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Quantum path minimization: An efficient method for global optimization
Pu Liu and B. J. Berne
Department of Chemistry and Center for Biomolecular Simulation, Columbia University,
New York, New York 10027

~Received 13 August 2002; accepted 17 October 2002!

A new unbiased global optimization approach is proposed, based on quantum staging path integral
Monte Carlo sampling and local minimization of individual imaginary time slices. This algorithm
uses the quantum tunneling effect to speed up the crossing of energy barriers. This method differs
in important ways from previous work on quantum annealing and is able to find all the global
minima of Lennard-Jones clusters of size up toN5100, except forN576, 77, and 98. The
comparison between this new algorithm and several other classes of algorithms is presented.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1527919#
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I. INTRODUCTION

Global optimization is a crucial and notoriously difficu
problem in many fields of science and technology. Ma
global optimization problems are NP-complete,1 i.e., a deter-
ministic polynomial time solution is believed not to exi
although this has not been proven rigorously. But it has b
proven that all NP-complete problems are equivalent, wh
means that we can get deterministic polynomial-time so
tions of other NP-complete problem if we can find one
global optimization. Thus, global optimization is very impo
tant from a theoretical perspective.

In testing the efficiency of different methods, many stu
ies have focused on determining the global energy minim
configurations of atomic or molecular clusters. The Lenna
Jones~LJ! cluster is one the most popular test systems.
LJ38, LJ75– 77,102– 104, and LJ98, the location of the globa
minima is much more difficult since the lowest energy stru
tures of these cases are based, respectively, on the
centered-cubic~fcc! truncated octahedron, the Marks’ dec
hedra, and the tetrahedron, while the dominant struct
motif is the Mackay icosahedron. The global free ene
minima and the global potential minima coincide with ea
other only at very low temperature where the dynamics
very slow. Through great effort over several decades, ca
date global energy minima have been found for clusters
size up toN5150. Some deterministic approaches, such
the branch and bound method invented by Maranas
Floudas,2–4 have been applied to LJ clusters; however,
prohibitive computational cost makes this method impra
cal for large LJ clusters. A wide spectrum of stochastic g
bal optimization routines have been invented and applie
LJ clusters. The biased methods5–10make use of the physica
insight for particular problems. By constructing appropria
candidates for the energy minimum configuration, a
thereby greatly reducing the configuration space to
searched, they can locate almost all the energy minima
clusters of size up toN5150. However, it requires substan
tial knowledge of the system, which is not always availa
for new systems. Several classes of unbiased methods
been developed, for example the methods based on
2990021-9606/2003/118(7)/2999/7/$20.00
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annealing algorithm@simulated annealing~SA!,11 quantum
annealing,12,13 multicanonical jumping walk annealing,14

quantum thermal annealing,15 and smart walking an-
nealing16#, various potential deformation methods,17–23 and
some variants of Genetic Algorithms.24–27

Delocalization and tunneling in quantum mechanics
the foundation of quantum annealing. Since quantum de
calization softens the potential, it increases the probability
barrier-crossing even at low temperatures. In addition,
zero point energy can be forced to be above all the ene
barriers when\ is allowed to be sufficiently large. Quantum
annealing can be achieved experimentally28 and theore-
tically.12,13,15,29 Through the approximate solution of th
Schrödinger equation in an imaginary time12 or diffusion
Monte Carlo,13 quantum annealing methods have found t
correct energy minimum for a series of Lennard-Jones c
ters from n52 to 19. Using Quantum Thermal Annealin
with PIMC, Lee and Berne found the global minimum
LJ38 ~Ref. 15! successfully. But for the specific cluster
LJ69, LJ75– 78, and LJ98, the task becomes much more diffi
cult.

In this paper, we combine staging path integral Mon
Carlo sampling, which efficiently sample barrier crossi
events and avoids local trapping, with local minimization30

which determines the local energy minimum of Lenna
Jones clusters. Instead of annealing to the classical re
(\→0) and then minimizing to find the global minimum a
done in QTA,15 we do not anneal in\, but instead minimize
for the configuration of every imaginary time slice. Th
method appears to be robust and efficient. It locates all
global energy minima of LJ clusters of size up toN5100,
except forN576, 77, 98. The computational details are d
scribed in Sec. II. The comparison with other popular alg
rithms is presented in Sec. III.

