the most useful split is often dictated by the
a system as small as 216 water molecules we showed that ti@ysics of the problem at hand. Occasionally, however, sev-
new subdivision gave 25%—30% improvement over Verleteral different choices seem appropriate, and sometimes the
while the old subdivision only gave 11% for the same accu Most obvious factorization does not turn out to be the most
racy, a comparison that should improve with system size. efficient. The aim of this section is to outline the most effi-

Unfortunately the inefficient Ewald r-RESPA strategy cient split for systems with long-range electrostatic forces
was adopted by others. For example, this strategy was usdtgated by Ewald summation. In subsequent sections we will
by Procacckt al. to combine Ewald with RESPAand later ~ adopt this strategy for more complex systems such as protein
to combine particle mesh Ewal@®ME) with RESPA!® The solutions using mesh-based methods such as P3ME and
authors still use the real space/reciprocal space decompo$iME.
tion for the electrostatic forces. The Fourier, or reciprocal ~ For a system which interacts through pairwise additive
space(k-space, forces in PME were put in the middle of a forces, if we can subdivide the fordg; between particles
three-level (near, medium, and lopgdistance-based real- andj into fastF{/) and slowF{ parts, such that
space force decomposition, which leads to the real long- FO L E(_F. o)
rangedk-space contributions being updated too offexmen | 1 e

more often than the “long”-range real-space forcemd the  the -RESPA integrator corresponding to the Verlet velocity
short-rangedck-space contributions being updated not often;g13

enough.
To overcome the bottlenecks in MD simulations due to ® At
multiple time scales and long-range forces, we combine the vevt+F 2m

r-RESPA® multiple time step method with the P3ME
method. The basic strategy for subdividing the forces in sys- do i=1,n
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that long-ranged forces may be updated less frequently than

v—v+tF ”ﬁ short-ranged forces, it thus seems reasonable to separate the
real- andk-space sums in a RESPA split. For example, if we
X—X+uv ot rewrite the Ewald sum in the form
ot 1
(fH — el_— el
vev+Fo Y 22‘ }J‘, Ve, (4)
end do where
At erf(ar;;)
(s) — el__ 1
v—v+F o Vii=aiq;| (1— 6|J)—rij
Note that while the velocities will be updated on two differ- 1 A7
ent time scales, the positions will be updated using only the + _32 —Ze*k l4a® cogker;;) — 5”
smallest time step. This type of RESPA algorithm is referred mL°Fo K \/—

to as a force-based split.

Let us now apply the above to a periodic box containing
charged Lennard-Jones particles using Ewald summatio
The same approach can be used for more complex systems Ve' Vii+ Vlkf, (6)
such as protein solutions, as we show next. For now the

) . ) . o with
simpler system will suffice for presenting the main idea.
Since Ewald sums are used to evaluate long-ranged Coulom- erfo( arjj)
bic interactions, it seems natural to use them as a basis for =(1-6i)ai T )
separating neaffast and far(slow) forces in a RESPA split. .
A straightforward application of this idea does indeed pro—and
vide a noticeable speeddp,but, as we have suggested

then we can separate the real-space lagdace parts of the
otential

bsfore}3 a less obvious split provides for an even more effi- VkS qlqJ 2 o K?4a? cogkeri;) — 5|J
cient propagator. = \/—
In general, the technique of Ewald suthss useful in ®

systems with large partial charges, since the long-rangegith these definitions, we may define a RESPA split with
Coulomb interactions do not converge sufficiently when ) s L
summed over a single unit cell. The slowlgnd condition- Fij = _Vri,-vij +Fj ©)

ally) converging sum of electrostatic interactions WhereFkJ is the short range Lennard-Jones Force, and

vel— = E 33 qJ'rquM @ Fif= -V, VIS, (10
d use the r-RESPA integrator to propagate the dynamics.
he real-space forces could also be further subdivided into
distance classes, if desirgdSuch an approach seems per-

is rearranged so that part of it is summed in real space, an
the rest is summed in Fourier spdte

el_ erfo( arjj) fectly reasonable, given the disparity in distances over which
Vo= ZI ; qdj—F— r the terms in the real- anktspace sums act. Indeed, an ap-
' proach very similar to this has been used recently in large-
1 472 scale Ewald simulations of proteif.
7k J4a?
T3 2 E 2 o w3 k2 didi€ cogk-rij) Although this particular RESPA split is moderately suc-

cessful, it is not necessarily the best choice. The reason for
a this is that the “long-ranged’k-space sum still contains
- \/—;Z qi ©) some fraction okverypair interaction, even the most short-
ranged. This can be seen by re-expressing(Bgas
where the metallic boundary condition is used. a4
With a suitable choice for the screening parameter ]
both sums can be made to converge reasonably quitkly. E 2 Z [rij+nL] Lerftafry; +nl)
More specifically,« is always chosen so that the first term in
the expression abovghe real-space sunis adequately con-
verged within a radius of no more tham=L/2, whereL is  where we have used the identity
the side length of the cubic unit cell. Therefore, the first term _
includes primarily short-ranged interactions. The second erfa(x) +erf(x)=1, (12)
term (the k-space sum on the other hand, results from a in Eq. (2). For typical values of the screening parameter
Fourier expansion of the potential due to an infinite array ofthe erfcg|r;;+n|) decays to zero so quickly that we can
Gaussian charges, much of which is considerably longerignore interactions between particles in different primary
ranged than the real-space sum. Under the usual assumptioalls, thereby taking=0 in the sum with the complimentary

