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We propose a sampling scheme to reduce the CPU time for Monte Carlo simulations of atomic
systems. Our method is based on the separation of the potential energy into parts that are expected
to vary at different rates as a function of coordinates. We performoves that are accepted or
rejected according to the rapidly varying part of the potential, and the resulting configuration is
accepted or rejected according to the slowly varying part. We test our method on a Lennard-Jones
system. We show that use of our method leads to significant savings in CPU time. We also show that
for moderate system sizes the scaling of CPU time with system size can be imgiaved 40 the

scaling is predominantly linear up to 1000 partiglesd 2002 American Institute of Physics.
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I. INTRODUCTION rated into a long-range and a short-range part, and the long-

The most often used tools in obtaining expectation valfange part is evaluated less frequently than the short-range
ues for classical many-body systems at equilibrium are th@art. A particle is moved and accepted or rejectetimes
Monte Carld=3 (MC) and molecular dynamicsMD) (we call n the splitting parametgraccording to the short-
methods>® MC and MD are methods which generate equi-range potential. The configuration resulting from thehort-
librium configurations for various ensembles. In MD the par-range moves is accepted or rejected using a Metropolis cri-
ticles of the system are propagated in real time according téerion based on the long-range potentials before and after the
Newton’s equations of motion, whereas in MC configura-n short-range moves.
tions are sampled by a Markov process from the Boltzmann  Our procedure is similar in spirit but different in signifi-
distribution (the propagation takes place in “Markovian cant ways from the adiabatic nuclear and electronic sampling
time”). Monte Carlo(ANES—MOQ) method developed by Siepmann

In the case of MD, significant savings in CPU time canand co-worker$® to sample systems in which the configura-
be achieved by using multiple time-step methods. Wheriion space can be subdivided into “fast” and “slow” degrees
time-reversible MD integrators are used, propagators fopf freedom, such as electronic and nuclear degrees of free-
multiple time-step algorithms can be derived from the Liou-dom respectively. ANES—-MC was particularly designed to
ville formulation of classical mechaniés. If the Hamil- treat polarizable systems and was applied to the simple point
tonian is separated into two parts, a rapidly and a slowlycharge fluctuating chargéSPC—FQ model® where the
varying part, than an MD propagator can be derived in whicHluctuating charges were thermostated at low temperature
the slowly varying part of the Hamiltonian is evaluated lessand the nuclear motions were thermostated at the tempera-
frequently than the rapidly varying part, hence savings inture of interest. In ANES—MC, the “slow” coordinates are
CPU time can be achieved. Common criteria of separatiompdated less frequently than “fast” coordinates. In
into rapidly and slowly varying partsare differences in the MTS—MC the configuration space need not be subdivided
masses of the particles of the systémemperature differ- into fast and slow coordinates, but instead the potential is
ences among different subunits of a sysfear, differences  subdivided into a short- and long-range part.
in the spatial range of potentidléshort range varying rap- In this study, we implement the MTS—MC scheme for a
idly, long range varying slowly system of Lennard-Jones particles. In a sequel papee

In this paper, we propose a sampling algorithm that isapply the new algorithm to a real long-range potential, the
similar in spirit to multiple time-scale molecular dynamics, SPC water model combined with the Ewald sum. Implemen-
and is generally applicable to any type of system that can b&tion in the case of the Lennard-Jones system requires use of
treated by MD or MC. The only assumption of our method isa split neighbor list that formed the basis of earlier multiple
the separability of the potential of the system into a part thatime-step method¥'*We demonstrate that for systems de-
varies rapidly and a part that varies slowly as a function ofscribed by pair potentials, the CPU time can be made pre-
coordinates. In our method, which we call the multiple dominantly linear for the system sizes that we have studied
“time-step” Monte Carlo(MTS—MC), the potential is sepa- (maximum 1000, an improvement over the quadratic scaling
of regular MC. In order to illustrate this point, we use a
present address: SISSA, International School for Advanced Study, vik€nnard-Jones potential in which the cutoff is set to one-half

Beirut 2-4, 34014, Trieste, Italy. of the edge of the simulation box.
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In Sec. Il, we introduce the new Monte Carlo method,where
multiple “time step” Monte Carlo(MTS—MC), and show _ _
that the new algorithm obeys the detailed balance condition. Pi0)=exil =BV,
In Sec. Ill, we present computational and simulation details P (x)=exd — BV, (X)].
for the Lennard-Jones system. In Sec. IV, we discuss results