II. METHOD

A. Staging path integral Monte Carlo

Feynman’s path integral approach31 to quantum statisti-
cal mechanics allows one to interpret a quantum system
classical system of ‘‘ring polymers.’’ This forms the basis f
9 © 2003 American Institute of Physics
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path integral Monte Carlo sampling on a classical compu
Under theprimitive approximation, the primitive partition
function32,33 can be written as

QP
prim~b!5S Pm

2pb\2D 3NP/2E dr 1,1¯dr i,t¯drN,P

3expS 2
Pm

2b\2 (
i 51

N

(
t51

P

ur i,t2r i,t11u2

2
b

P (
tÄ1

P

V~$r i%;t!D , ~1!

whereP is the trotter number, andN is the number of the
particles,b51/(kT), r i,t is the coordinate of thei th particle
in the tth imaginary time slice, andV($r i%;t) is the system
potential of time slicet. This partition function can give a
quite accurate description of quantum systems when the
ter number,P, goes to infinity. However, the difference be
tween the true value and this approximate value is usu
small whenP is large enough. However, the presence of s
harmonic potentials between the adjacent time slices ma
the simulation of quantum systems very inefficient when
trotter numberP becomes large. The staging algorithm w
proposed to solve this problem.29,34,35Instead of moving one
bead at a time as done in the primitive algorithm, in t
staging algorithm the ‘‘polymer ring’’ is divided into severa
segments and a whole segment is moved at each time
The staging partition function is

QP
stag~b!5Fbmv j

2

2p )
k52

j S bmkvP
2

2p D G3Nn/2

3E du1,1¯ dui,t ¯ duN,P

3expF2bS (
i 51

N

(
s50

n21
1

2
mv j

2uui,sj¿12ui,(s¿1…j¿1u2

1(
i 51

N

(
s50

n21

(
k52

j
1

2
mkvp

2ui,sj¿k

1
1

P (
t51

P

V~$r i~u!%;t!D G , ~2!

wheren and j are the number of ‘‘segments’’ and the ‘‘seg
ment length,’’ keepingn j5P, with mk5mk/(k21), v j

5(b\)21AP/ j , vP5(b\)21AP. The original Cartesian
coordinates,r i,t , can be recursively expressed as the com
nation of staging coordinates,ui,t ,

r sj¿15usj¿1 ,

r sj¿k5usj¿k1
k21

k
r sj¿k¿11

1

k
r sj¿1 . ~3!

From Eq. 2 we can know that the coordinates of the (j 21)
beads between fixed end points can be sampled directly f
Gaussian distribution. Thus the stiff harmonic force is effe
tively eliminated. The end points,r s j11 , can be randomly
selected to remove the effect caused by the end points b
kept fixed.
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B. Implementation of quantum path minimization
„QPM…

In this paper we introduce and apply the Quantum P
Minimization ~QPM! on clusters of atoms interacting accor
ing to LJ ~12-6! pairwise additive potential,

V~rN!54«(
i , j

S S s

r i j
D 12

2S s

r i j
D 6D , ~4!

wherer i j , «, 21/6s are the interatomic distance between t
i th and thej th atoms, the pair equilibrium well depth, an
distance, respectively.

In order to obtain the global minimum, we sample t
effective potential associated with the staging Hamiltoni
We use global MC moves and staging MC moves to upd
the coordinates. For a global move, all of theP beads rep-
resenting one particle are randomly displaced within a c
of Dglobal, such that the acceptance ratio approaches 0.5
cording to the Metropolis criterion. We also move segme
of j 21 beads in the ‘‘polymer chain’’ in staging MC move
L-BFGS-B,30 a Fortran subroutine for large-scale bound
unbound contained optimization, is used as the minimizat
driver.

We noticed that in some of the more difficult LJ cluste
such as LJ38 and LJ75, most of the CPU time is spent o
unsuccessful random moves around the second-to-lowes
ergy structure, although this second-to-lowest energy st
ture is quite easily found. In order to escape from deep lo
minima, we introduce ‘‘mutations,’’ which reset the coord
nates of one particle for each time slice randomly in t
simulation sphere.

The procedure of QPM is outlined as follows:

~1! Starting from a random configuration ofN particles$r i%,
choose an appropriate value of\, such that the simula-
tion can cross the high-energy barriers frequently.P trot-
ter beads, representing each particle, are then pla
overlapping one another on these sites. Define one glo
move andP staging MC moves of all the particles a
one PIMC sweep. Conductn PIMC sweeps to
let this system expand to some appropriate size. T
the trial configuration for this system becom
($r i,1%,...,$r i,t%,...,$r i,P%).