+erf(elr;;+nL|)], (13)
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error functions. Comparison of E¢l1) with Eq. (3) shows ideal situation for a RESPA split, since the most expensive

that the reciprocal space part given in E8).implicitly con-  part of the calculation is also the most long-ranged.

tains the erfg|r;; + n|) terms. As we later show, this function Using this division of the potential, we can define a

will vary strongly with rj; when |rij|~a*1. Thus, the RESPA split which separates the “fast” force due to only the

breakup of the forces suggested in E@.and (10) is not  most short-ranged interactions

optimal as the reciprocal space part of the force will vary

rapidly for pairs that are close to each other. The presence of Fi(if == S(rij)VrijVin R, (17

these short-ranged interactions in taspace sum will limit  ¢om the the remaining “slow” forces

the size of the large time steft more than would be nec-

essary if the slow piece of the propagator were truly long-  Fi= —[1—5(Fij)]Vr”Vin _Vrijvinj : (18

ranged. Indeed, in the published report which uses this L . . .

propagator, thek-space forces required a time step whichWhere the switching functior§(r) is equal to unity atr .
=0, and smoothly decreases to zero beyond some cutoff dis-

was shorter than that used for some of the real-space o o
forces! tance. The use of a switching function is a common method

A better alternative would be to remove the fast part Ofusgd to minim_ize thg energy conservation erors that are
the erfk) contributions from the reciprocal space terms intyp|cally associated with abrupt cutoffs, such as the one im-

Eq.(8) and add it to the real-space term in Eg). The term  PHCItin VP 2021 This subdivision of the forces can then be

ij
to be subtracted and added is used in the force-split -rRESPA propagator outlined in the

pseudocode in the beginning of this section.
0id; In a previous paper we applied this new split to neat
A=(1=gy) —erf(arh(ry), (13 water, a system known not to benefit from RESPA as much
! as other systems, and found that using the first split led to an
where h(x) is defined such thah(x)=1 if x<L/2 and  11% speedup over velocity Verlet, whereas the new split led
h(x)=0 if x=L/2, whereL/2 is a minimum image cutoff. to a speedup of between 25% and 35% speedup over velocity
Adding A into Eq.(7), and substituting the identity given in Verlet. In this paper we demonstrate much more impressive
Eqg. (12) into the resulting equation allows us to write the speedups in protein systems.
new real-space part containing the rapidly varying part of the  For solvated protein systems, the folpetentia) can be

potential as expressed as a sum of several terms
! F(X) = Fgyef X) + Fpend X) + Fiord X) + F dW(X)
Vﬂ:(1_6ij)quij(rij). (14) stre en or v
) + Felec(x), (19)

It _should pe noted that Eq14) is quivalent to the usual where Fger Fpend: Frorss Fvaw, and Feec represent the

minimum image real space energy with a short-range cutoffforces for stretching, bending, torsion, van der Waals, and
In place of the reciprocal space contribution to the en-glectrostatic interactions, respectively.

ergy, we now have a potential contribution that varies slowly  The forces are separated according to their intrinsic dif-

with pair separations ferences in time scales.
n erf(a’rij) FO(X) = Fstret+ Fben((x) + Ftors(x)a (20)
Vij=aij| — (1= &) — ——h(ry))
) F1(x) =Figw(X) + Faied X), (21)
1 am? L, 2a Fo(x)=FMed(x) + FMe x) (22)
—klda o — S 2 vdW elec! '
+7T—Lgk¢0—kQ—e cogkerij) 5”\/; . (15

Fa(X)=F () + FEL(x). (23)