. (n) ’ ™ o . .
for the Lennard-Jones simulations. Results are summarize W(? defineT{"(x—x') as th? probability of arriving in
in Sec. V. statex’ from statex, after executing the moves of step 2 of

the sampling procedurgi.e., making n uniform random
Il. METHOD moves and accepting or rejecting according to @B§]. Note

Our sampling procedure is as follows: Given a system ofhat according to our procedure

®

particles interacting via a_potent_ial energy f_unctiVI(lx), T(x—>x’)=Tf”)(x—>x’)acq,(x—>x’). (9)
wherex denotes the coordinates in configuration space. The
partition function of the system is given by The transition probability corresponding to one of the
moves of step 2 can be written as
Q:f dxexgd —BV(x)], (N T(x—=X") = a(x—X")acG(x—X'), (10
can be written as the sum of two additive parts as X" starting in statex by making one uniform random move,
and the form of the acceptance probability ;aiscgiven in
V(X) =V (X)+ Vi (X). (20 Eq.(3). By constructionT,(x—x’) satisfies
To evaluate the partition function for such a system, we pro- P, )T (x=x")=P,(x") T (X' —X). (12)

pose the following sampling procedure: ) ) ) )

Step 1: For a given configuration we evaluatev,(x)  Using T((x—Xx"), one can writeT;”(x—x") as
andV, (x). We store the configuratiox asx,q andy,q. n-1

Step 2: Usingy/,q as a starting configuration we generate  T{"(x—x')= f Xm"'delH T(X—Xi11), (12
a new configuration by makinguniform random moves and =0

accepting or rejecting each move by an acceptance pfObavaherexozx andx,=x’. It follows from Egs.(11) and(12)
ity constructed using only/,, that

acG(Yold— Ynew = Min[ 1,exd — B(Vi(Ynew — Vi(Yoia) )} - . P (X)T{M(x—x")=P(x") TIV(x' —X). (13)

In order to construct the acceptance probability acc

The configuration resulting after threh move is stored such that Eq(5) is obeyed, we define the quantity

as Xpew-
Step 3: We accept or reject the resulting configuration by ) P(x)T,(”)(Xex’)

an acceptance probability constructed frdfy as q(x—x")= POOTI(X —x)° (14)
acG(Xoig— Xnew = MiN[1,exg — B(V};(Xnew) _VII(Xold))}]i4) Using Eq.(13), we obtain forq(x—x'),
Note that configurations that have been accepted or rejected q(x—x’)= P”(X,) . (15)
using Eq.(4) obey detailed balance, hence if intermediate Pu(x’)
configurations are used in calculating observables an error iphe acceptance probability can thus be written
introduced. )

acG (x—x")=min[1,g(x—x")] (16

A. Detailed balance L .
which is identical to Eq(4), therefore our procedure obeys

In this section, we show that configurations generate@etailed balance. That completes the proof of detailed bal-
according to Eq(4) are distributed according to the desired gnce.
(in this case Boltzmanmdistribution. We do this by demon-
strating that our procedure obeys the detailed balance condi!- LENNARD-JONES SYSTEM
tion. Our goal is to prove that the configurations generated The potential energy for a system of particles interacting

by the above procedure obey via the Lennard-Jones potential is given by
P(X)T(x—x")=P(x")T(x'—Xx), (5)
; - L V(X)=E_ Via(rip), (17)
whereP(x) is the unnormalized probability distribution i<]
P(x)=exfd — BV(X)], (6)  Wherer;; is the distance between two particles of the system
and

andT(x—x") is the transition probability of arriving in state 1 .
x' starting from state after performing all three steps of the _ o o

. VLJ( r ) =4e — il .
sampling procedure.

r (19
Using Eq.(2) we write the probability distribution as

We separate the potential into long- and short-range
P(x)=P,(X)Py(x), (7)  contributiong*
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VLJ(r)=Vs(r)+V|(r), (19 TABLE 1. Average of the pot'ential energy and average of the potential
energy squared in reduced units for three system sizes from regular MC and
where MTS-MC (n=10) simulations.
V(r)=S(r)V(r), (20 No. of particles Method (V) (V?)
Vi(r)=(1=S(r)V(r 21 343 MC —0.8426-6 0.712£2
I( )=( SOV, ( ) MTS-MC —0.8429+-9 0.712t4
andS(r) is the step function 512 mC —0.8527+5 0.7282+8
MTS-MC —0.8534+5 0.7294-8
1 for r<rg, 1000 MC —0.8629+4 0.74518
S(r)= (22 MTS—MC —0.86314 0.7455-7
0 for r=rs.