~2! For every set of coordinates belonging to some spec
imaginary timet(t50,...,P), we minimize the energy
and thus find a minimum. From these minima, w
choose the lowest one,Ej($r j%), where $r j% represents
the coordinates which have the lowest energyEj . Let
Ej

old5Ej .
~3! ~a! Starting from the trial configuration

($r i,1%,...,$r i,t%,...,$r i,P%), we run m PIMC sweeps
and thus get the next trial configuration
($r i,18 %,...,$r i,t8 %,...,$r i,P8 %). Then repeat step~2! to get an-
other lowest energy,Ej

new($r j8%)5Ej8 .
~b! Compare the two minima:Ej

new($r j8%) and
Ej

old($r j%).
~c! If exp(2b(Ej

new2Ej
old)).z, wherez is a random

number between 0 and 1, letEj
old5Ej

new, and let the
coordinates of$r j8%, corresponding toEj

new, to be new
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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initial classical configuration. After repeating step~1!
and step~2!, we get another lowest energyEj ($r j8%) and
replaceEj

new with Ej . Then go to step~3b!.
~d! Otherwise, start with the last trial configuratio

($r i,1%8,...,$r i,t%8,...,$r i,P%8), go to step~3a!. Repeat this
step at mostM times.

~4! If no new minima are found in the lastM1 (M1,M )
steps, generate a mutation by resetting the coordinat
one particle for each time slice by sampling randomly
the simulation box. Go to step~3a!.

In our simulation, we introduce the soft wall potentia
Vwall5kw(r 62r 0

6)Q(r 2r 0), which defines an effective
spherical box to prevent the Lennard-Jones cluster fr
completely dissociating. The density cannot be taken
high as the particles then hardly move, nor can it be too l
Here, the triple point density of the Lennard-Jones fluid w
aimed for. We definen PIMC move and one set of minimi
zations as one pass. The length of a pass,n should be care-
fully chosen. If this length is too short, the system will a
ways fall into the initial basin since the size of the ‘‘polym
ring’’ will not grow large enough to penetrate into anoth
energy basin. If its length is too large, the system will m
basins that may contain the global minimum.

III. RESULTS AND COMPARISON

It is very difficult to compare the relative performance
different global optimization methods systematically sin
many authors only gave their final result without describ
the computational expense, and many authors have ap
their methods only to small cluster sizes or to some spe
cases. Given the exponentially increasing number of lo
minima asN becomes large, and the small energy differen
between these minima, LJ clusters can be used as a be
mark system for the evaluation of different algorithms.
clusters ranging in size fromN510 to 150 contain the spe
cial cases, e.g., LJ38, LJ75– 77,102– 104, LJ98, whose minima
are among the most difficult to determine. This is beca
the lowest energy structures of these specific clusters
based, respectively, on the face-centered-cubic~fcc! trun-
cated octahedron, the Marks’ decahedra, and the tetrahe
while the dominant structural motif is the Mackay icosah
dron. Following a suggestion of Wales,20 it is reasonable to
consider the location of the energy minimum of LJ38,
LJ75– 77,102– 104, LJ98 as the first, second, and third ‘‘hurdles
respectively. For those methods where explicit computatio
expense has not been given, we use success or failu
determining the first, second and third hurdles correctly
the criteria for comparison between methods. In the me
time, we present the relative computational cost of minim
zations and Monte Carlo sweeps because we want to c
pare methods where minimization is applied to metho
where minimization is not applied. A comparison of the re
tive computational expense of the minimizations and
PIMC moves is summarized in Fig. 1. From Fig. 1, we fi
that the asymptotic behavior of the average computatio
cost of the minimization is of orderN2, i.e., the same cost a
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the PIMC sweeps, but it appears that the expense for m
mization increases slightly more quickly than that for prim
tive PIMC sweep when the cluster size is large. We belie
that this is because the system will be close to the lo
minima when we finish the PIMC sweeps, thus the optimi
can locate the local minimum after only a few iterations. T
staging path-integral is about eight times as fast as the pr
tive algorithm in achieving the same ‘‘size’’ of the ‘‘polyme
ring’’ ~the special size of the ‘‘polymer ring’’ is defined a
(1/NP) ( i 51