This new breakup of 'Fhe potent|_al leads to a su_bd|V|S|on OfThe fast varying bonded forces are includedFig(x), the
the forces on the basis of the distance over which they aciy,q most “reference” propagator. The nonbonded forces are
regardless of wh_et_her they are real—s:pacek—epace for_ces. separated into three different shells, near-rafggx)], in-
Somewha}t surprisingly, this can be |mpleme_nted WI'Fh lesstermediate rangBF,(x)], and far rangd F4(x)] according
computation than for the real-spalcapace split described e nair distance. In practicE, (x) can be defined as van
above. The full pair potential is now der Waals and direct-space electronic forces with pair dis-
Vﬁlzvﬂ_ +Vir} _ (16) tance Iess_than 7,5F,2(>_() as yan_der Waals and direct-space
electrostatic forces with pair distance between 6 and 10 A
Note that the calculation &f" is nearly equivalent to the (there is some overlap due to the switching function applied
calculation of the full Ewald sum, with the substitution of a between 6 and 7 A. Procacciet al. took the outermost shell
standard error function for its complement. Th¥,is sig-  F3(x) to be the wholek-space electrostatic forogan der
nificantly more expensive to compute thaf, which in-  Waals forces can be omitted after 10 A, since they are short-
volves no special functions and can even be obtained at n@nge forcesand later on also tried to break the real-space
cost during the time steps in whid” must be calculated. part into three regionénear, medium, and farand then put
Furthermore, all of the terms ik{i“j are truly long-ranged, the wholek-space contribution in the medium region of the
acting at distances beyond the cutoff in real space. This is theeal spacdsee below for more discussion his breakup is
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equivalent to the less efficient split discussed above and wilinethods. The choice @ used for P3M in the original pub-
be denoted as “RESPA1” in the following Results section. lication by Hockney and Eastwodd,derived to minimize
As shown above, a better choice is to assigneghgre  errors from discretization, was
Coulomb interaction between nearby atom pairs to the fast
propagator, including both real- ardspace contributions. = = " 2
Forces acting between distant atofasoms in different pe- - D(k)'En: Rk [W(kn)/Ve]
riodic cell§ can then be assigned to the slow propagator. Gopt k)= 2
Thus, all pair forces are subdivided based on the basis of the |5(k)|2[ > [W(kn)/vc]z}
distance over which they act, regardless of whether they are n
real-space ok-space forces as specified above, and we wil
denote this split as “RESPA2” in the results section.
We use the same notation used in a previous pZper
(n1,n5,Nn3), to indicate different combinations of time scale
separation. That is, if the time step & for bonded forces

(25

I'I'he functionD(k,,) isthe Fourier transform of the differen-
tial operator and depends on the differentiation scheme that
"is chosen. The functioﬁ(kn) is the Fourier transform of the
true reference force

[Fo(x)], then the time step ia, 6t for near-region van der A

. . S — i —K2/4a?
Waals and electrostatic forcgg,(x)],n,n,dt for medium- R(k)=—ik_ze : (26)
region van der Waals and electrostatic for€€s(x)], and
nyn,n; 4t for far-region electrostatic forcg$ 3(x)]. See the This optimized functionG,,; thus provides the closest
previous paper by Zhou and Berne for more defdils. mesh-based approximation to the continuous value assuming

that finite difference differentiation is used to calculate the
forces. It is important to note that if the differentiation
method is not periodic, a more general form of the influence
Mesh-based Ewald methods, including P3M Ewald, profunction should be used. Nevertheless, this form has been
vide an approximation to the reciprocal space term of thaised even for nonperiodic differentiation schermes.
Ewald sum by assigning the point charges to a finite-sized The influence function used in this pagétg. (27)] ex-
grid. The other terms in the Ewald sum are left unchangedtends thisG,,; function to properly treat all differentiation
The Fourier transforms used to evaluate the reciprocal spaceethods(finite difference differentiation, differentiation in
contribution are now reduced to the discrete finite FourierFourier space, or gradient differentiatjdior determining the
transform(DFT). The DFT can be evaluated using the fastforces(see Deserno and Hothfior detail9
Fourier transform algorithn{FFT),?? the benefit being the

IIl. INGREDIENTS OF THE P3ME METHOD

FFT algorithms’ favorabléN log N scaling. If one chooses a (S fe i 2

large enough value for the Ewald parametetsufficiently - ; Dlkn) - Rikn) [W(Kn)/Ve]

small real space cutoffthe N logN scaling extends to the Gopt k)= '

entire calculation. The procedure for calculating the electro- > Wk IVI2Y [D(kn) AWK,/ V]2

statics using P3ME consists of four steps as outlined by De- n n

serno and Holnf: (27)

(1) Assigning charges to the grid; It is worth noting that Eq~(27) reduces to Eq25) only when

(2) Solving Poisson’s equation on the grid; the differential operatoD (k) is periodic in the alias sum
(3) Differentiation to determine the forces; and over n and can therefore be taken out of the sum. This is

(4) Interpolating the forces on the grid back to particles. ~ valid when finite difference is used for the differentiation.
However, using the nonperiodic continuous differential op-

These items are covered in detail in Deserno’s pamerd  eratorik as employed by the Fourier and gradient methods of
we merely highlight the procedure that we follow. We assigndifferentiation, discussed below, requires the form ®&f
charges to mesh points using the assignment fundex).  given in Eq.(27). In practice, force calculations by Deserno
The choice ofW(x) used in all P3M methods is a spline et al® using the incorrect form given by ER5), still give
schemé? The spline ordeP determines the number of grid more accurate results than both the PME and SPME meth-
points to which each charge is assigned in each coordinaigds. Correcting the influence function to that in E87)
direction. The weight functions up to ordBr=7 have been provides a further improvement to the force accuréitye
tabulated in a paper by Desero. differences are, however, small and all but disappear for

The second step involves solving Poisson’s equation fohigher-order assignments and grid densjtiealthough
the mesh-based charge density. Following the notation usesbmewhat complicated3,,; need only be precomputed at
by Hockney and Eastwodd, one can define an influence the outset of the simulation since there is no dependence on
function, G(r,), such that the potential on the mesh, particle positions.
Dy(rp), is given by the inverse FFT of The RESPA split proposed in this papg&ec. 1) for the