Note that short-(long-) range part of the potential corre-
sponds toV (V). : e . .

We implement our sampling procedure according to thaNized the diffusion as a function of step si#@ 7o), for
split potential in Eq(19). Thus, theith particle is movech ~ MTS—MC we used a lower step siz@.50) due to the inner
times and accepted or rejected according to the sum over tHgighbor list.
short-range potential

IV. RESULTS

V= > vy, (23 _ _
j#in=rs In Table | we compare the average potential energies and

average potential energies squared for MC and MTS—-MC

for three system sizes. The quantities shown were averaged
using the same number of data points; a calculation of each
quantity was made every 20 steps in the case of MC, and
every two long-range steg®r 20 short-range stepi the

Note that in Eq.(23) all contributions come from particles
that are closer to particliethanr. The final configuration is
accepted or rejected using the potential

(i) —
Vi _Hi,r;”q Vi(rip), (24 case of MTS—MC. The regular MC run was 100 000 steps
e . long. MTS—MC was run with a splitting parameter of
wherer . denotes the potential cutoff. =10. The results for the observables shown are almost in-

The fact that in Eq(23) only particles that are withins  distinguishable, indicating that the implementation does not
contribute to the sum enables use of a neighbor list, whichyffect the accuracy of the method. The error bars for the two
makes the implementation efficient. Eveny, long-range  methods are also comparable. The radial distribution func-
steps, we make an array listing the indices of all atoms thafions (not shown are also indistinguishable for the two
are within a certain distance, of each atom. Everyn, cases.
short-range steps we use the long-range neighbor list to make |n Table Il we present the speedup as a function of sys-
a list of atoms withinrg of each atom. Note that;<rg  tem size. In order to compare CPU times of the two methods,
<rg. Since in this study we want to investigate the depenwe ran both methods for four different system sizes. For a
dence of CPU time on system size, our potential cutpi§  given system size, the comparison between MC and
set to one-half of the box size for all simulations. Note alsoMTS—MC were made between runs in which the number of
that the two neighbor lists are used for the short-range stepgiC steps equaled the number of short-range MTS—-MC
only. For the long-range step, we evaluate the potential fosteps. In the second column of Table Il, we show the CPU
all particles that are within one half of the box length from time for MC divided by the CPU time for MTS—MC. The
the central particle. Of course, for the Lennard-Jones 6—124tios of the raw CPU times indicate that MTS—MC is sig-
potential, it is not necessary to adopt minimum image cutnificantly faster than standard MC.
offs, but this is done here to illustrate the power that might  While both methods sample the same distribution, the
be expected of the MTS—MC method when it is applied totrajectories are not equivalent trajectories in the sense that
longer range potentials. correlation functions calculated in MC time are not necessar-

We ran simulations of various system sizes in a cubidly equal. We found diffusion to be slower with increasing
box using periodic boundary conditions. We started oursplitting parameten in MTS—MC simulations. We attribute
simulations from a simple cubic configuration. We computeckhis behavior to the fact that if a long-range move is rejected,

all quantities using the standard Monte Carlo method as welhe system effectively stays in the same placerf@quiva-
as MTS—MC. In both the regular MC and the MTS—MC we

used a cutoff distance of=L/2 whereL is the length of the
edge of the simulation box. In the MTS—MC we used anTABLE IIl. Speedup as a function of system sidfer the meaning of raw
inner cutoffr s of 1.60, and an inner neighbor list cutaff of ~ and diffusion adjusted speedup, see text

2.00 and an outer one af,=3.5¢ for runs withn=10, 20

and rg:3.70 for ones with n=40. We generated equiIi- No. of particles Raw CPU speedup Diffusion adjusted speedup
brated configurations by runs of 50000 steps. Our average 343 4.1 3.0
quantities are based on calculations on the order 6iMG ?;g g'g i;
steps in the case of regular MC, and the same number of ;449 6.3 4.7

short range steps for MTS—MC. For standard MC we opti
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TABLE lll. Diffusion adjusted speedufDAS) for the MTS—MC as a func- T T T T T T T T
tion of the splitting parametan.

