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Multiple ‘‘time step’’ Monte Carlo
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We propose a sampling scheme to reduce the CPU time for Monte Carlo simulations of atomic
systems. Our method is based on the separation of the potential energy into parts that are expected
to vary at different rates as a function of coordinates. We performn moves that are accepted or
rejected according to the rapidly varying part of the potential, and the resulting configuration is
accepted or rejected according to the slowly varying part. We test our method on a Lennard-Jones
system. We show that use of our method leads to significant savings in CPU time. We also show that
for moderate system sizes the scaling of CPU time with system size can be improved~for n540 the
scaling is predominantly linear up to 1000 particles!. © 2002 American Institute of Physics.
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I. INTRODUCTION

The most often used tools in obtaining expectation v
ues for classical many-body systems at equilibrium are
Monte Carlo1–3 ~MC! and molecular dynamics~MD!
methods.2,3 MC and MD are methods which generate eq
librium configurations for various ensembles. In MD the p
ticles of the system are propagated in real time accordin
Newton’s equations of motion, whereas in MC configu
tions are sampled by a Markov process from the Boltzm
distribution ~the propagation takes place in ‘‘Markovia
time’’ !.

In the case of MD, significant savings in CPU time c
be achieved by using multiple time-step methods. Wh
time-reversible MD integrators are used, propagators
multiple time-step algorithms can be derived from the Lio
ville formulation of classical mechanics.4,5 If the Hamil-
tonian is separated into two parts, a rapidly and a slo
varying part, than an MD propagator can be derived in wh
the slowly varying part of the Hamiltonian is evaluated le
frequently than the rapidly varying part, hence savings
CPU time can be achieved. Common criteria of separa
into rapidly and slowly varying parts6 are differences in the
masses of the particles of the system,4 temperature differ-
ences among different subunits of a system,7 or differences
in the spatial range of potentials4 ~short range varying rap
idly, long range varying slowly!.

In this paper, we propose a sampling algorithm tha
similar in spirit to multiple time-scale molecular dynamic
and is generally applicable to any type of system that can
treated by MD or MC. The only assumption of our method
the separability of the potential of the system into a part t
varies rapidly and a part that varies slowly as a function
coordinates. In our method, which we call the multip
‘‘time-step’’ Monte Carlo~MTS–MC!, the potential is sepa

a!Present address: SISSA, International School for Advanced Study,
Beirut 2-4, 34014, Trieste, Italy.
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rated into a long-range and a short-range part, and the lo
range part is evaluated less frequently than the short-ra
part. A particle is moved and accepted or rejectedn times
~we call n the splitting parameter! according to the short-
range potential. The configuration resulting from then short-
range moves is accepted or rejected using a Metropolis
terion based on the long-range potentials before and afte
n short-range moves.

Our procedure is similar in spirit but different in signifi
cant ways from the adiabatic nuclear and electronic samp
Monte Carlo~ANES–MC! method developed by Siepman
and co-workers8,9 to sample systems in which the configur
tion space can be subdivided into ‘‘fast’’ and ‘‘slow’’ degree
of freedom, such as electronic and nuclear degrees of f
dom respectively. ANES–MC was particularly designed
treat polarizable systems and was applied to the simple p
charge fluctuating charge~SPC–FQ! model,10 where the
fluctuating charges were thermostated at low tempera
and the nuclear motions were thermostated at the temp
ture of interest. In ANES–MC, the ‘‘slow’’ coordinates ar
updated less frequently than ‘‘fast’’ coordinates.
MTS–MC the configuration space need not be subdivid
into fast and slow coordinates, but instead the potentia
subdivided into a short- and long-range part.

In this study, we implement the MTS–MC scheme for
system of Lennard-Jones particles. In a sequel paper,11 we
apply the new algorithm to a real long-range potential,
SPC water model combined with the Ewald sum. Implem
tation in the case of the Lennard-Jones system requires u
a split neighbor list that formed the basis of earlier multip
time-step methods.12,13 We demonstrate that for systems d
scribed by pair potentials, the CPU time can be made p
dominantly linear for the system sizes that we have stud
~maximum 1000!, an improvement over the quadratic scalin
of regular MC. In order to illustrate this point, we use
Lennard-Jones potential in which the cutoff is set to one-h
of the edge of the simulation box.

ia
3 © 2002 American Institute of Physics
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In Sec. II, we introduce the new Monte Carlo metho
multiple ‘‘time step’’ Monte Carlo~MTS–MC!, and show
that the new algorithm obeys the detailed balance condit
In Sec. III, we present computational and simulation det
for the Lennard-Jones system. In Sec. IV, we discuss res
for the Lennard-Jones simulations. Results are summar
in Sec. V.