~ ~ Ewald method is unchanged when replacing Ewald with the

Pm(k)=G(k)pm(k), 24 P3ME approximation. The P3ME approximation applies
where the functiorpy (k) is the finite Fourier transform of only to the reciprocal space term and thus has no effect on
charge densityy(r,). The choice of influence functioB is  the division of the potential. The only difference will lie in
the principal difference between the various mesh-basedhoice ofa and appropriate cutoffs that are to be used.
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TABLE I. Protein systems used in this study. Each protein is solvated in a rms Force error vs. Ewald splitting parameter
water box which is generated from a pre-equilibrated smaller water box, and (2744.SPC.P=3)
then equilibrated for 30 ps with protein atoms frozen in space, and finally T T T T T
equilibrated for another 30 ps with all atoms relaxed. paary— o
0.0l ——  8KFourier . ﬂ._“{f':_'—;
System Protein size  Net charge lons Water box  Total size o a Q‘y”;‘:‘::i.;'i ,,;:i-':' """
hairpin 256 3 3 Na+ 30.0 2521
2gb1 855 4 4 Na+ 36.0 4276
lorc 1181 3 3 Cl- 42.0 6911
121p 2619 8 8 Na+ 50.0 11717 |
lakz 4128 5 5 Cl- 55.0 15704 0.001
8abp 4674 3 3 Nat+ 62.0 22716
1feh 11238 4 4 Na+ 84.0 56 929
IV. RESULTS AND DISCUSSION 0000} . l . 1
2 03 0.4 0.5
The efficient MD algorithm proposed above can be ap- o

plied tq many biosystems, eSp?Cia”y -for.those large prOtGi-nlszlG 1. rms force error as a function of Ewald parameteh ~!). The rms
I.n eXp|ICIt. solvent m.OIecmeS with perIQdIC boundary condi- erroer-F [Eq. (28)] is shown for Np=40, dash-dot line and f.or Np64,
tions, which are unlikely to be accessible by standard methsgjig jine, where Np is the mesh size. Fourier space differentiation is without
ods due to limited computational resources today. In thisymbol, while gradient differentiation is represented bysaand finite
paper, we will apply it to seven different sized solvated pro_z-point differentia_tion uses the square symbol. All curves are cal_c_ulated
tein systems: g-hairpin from protein G(2gb1) in 30.0 A ;ﬂ%gvﬁgf;:nfoﬁfg'ﬂ}jjisfﬂ?,”}xSﬂf’}?ﬁglhe system is 2744 equilibrated
water box (2521 atomy protein G(2gbJ) in 36.0 A water ' '
box (4276 atomy CRO repressor insertion mutafitorc) in
42.0 A water box6911 atom} H-ras P21 proteiril21p in  where F®2js calculated by a well-converged Ewald sum
50.0 A water box11 717 atomk L-*arabinose binding pro- andF; is the force on particlé calculated using P3M. The
tein (8abp in 62.0 A water box22 716 atom and Fe-only RMS errorAF, is calculated for an equilibrated system of
hydrogenasélfeh) in 84.0 A water box56 929 atoms All 2744 SPC water molecules in a cubic box of edge 43.5 A
the solvated protein systems are neutralized by addingith 10.0 A cutoff in real space. The calculation SF was
counter ions, Na& or Cl—, whenever the protein systems carried out and plotted as a function of the Ewald parameter
have net charges. The details of these protein systems agein Fig. 1. TheAF curves are calculated for various meth-
summarized in Table I. ods of differentiation, and mesh si2¢, equal to 44(grid
Before performing a production MD run, we need to spacing 0.989 Aand 88(grid spacing 0.494 A The assign-
apply some primary modifications to the initial x-ray or ment scheme used to compute the curves in Fig. 1 is a third-
NMR structures from the PDB bank. First, all of the missing order spline P=3). From Fig. 1, we can see that by select-
H atoms(possible missing heavy atoms jare added to the ing « between 0.30 and 0.40 A the relative rms force
protein systems by IMPACT. Then, a water box of specifiederrors can be controlled well below 18 by using a grid
size is generated from a pre-equilibrated smaller water boxspacing of 0.494 Amesh size 88 In the following solvated
and water molecules that overlap with the atoms on the proprotein simulations, we use gradient differentiation with a
tein are removed automatically. The solvated system is thegrid spacing of 0.50 A, which always seems to be able to
minimized with the conjugate gradient method for a fewcontrol AF to within 10 3, thereby guaranteeing a stable
hundred steps to remove any bad contacts due to theolecular dynamics integraticfi.
H-addition and water box generation. The minimized struc-  The influence function used in this paper, E87), is
ture is then smoothly heated from 0 to 310 K with all proteincompared to that used by Deserno, E25) in Fig. 2, for
atoms fixed in space, so only water molecules are beindifferentiation using theék operator. We call the influence
equilibrated. After 30 ps of MD equilibration of the water, functional given in Eq(27) Goptnewand in Eq.(25) Gop oi-
the protein atoms are also allowed to move and the totathe magnitude of the difference between the propagators is
system is equilibrated from O to 310 K for another 30 ps.plotted against the square of the reciprocal space wave vector
During this equilibration stage, the velocities are rescaledk|2. (The difference is averaged over &llvectors whose
using the Berendsen velocity rescaling metifaith relax-  magnitude is|k|.) The calculations are for mesh si2¢,
ation time 0.01 ps** and are also periodicallfevery 1 p3 =16, 20, and 32, for a 20 A water box. In Fig. 2 the old and
resampled by the Anders¢BGK) thermostat methotfi.e.,  new Gopts are compared for an assignment order 3
resampled from the Maxwell-Boltzmann distribution at the(main) and P=2 (insed. There is a significant difference