MC

MTS-MC (n=10)
MTS-MC (n=20)
MTS-MC (n=40)

Diffusion adjusted speedufDAS)

4pm

No. of
particles MTS—-MC (n=10) MTS-MC (h=20) MTS-MC (h=40)

343 3.0 3.0 2.6
512 3.7 4.0 35 2
729 4.2 4.8 45 g
1000 47 5.6 55 5

lent regular MC moves. Furthermore the sharp switch func-
tion used in separating the potential into long- and short-
range part may also hinder diffusion. . =

Rao, Pangali, and Bert'® proposed using the diffu- 0 200 400 800 800 1000
sion of a system as a good measure of MC simulation effi- System Size N
ciency. Also, the correlation time of energy can be used as an
efﬁmency pa,rf”‘meter' They Showe_d t_hat_these quantities p'r erent values of the splitting parameter. The lines are least squares fits of the
vide an intuitive measure for optimization as well as effi- fynctionaN+bN? (see Table IV.
ciency assessment of different MC algorithms. In this paper,
we use diffusion coefficients as the score variables to com-
pare the MTS—MC scheme with the standard MC method. IMTS—MC enables use of a neighbor list even in cases where
Table Il we show the diffusion adjusted speed@AS) for  a potential cutoff cannot be used, it is expected that the range
four system sizes. We define DAS as the CPU speedup mubf system sizes where the linear term dominates the scaling
tiplied by the ratioDyrs/Dyc, whereDyrs(Dyc) is the  behavior should increase compared to regular MC. In Table
diffusion constant obtained using MTS—NIGC). Since the |V the result of fitting the raw CPU time versus system size
diffusion constant is size independent, the DAS is differento the functionaN+bN? is presented and in Fig. 1 we show
from the raw ratio of CPU times by a constant factor (ratiothis CPU time as a function of system size, including the
=0.74 forn=10). The overall speedup is still considerable results of our fits. In the case of=40 the linear coefficient
(4.7 for a system of 1000 particles is three orders of magnitude larger than the quadratic one,

In Table Ill we present comparisons of DAS for different and the linear term is the dominant term in the scaling of
values of the splitting parametar While the diffusion slows  CPU time with system size for all system sizes that we have
down with increasingn, the scaling with system size im- studied.
proves. Since the diffusion constant is independerit,afis-
ing high values oh becomes more favorable at large system
sizes.

In order to further quantify the advantage of using  We have devised a modified MC algorithm similar in
MTS-MC over standard MC, we compare the system sizgpijrit to multiple time-step MD methods. Our method is
scaling of the two methods. A standard MC algorithm for apased on splitting the potential into two parts, one slowly
system interacting through pair potentials is expected t@arying and the other quickly varying as a function of coor-
scale as the number of potential evaluations, i.e., as the nunginates. As in multiple time-step MD, the slowly varying part
ber of pairs of particles. We can therefore write the CPU timeof the potential is evaluated less frequently than the short-
as the sum of a linear and a quadratic teraN¢ bN?) range part, leading to savings in CPU time.
whereN is the number of particles in the system. When @ We have demonstrated that our procedure obeys detailed
cutoff is used the linear term is expected to dominate abalance, and have implemented the method for a Lennard-
typical system sizegsince the number of potential evalua- jones system. Our calculations indicate savings in CPU time
tions reduces ttN N,g, whereN,qy, is the number of neigh-  up to factors of 5.6 for our largest system of 1000 particles.
bors, a size-independent quantitgince the application of e have also studied the scaling of CPU time as a function
of system size, and have shown that for the sizes investigated
here the linear term can be made to be the dominant term. In
a future investigation, we apply MTS—MC to systems with
long-range interactions like water using the Ewald and par-

IG. 1. CPU time vs system size for regular MC and MTS—-MC with dif-

V. CONCLUSIONS

TABLE IV. Scaling parameters resulting from fitting the raw CPU time vs
system size to the functioaN-+bN2.

Scaling parameters ticle mesh Ewald methods.
Splitting parameter
Method n a b
MC 0.3 0.0400 ACKNOWLEDGMENTS
MTS-MC 10 2.1 0.0051 : ;
MTS_MG 20 o1 0.0027 The authors thank Dr. H. A. Stern for useful discussions.
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