II. METHOD

Our sampling procedure is as follows: Given a system
particles interacting via a potential energy functionV(x),
wherex denotes the coordinates in configuration space.
partition function of the system is given by

Q5E dx exp@2bV~x!#, ~1!

whereb denotes the inverse temperature. Suppose thatV(x)
can be written as the sum of two additive parts as

V~x!5VI~x!1VII~x!. ~2!

To evaluate the partition function for such a system, we p
pose the following sampling procedure:

Step 1: For a given configurationx, we evaluateVI(x)
andVII(x). We store the configurationx asxold andyold .

Step 2: Usingyold as a starting configuration we genera
a new configuration by makingn uniform random moves and
accepting or rejecting each move by an acceptance prob
ity constructed using onlyVI ,

accI~yold→ynew!5min@1,exp$2b~VI~ynew!2VI~yold!!%#.
~3!

The configuration resulting after thenth move is stored
asxnew.

Step 3: We accept or reject the resulting configuration
an acceptance probability constructed fromVII as

accII~xold→xnew!5min@1,exp$2b~VII~xnew!2VII~xold!!%#.
~4!

Note that configurations that have been accepted or reje
using Eq.~4! obey detailed balance, hence if intermedia
configurations are used in calculating observables an err
introduced.

A. Detailed balance

In this section, we show that configurations genera
according to Eq.~4! are distributed according to the desire
~in this case Boltzmann! distribution. We do this by demon
strating that our procedure obeys the detailed balance co
tion. Our goal is to prove that the configurations genera
by the above procedure obey

P~x!T~x→x8!5P~x8!T~x8→x!, ~5!

whereP(x) is the unnormalized probability distribution

P~x!5exp@2bV~x!#, ~6!

andT(x→x8) is the transition probability of arriving in stat
x8 starting from statex after performing all three steps of th
sampling procedure.

Using Eq.~2! we write the probability distribution as

P~x!5PI~x!PII~x!, ~7!
Downloaded 16 Nov 2002 to 128.59.114.52. Redistribution subject to A
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where

PI~x!5exp@2bVI~x!#,
~8!

PII~x!5exp@2bVII~x!#.

We defineTI
(n)(x→x8) as the probability of arriving in

statex8 from statex, after executing then moves of step 2 of
the sampling procedure@i.e., making n uniform random
moves and accepting or rejecting according to Eq.~3!#. Note
that according to our procedure

T~x→x8!5TI
~n!~x→x8!accII~x→x8!. ~9!

The transition probability corresponding to one of then
moves of step 2 can be written as

TI~x→x8!5a~x→x8!accI~x→x8!, ~10!

wherea(x→x8) denotes the probability of arriving in stat
x8 starting in statex by making one uniform random move
and the form of the acceptance probability accI is given in
Eq. ~3!. By construction,TI(x→x8) satisfies

PI~x!TI~x→x8!5PI~x8!TI~x8→x!. ~11!

Using TI(x→x8), one can writeTI
(n)(x→x8) as

TI
~n!~x→x8!5E dx1¯dxn21)

i 50

n21

TI~xi→xi 11!, ~12!

wherex05x andxn5x8. It follows from Eqs.~11! and ~12!
that

PI~x!TI
~n!~x→x8!5PI~x8!TI

~n!~x8→x!. ~13!

In order to construct the acceptance probability acII

such that Eq.~5! is obeyed, we define the quantity

q~x→x8!5
P~x!TI

~n!~x→x8!

P~x8!TI
~n!~x8→x!

. ~14!

Using Eq.~13!, we obtain forq(x→x8),

q~x→x8!5
PII~x!

PII~x8!
. ~15!

The acceptance probability can thus be written

accII~x→x8!5min@1,q~x→x8!# ~16!

which is identical to Eq.~4!, therefore our procedure obey
detailed balance. That completes the proof of detailed b
ance.

III. LENNARD-JONES SYSTEM

The potential energy for a system of particles interact
via the Lennard-Jones potential is given by

V~x!5(
i , j

VLJ~r i j !, ~17!

wherer i j is the distance between two particles of the syst
and

VLJ~r !54eS S s

r D 12

2S s

r D 6D . ~18!