target temperatures. between the propagators fBr=2 assignment for smalk|?.
The accuracy of the P3M calculation is measured usingt is clear that theP=2 spline should not be used with
the relative rms force error Goptoid[EQ. (25)] since the errors in the force calculation will
exachs be too Iargez.3 The third-order spline is a more common
Si[Fi—Feey : : g
AF=\/———sass— (289  method of assignment and the main plot in Fig. 2 shows how
(FPe) small the difference between the influence functions be-
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' M wi erf(ar) vs. pair distance
Comparing G(k),,, ., for P°M with G(K)__, (ar) vs. p
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@ 0.004 3 0.6
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FIG. 2. Magnitude of difference betwedd(k)uqq Used in paper by De- Pair Distance (A)
serno, Eq(25), andG(K) gpmewUsed in this paper, E¢27). Main plot is for
P=3 order spline assignment scheme and inset shows pldtfa2 order FIG. 3. Distribution of the error function edf)=1.0—erfc(ar).

spline. Both plots show curves for grid sizes of Np6, 20, and 32. Box
length is 20 A. Note that the pronounced difference in the curvesPfor

=2 assignment all but disappears for the-3 assignment. . . . . .
9 P 9 In biomolecular simulations one typically subjects the

system to holonomic constraints to keep the bond lengths
fixed during the simulation. Moreover, many water models

comes. The convergence of the old and rByy; continues . ; ! .
i ) : . . have been parametrized assuming rigid geometries. These
for higher assignment orders. This comparison displays the . . .
. . : .constraints allow for larger time steps since the fast bond
convergence of the influence functions for large grid OIenSI_\/ibrations are frozen. The use of r-RESPA integrators, on the
ties. This is expected, since they should converge to the sam ' 9 '

continuous value for infinitesimal grid spacings. In the fol- Sir;eirnhagghg::? wfsotrrgisus:n%fgslgf r;tl[?neeS;?E fc;:):htierzaﬁgdrll)-/
lowing simulations for protein systems, a grid spacing of ying 9 ’ 9 P

0.50 A andP=3 will be used, unless otherwise explicitly bonding forces, the mqst expensive part_ of calculations, less
specified. frequently. However, since many force fields have been pa-

. . . . rametrized assuming rigid bonds, it is useful to allow for
In order to effectively compare various algorithms in

MD, we also need to define some accuracy measures for ththege constrain.ts. A". .th? bonq Iengths.will thug be con-
MD simulations. Two energy conservation parameters ares‘?ra“m.Ed t(.) their eq‘.’"'b”.“'.“ dlstqncgs n the simulations

: o done in this paper. Since it is only inside the innermost loop
commonly used to describe the stability ofaconstant-energ%/h t th dinat dated. t tisfy the hol )
MD simulation?®?’ One is the total energy fluctuatiakE, at the coordinates are updated, to satisfy the holonomic

constraints we apply coordinate corrections with the

defined by SHAKE?® algorithm. It would also be a simple matter to
1 M IE_E implement the more rigorous RATTLE method. It should be
AE= — 0 =i , (29 noted that when SHAKEor SHAKE/RATTLE) is used, the
Nti=1| Eo resulting RESPA integrator is no longer reversible. Since the

CPU time spent doing these updates scales linearly with the
whereE; is the total energy at stépE, is the initial energy, number of atoms, the overhead involved is negligible for
and Ny is the total number of time steps. This quantity haslarge systems where the nonbonded force calculation con-
been shown to be a reasonable measure of accuracy in pr@imes well over 90% of the time.
vious simulation§?>2°?”and a value ofAE<0.003, i.e., As briefly discussed in Sec. II, the k-space forces of
log(AE)<—2.5, gives an acceptable numerical accuracy. AnEwald or other mesh-based Ewald methods have “short-
other common measure of the accuracy is the ratio of the rmganged” contributions within them. To have a quantitative
deviation of the total energy to the RMS deviation of theview of how the short-/long-range contributions are distrib-

kinetic energ§® uted in the reciprocal space, we plotted the error function,
erf(x)=1—erfc(x), wherex=ar;;, versus the pair distance
R— AEms (30) rij for @ values ranging from 0.10 to 0.40Ain Fig. 3.
AKE s When the paramete increases, the complementary error