We separate the potential into long- and short-ran
contributions14
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VLJ~r !5Vs~r !1Vl~r !, ~19!

where

Vs~r !5S~r !V~r !, ~20!

Vl~r !5~12S~r !!V~r !, ~21!

andS(r ) is the step function

S~r !5H 1 for r ,r s ,

0 for r>r s.
~22!

Note that short-~long-! range part of the potential corre
sponds toVI(VII).

We implement our sampling procedure according to
split potential in Eq.~19!. Thus, thei th particle is movedn
times and accepted or rejected according to the sum ove
short-range potential

VI
~ i !5 (

j Þ i ,r i j <r s

Vs~r i j !. ~23!

Note that in Eq.~23! all contributions come from particle
that are closer to particlei thanr s . The final configuration is
accepted or rejected using the potential

VII
~ i !5 (

j Þ i ,r s,r i j ,r c

Vl~r i j !, ~24!

wherer c denotes the potential cutoff.
The fact that in Eq.~23! only particles that are withinr s

contribute to the sum enables use of a neighbor list, wh
makes the implementation efficient. Everyms9 long-range
steps, we make an array listing the indices of all atoms
are within a certain distancer s9 of each atom. Everyms8
short-range steps we use the long-range neighbor list to m
a list of atoms withinr s8 of each atom. Note thatr s,r s8
,r s9 . Since in this study we want to investigate the dep
dence of CPU time on system size, our potential cutoffr c is
set to one-half of the box size for all simulations. Note a
that the two neighbor lists are used for the short-range s
only. For the long-range step, we evaluate the potential
all particles that are within one half of the box length fro
the central particle. Of course, for the Lennard-Jones 6
potential, it is not necessary to adopt minimum image c
offs, but this is done here to illustrate the power that mig
be expected of the MTS–MC method when it is applied
longer range potentials.

We ran simulations of various system sizes in a cu
box using periodic boundary conditions. We started o
simulations from a simple cubic configuration. We compu
all quantities using the standard Monte Carlo method as w
as MTS–MC. In both the regular MC and the MTS–MC w
used a cutoff distance ofr c5L/2 whereL is the length of the
edge of the simulation box. In the MTS–MC we used
inner cutoffr s of 1.6s, and an inner neighbor list cutoffr s8 of
2.0s and an outer one ofr s953.5s for runs withn510, 20
and r s953.7s for ones with n540. We generated equili
brated configurations by runs of 50 000 steps. Our aver
quantities are based on calculations on the order of 105 MC
steps in the case of regular MC, and the same numbe
short range steps for MTS–MC. For standard MC we op
Downloaded 16 Nov 2002 to 128.59.114.52. Redistribution subject to A
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mized the diffusion as a function of step size~0.7s!, for
MTS–MC we used a lower step size~0.5s! due to the inner
neighbor list.

IV. RESULTS

In Table I we compare the average potential energies
average potential energies squared for MC and MTS–
for three system sizes. The quantities shown were avera
using the same number of data points; a calculation of e
quantity was made every 20 steps in the case of MC,
every two long-range steps~or 20 short-range steps! in the
case of MTS–MC. The regular MC run was 100 000 ste
long. MTS–MC was run with a splitting parameter ofn
510. The results for the observables shown are almost
distinguishable, indicating that the implementation does
affect the accuracy of the method. The error bars for the
methods are also comparable. The radial distribution fu
tions ~not shown! are also indistinguishable for the tw
cases.

In Table II we present the speedup as a function of s
tem size. In order to compare CPU times of the two metho
we ran both methods for four different system sizes. Fo
given system size, the comparison between MC a
MTS–MC were made between runs in which the number
MC steps equaled the number of short-range MTS–M
steps. In the second column of Table II, we show the C
time for MC divided by the CPU time for MTS–MC. The
ratios of the raw CPU times indicate that MTS–MC is si
nificantly faster than standard MC.

While both methods sample the same distribution,
trajectories are not equivalent trajectories in the sense
correlation functions calculated in MC time are not necess
ily equal. We found diffusion to be slower with increasin
splitting parametern in MTS–MC simulations. We attribute
this behavior to the fact that if a long-range move is reject
the system effectively stays in the same place forn equiva-

TABLE I. Average of the potential energy and average of the poten
energy squared in reduced units for three system sizes from regular MC
MTS–MC (n510) simulations.

No. of particles Method ^V& ^V2&

343 MC 20.842666 0.71262
MTS–MC 20.842969 0.71264

512 MC 20.852765 0.728268
MTS–MC 20.853465 0.729468

1000 MC 20.862964 0.745168
MTS–MC 20.863164 0.745567

TABLE II. Speedup as a function of system size~for the meaning of raw
and diffusion adjusted speedup, see text!.