function, erfcer;;), decreases faster to zero with the pair dis-
We favor the parameter lo§E) overR, because th& value  tance; in other words, the error function, euff), increases
cannot effectively measure the total energy drift during MDfaster to 1.0 with the pair distance. As mentioned in Sec. I,
simulations, while IoghE) is extremely sensitive to the en- the complementary error function portion of a Coulomb pair
ergy drift. interaction is included in the real space, while the error func-
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TABLE II. Comparison of energy conservation and associated CPU timesyill use a relatively short cutoff in the real spa(:E0.0 A)’

for Ewald/Verlet, Ewald/RESPA](reaI/remprocaI-spa(?e decomposition and use a larges (from 0.30 to 0.40 '&1) and a largek

and Ewald/RESPAZtruly short-/long-range decompositiprHere, At (fs) " 6 to 15. for t  first. the RESPA al ith

is the overall time-step or the outermost time stéfe innermost time step ( rom 0 15, for two reasons: first, the algorithm

is 0.5 fs in RESPA {n} represents the combinations of decomposition in Will update thek-space forces less frequently, so the balance

RESPAL and RESPAZ,, is the total CPU time which is collected from between the real space akepace is biased to thespace

1ps MD runs for protein 121p on IBM SP2 machine. now; second is particularly for P3ME, since FFT is used in
Method [ At log(AE) T the P3ME method, which makes tkespace sum extremely

fast; thus, we want to use a smaller cutoff in real space to

Ewald/Verlet 1.0 —8.22 25.11 balance thé-space part. So, in order to optimize Ewald and
2.0 -1.98 12.65 ) oo ) .
30 NA. P3ME's real-space anklspace forces in this multiple time
Ewald/RESPA1L (22,2 40 356 8.073 step “environment,” we adopted slightly different param-
(2,23 6.0 -3.04 5.668 eters from the normal Ewald optimization. For this protein,
(224 8.0 —2.21 4.338 a=0.35 andk,,,x=12 are used to get optimal results. We
(23,3 9.0 -Ler 3.987 denote RESPA1 for the RESPA decomposition based on the
Ewald/RESPA2 (2,2,2 4.0 -3.72 7.358 : )
223 6.0 _359 4670 real-space anll-space forces which was previously proposed
(2.2,4 8.0 —331 3.781 by others, and RESPA2 for our new approach based on the
2,33 9.0 -3.12 3.173 true short- and long-range contributions in Ewald sum.
234 12.0 —2.72 2.540 As we can see from Table II, the Verlet algorithm shows

poor energy conservation when the time step is increased
above 2.0 fs. The total energy drifts even at this 2.0 fs time

tion portion is included in the reciprocal space. So, the bigSteép, and the system blows up at a time step of 3.0 fs.
ger the erfg), the larger the truly short-ranged contribution in RESPAL can push the time step to 6 fs by using this
the reciprocal-space forces. As we can see from the figure, 829(AE)<—2.5 criterion, and RESPA2 can go to time steps
a=0.30A"! (most systems studied here will ugefrom  9—12 fs with the same accuracy. The obvious reason for the
0.30 to 0.40 A see beloy, more than 90% of the Cou- Smaller outer time step in RESPAL is that there are truly
lomb interaction is calculated in the reciprocal space for ahort-range contributions to the reciprocal space forces and a
pair with pair distance of 5.0 A. Even with anas small as small time step is thus required to handle these short-range
0.10 A%, there is still 52% contribution included in the re- contributions. In general, the time steps used in any RESPA
ciprocal space for the same pair. This clearly shows that theubdivision have to mimic the intrinsic time scales within the
reciprocal-space forces include “very short-ranged” contri- various force contributions. The RESPA2 algorithm accu-
butions even for the nearest pairs in a typical force fieldrately captures the short- and long-range contributions to the
Thus, it can not be simply treated as “long-ranged” forces.€electrostatic forces in the Ewald sum; thus, a larger time step
We noted that the authors of the previous approach havean be used in RESPA2 than in RESPAL. Using Verlet with
probably noticed this problef?, since they tried to put the time step 1.0 fs as benchmark for accuracy, we compared the
whole reciprocal-space contribution in the middle of a three-CPU times for the three algorithms, Verlet with time step 1.0
stage real-space decompositi®-5.3 A, 4.3-7.3 A, and fs, RESPAL with time step 6.0 fs, and RESPA2 with timestep
6.9-10.0 A; there are some overlaps due to the switchin§.0 fs. The speedup of RESPAL over Verlet is about 4.4 and
function) to somewhat offset the influence from the short-the speedup of RESPA2 over Verlet is about 7.9 for this
range portion of the reciprocal-space forces. However, thiprotein system, amounting to a factor of 2 speedup for
makes the algorithm inefficient for two reasorfa) in the =~ RESPA2 over RESPA1 for Ewald coupling. This speedup
reciprocal space, pairs closer than 10 A are updated even lessmes mainly from two factors: one obviously from the
often than the truly long-range pairs more distant than 10 Aarger time step used, and the other from the fact that the
in the primary simulation box as well as contributions from expensive evaluation of the error function or complementary
all the distant replica boxedor large solvated protein sys- error function is now included in the outermost loop in
tems, these form the majority of the electrostatic interacRESPA2 which is less often updated than in RESPAL.
tions); and(b) in the Ewald method the expensive reciprocal- Table Il lists the CPU and energy conservation results
space forces are updated in the intermediate loop in RESPAor 8abp using the P3ME method. Except for the CPU tim-
Table Il lists the detailed results for Ewald’s combination ing, the energy conservation results are very close to those
with the two RESPA approaches.arabinose binding pro- found from Ewald method. A grid spacing of 0.5 A is used in
tein (8abp, 22 716 atomss selected as an example to illus- PSME for mesh generation, and the parameter
trate the results. There are two parameters in the Ewalec0.35A ! is used, which is the same as in the Ewald
method,a andk,,,. If one wants to use a short cutoff in the method. We do not need to use an expligit,, in P3ME
real-space sum, one needs to use a large converge the method, since it is implicitly included in the mesh generation
real space faster, but then the reciprocal space sum will corfer the FFT transformation. We use the gradient differentia-
verge slower, and moré& vectors will be needed in the tor for the force calculations in P3ME. The relative rms force
reciprocal-space sum, and vice versa. The optimized Ewaldrrors are always controlled within 18 with respect to the
parameters will balance these two summations, and the typEwald method. Again, with an accuracy level of IA&)
cal values fora is about 5.9L (L is the box lengthandk,,,, ~ <—2.5, a time step of 6 fs can be used in RESPA1, and 9-12
about 5-1G° However, when coupling with RESPA, we fs in RESPA2. Using P3ME/Verlet with a time step of 1.0 fs
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TABLE lll. Comparison of energy conservation and associated CPU timeRESPA?2 are also plotted in Fig. 4. The P3SME method is used
for P3ME/Verlet, P3ME/RESPAI(real-/reciprocal-space decomposilion o the calculation of the electrostatic interactions. As men-
and P3ME/RESPAZtruly short-/long-range decompositiprHere, At (fs) . d ab f he CPU diff h is littl
is the overall time step or the outermost time stée innermost time step t'?”e a O_Ve’ except for the . I grences, there is little
is 0.5 fs in RESPA {n} represents the combinations of decomposition in difference in the energy conservation in the Ewald or PSME
RESPAL and RESPAZ,, is the total CPU time which is collected from methods. In other words, the plot will look the same for the
1ps MD runs for protein 121p on IBM SP2 machine. Ewald method. As we can see from the figure, even with all
Method n At log(AE) T the bond lengths being constrained with SHAKE, the Verlet