No. of particles Raw CPU speedup Diffusion adjusted speedu

343 4.1 3.0
512 5.0 3.7
729 5.6 4.2
1000 6.3 4.7
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lent regular MC moves. Furthermore the sharp switch fu
tion used in separating the potential into long- and sh
range part may also hinder diffusion.

Rao, Pangali, and Berne15,16 proposed using the diffu
sion of a system as a good measure of MC simulation e
ciency. Also, the correlation time of energy can be used a
efficiency parameter. They showed that these quantities
vide an intuitive measure for optimization as well as e
ciency assessment of different MC algorithms. In this pap
we use diffusion coefficients as the score variables to c
pare the MTS–MC scheme with the standard MC method
Table II we show the diffusion adjusted speedup~DAS! for
four system sizes. We define DAS as the CPU speedup m
tiplied by the ratioDMTS/DMC , where DMTS(DMC) is the
diffusion constant obtained using MTS–MC~MC!. Since the
diffusion constant is size independent, the DAS is differ
from the raw ratio of CPU times by a constant factor (ra
50.74 for n510). The overall speedup is still considerab
~4.7 for a system of 1000 particles!.

In Table III we present comparisons of DAS for differe
values of the splitting parametern. While the diffusion slows
down with increasingn, the scaling with system size im
proves. Since the diffusion constant is independent ofN, us-
ing high values ofn becomes more favorable at large syste
sizes.

In order to further quantify the advantage of usi
MTS–MC over standard MC, we compare the system s
scaling of the two methods. A standard MC algorithm fo
system interacting through pair potentials is expected
scale as the number of potential evaluations, i.e., as the n
ber of pairs of particles. We can therefore write the CPU ti
as the sum of a linear and a quadratic term (aN1bN2)
whereN is the number of particles in the system. When
cutoff is used the linear term is expected to dominate
typical system sizes~since the number of potential evalu
tions reduces toN Nngh whereNngh is the number of neigh-
bors, a size-independent quantity!. Since the application o

TABLE IV. Scaling parameters resulting from fitting the raw CPU time
system size to the functionaN1bN2.

Method
Splitting parameter

n

Scaling parameters

a b

MC 0.3 0.0400
MTS–MC 10 2.1 0.0051
MTS–MC 20 2.1 0.0027
MTS–MC 40 2.1 0.0014

TABLE III. Diffusion adjusted speedup~DAS! for the MTS–MC as a func-
tion of the splitting parametern.

No. of
particles

Diffusion adjusted speedup~DAS!

MTS–MC (n510) MTS–MC (n520) MTS–MC (n540)

343 3.0 3.0 2.6
512 3.7 4.0 3.5
729 4.2 4.8 4.5
1000 4.7 5.6 5.5
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MTS–MC enables use of a neighbor list even in cases wh
a potential cutoff cannot be used, it is expected that the ra
of system sizes where the linear term dominates the sca
behavior should increase compared to regular MC. In Ta
IV the result of fitting the raw CPU time versus system s
to the functionaN1bN2 is presented and in Fig. 1 we sho
this CPU time as a function of system size, including t
results of our fits. In the case ofn540 the linear coefficient
is three orders of magnitude larger than the quadratic o
and the linear term is the dominant term in the scaling
CPU time with system size for all system sizes that we h
studied.

V. CONCLUSIONS

We have devised a modified MC algorithm similar
spirit to multiple time-step MD methods. Our method
based on splitting the potential into two parts, one slow
varying and the other quickly varying as a function of coo
dinates. As in multiple time-step MD, the slowly varying pa
of the potential is evaluated less frequently than the sh
range part, leading to savings in CPU time.

We have demonstrated that our procedure obeys deta
balance, and have implemented the method for a Lenn
Jones system. Our calculations indicate savings in CPU t
up to factors of 5.6 for our largest system of 1000 particl
We have also studied the scaling of CPU time as a func
of system size, and have shown that for the sizes investig
here the linear term can be made to be the dominant term
a future investigation, we apply MTS–MC to systems w
long-range interactions like water using the Ewald and p
ticle mesh Ewald methods.11
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FIG. 1. CPU time vs system size for regular MC and MTS–MC with d
ferent values of the splitting parameter. The lines are least squares fits o
function aN1bN2 ~see Table IV!.
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