algorithm still does not generate stable MD trajectories when

P3ME/Verlet 10 —3.20 4.386 the time step is increased beyond 2.0 fs, while RESPA algo-
2.0 -2.02 2.210 . . )
30 NA. rithms allow one to use much larger time steps. RESPA2 is
P3ME/RESPA1 (22,2 4.0 355 2012 consistently better than RESPAL for time steps starting from
2,23 6.0 -3.07 1.333 2.0 fs for the reasons detailed above. This clearly shows that
224 8.0 —2.22 1.139 the time steps in the RESPA force decomposition have to
(23,3 9.0 —1.99 09187 ¢losely follow the intrinsic time scales in the various force
P3ME/RESPA2 (2,2,2 4.0 -3.70 1.901
223 6.0 _361 1172 components. The truly short-range forces must be updated
(2.2,4 8.0 —3.32 1.010 with smaller time steps, while the truly long-range forces can
233 9.0 -3.12 0.9094 be updated with much larger time steps.
234 12.0 —2.69 0.7817 In order to quantify the saving in CPU time for various

sized systems, a total of seven solvated proteins have been
studied, with sizes ranging from 2521 atoms to 56 926 atoms.
as benchmark, P3ME/RESPAL with a time step of 6.0 fs and he corresponding Verlet algorithm with time step of 1.0 fs
P3ME/RESPA2 with a time step of 9.0 fs can give compa-is used as a benchmark for accuracy comparison in all cases.
rable accuracies. The CPU speedup of RESPA1 and RESPAZr most cases, RESPAL uses a time step of 6.0 fs, and
over Verlet is 3.3 and 4.8, respectively. Again, the CPU savRESPA2 uses a time step of 9.0 fs. In the Ewald/RESPA
ings are from(i) the bigger time step used in RESPA2, andmethods,a=0.35A"" with a real-space cutoff of 10 A is
(i) the expensive error function evaluations being updated itised for various systems akg,., varies from 6(s-hairpin
the outermost loop. However, since the FFT routines used it 15 (1feh). The P3ME/RESPA methods use the samas
P3ME is very fast, the overall CPU cost of the reciprocalin the Ewald sum for each system, and a fixed grid spacing
space forces is much smaller than that in the Ewald methof 0.5 A is used for all systems to account for more k vectors
This makes the CPU cost for real-space forces and bonddtl the Ewald sum for larger systems. The best possible re-
forces no longer negligible in the P3ME method, so the oversults are reported for RESPA1 and RESPA2 when there are
all savings from RESPA in P3ME is not as impressive as inmultiple choices for (1, n2, n3) combinations for the same
the Ewald case. Nevertheless, RESPA2 is still about 50%utermost time step. All the CPU timing is for 1.0 ps MD
more efficient than RESPA1 for this case. runs on IBM SP2 machines.
A clearer view of the energy conservation versus time  Figure 5 shows the CPU timings for Ewald/Verlet,
step used in the three algorithms, Verlet, RESPA1, andEwald/RESPAL, and Ewald/RESPA2 for 1.0 ps MD of all
seven protein systems. Ewald/RESPAL is about 3-5 times
faster than Ewald/Verlet, and Ewald/RESPA?2 is about 6—8
Comparison of Total Energy Conservation times faster than Ewald/Verlet with the same accuracy level
of log(AE)<—3.0. The CPU saving of RESPA vs velocity

0.0 ' ' T T Verlet springs from the fact that in RESPA one can use a
&—@RESPA1 much larger time step than in velocity Verlet for the long-
+—# RESPA2 .
B—m Verlet range nonbonded forces. The savings of RESPA2 over

] RESPAL results from the reasons discussed above. The over-
all speedup of Ewald/RESPAZ2 is about a factor of 2 over the
previously proposed Ewald/RESPALl. The P3ME/Verlet,
P3ME/RESPAL, and PSME/RESPA2 comparisons are shown
in Fig. 6. Similar to those in the Ewald method, P3ME/
RESPAL is about 2—4 times faster than P3ME/Verlet, and
P3ME/RESPA2 is 3—6 times faster than P3ME/Verlet. Com-
. pared to the RESPA speedup in the Ewald method, the
RESPA speedup in P3ME is not as impressive because the
CPU cost of FFT(we are using FFTW libraries from MIE,
. . . . which are very efficientin P3ME is much smaller than the
1.0 3.0 5.0 7.0 9.0 11.0 13.0 Ewald’s reciprocal space summation for large systems. This
MD Outermost Timestep (fs) results in a smaller difference between CPU times for the
FIG. 4. Comparison of the energy conservation for P3M/Verlet, P3M/ reciprocal-space vs the real-space evaluations, since the CPU

RESPAL (real-/reciprocal-space decompositioand P3M/RESPAatruly ~ COSt oOf the real-space part is the same in both Ewald and
short-/long-range decompositipalgorithms for protein 121p. P3ME. Nevertheless, our new approach RESPA2 for the

-1.0

l0g(AE)
o
o

-3.0
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FIG. 5. CPU timing comparison for Ewald method with different integra- 15 7 - cpy timing comparison for standard method Ewald/Verlet vs the
tors: Verlet, RESPA with real-space/reciprocal-space separéRESPAD, efficient algorithm P3ME/RESPA2 proposed in this paper.
and RESPA with truly short-/long-range separati®ESPAZ.

RESPA decomposition is still about 50%—60% faster than
the previous RESPA1 approach.

Finally, in order to show how efficient our new algo-
rithm P3ME/RESPAZ2 is compared to the standard algorithms
widely used in MD packages, we replotted the graphs for
Ewald/Verlet (which is probably the most commonly used
algorithm), P3ME/Verlet, and P3ME/RESPARur imple-

. mPSMEN, mentation of RESPAIn Fig. 7. As can be seen, the CPU
HPaMEIRErISe; Al spegdups are dramatic from Ewald to PSME and also dra-
&— o P3ME/RESPA2 matic from Verlet to RESPA. Using 1feh as an example, the

CPU cost is 96.15 h/ps for Ewald/Verlet, 11.87 h/ps for
P3ME/Verlet, and 1.612 h/ps for P3ME/RESPA2. The
speedup from P3ME for this system is about a factor of 8.1
] and the total speedup from the coupling of PSME with
RESPA2 is about 59.6. It should be pointed out that we used
a relatively high accuracy level, lo§yE)<—3.0, in the above
CPU comparison for constant-energy MD simulations. If
some loss of accuracy can be tolerated, such asAE)g(
<-—2.5, something that might be desirable in constant-
temperature MD simulations where velocities are rescaled
and/or resampled periodically, an even larger speedup can
be achieved in PSME/RESPA2 by using time steps up to
12.0 fs.

CPU comparison for P3M

15.0 . . .

10.0

CPU (hour/ps)

5.0 r

V. CONCLUSION

. , In this paper we propose a strategy for efficiently treat-
9%.0 20000.0 40000.0 60000.0 ing the multiple time scales and the long-range electrostatic
Solvated protein size forces encountered in agueous solutions of proteins as well
FIG. 6. CPU timing comparison for P3ME method with different integra- as in .ma.ny other S.yStemS of interest to m?tenals .SCIer.mStS'
Our aim is to combine our method for handling multiple time

tors: Verlet, RESPA with real-space/reciprocal-space separéRESPAD, ¢
and RESPA with truly short-/long-range separati®ESPA2. scales, namely the RESPA method, with the Ewald and the
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particle—particle particle—mesh Ewaldr P3ME method and also in a parallel computing environment. Parallelization

for efficiently calculating long-range electrostatic forces.of this efficient MD algorithm is currently under develop-

Several years ago we outlined a strategy for breaking up thment for the Blue Gene project.

electrostatic forces in Ewalthnd now in P3ME such that
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