N ( t51
P ur i,t2 r̄ iu2, where r̄ i51/P( t51

P r i,t), as can
be seen from Fig. 1. The typical evolution of the syste
energy with the time is shown in Fig. 2. To illustrate th
performance of our new algorithm, we show the pass num
needed to achieve the optimal structure for LJ clusters in
range of 11–55 in Fig. 3. We can locate the global minim

FIG. 1. The computational expense (t) as a function of cluster sizeN. The
time for minimization in this plot is for 40 minimizations, and the tim
for the PIMC is for 100 sweeps in primitive PIMC and 24 sweeps
staging PIMC with the trotter numberP540. The CPU time is for one 450
MHz Pentium II processor. The fitting curve is the result of quadratic
gression.

FIG. 2. The total energy vs the pass number for LJ95 . The abrupt increase in
energy is caused by mutations. We see that the system energy is grad
decreased. When this system is stuck in one local energy minimum,
mutation will jump the system to another point in phase space.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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for LJ11– 55 in less than 200 passes~consisting of 40 minimi-
zations and 24 staging PIMC sweeps here! with 100% cer-
tainty.

A. Comparison with some methods based on
annealing

If the annealing rate in simulated annealing is slo
enough, finding the global minimum is assured, but this
often not feasible. One shortcoming of the standard sim
lated annealing approach, and many of its variants ar
from the slow relaxation rate at low temperatures. Anot
shortcoming is that annealing methods spend a large am
of time in the region near local minima. One powerful va
ant, named multicanonical jump walking anneali
~MJWA!,14 couples classical simulated annealing with m
ticanonical sampling. In MJWA, the canonical Monte Ca
drives the system towards the local minima and the mult
nonical sampling surmounts the energy barriers. Unlike
ancestors, this algorithm is quite successfully when app
to LJ5 – 30. Because LJ17 has three low energy structure
with very similar geometries and close potential energ
(E15261.318,E25261.307,E35261.297), it presents a
challenge for global optimization methods. Using the op
mized schedule, a total of 4 000 000 MC sweeps is use
each of ten trials. Only one out of ten trials located the ex
global minimum for simulated annealing, while the oth

FIG. 3. The pass number needed to locate the global minimum vs the cl
size. For every cluster size, we conduct five independent runs from ran
configurations. The upper dash and lower dash and the point between
on each vertical bar represent the largest, smallest, and the average va
time steps needed to reach the global minimum.
Downloaded 29 Dec 2003 to 128.59.114.15. Redistribution subject to A
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eight trials got stuck in the second lowest energy minimu
For MJWA, eight out of ten trials found the global minimum
which is eight times better than SA.14

We applied our QPM algorithm independently five tim
to LJ17 at the condition ofT51.0, P540, \51.0. Our
method successfully located the global minimum with 100
assurance within one pass. In each iteration, one pass~40
minimizations and 24 staging PIMC sweeps! was made. That
means that the global minimum was determined within
time approximately corresponding to 4500 MC sweeps si
the time for one primitive PIMC sweep equals that forP MC
sweeps and the time for 40 minimizations approximat
equals that for 100 primitive PIMC sweeps. QPM is 8
times more efficient than MJWA and 7000 times more e
cient than SA for the global optimization of LJ17.

Another difficult case is the 27-atom Lennard-Jon
cluster (LJ27), which has two similar low energy states, wi
energiesE152112.874 andE252112.826. Even after the
length of the simulation is increased to 8 000 000 M
sweeps, only one of ten independent trials located the
global minimum for SA, and five out of ten for MJWA.14

However, in our algorithm, five out of five independent tria
locate the global minimum within 10 passes under the sa
condition as LJ17, which corresponds to 45 000 MC sweep
This means our algorithm is 177 times more efficient th
MJWA and 885 times more efficient than SA for the clus
LJ27. Comparison between the MJWA, SA, and QPM
summarized in Table I.

B. Comparison with quantum global optimization

Through an approximate solution of the Schro¨dinger
equation in imaginary time12,36 or diffusion Monte Carlo,13

some algorithms can find the correct global energy mini
for some Lennard-Jones clusters.12,13 However, some of
these methods36 do not do well even for very small size, i.e
N58 or 9. And those algorithms have been applied only t
series of small clusters LJ2 – 19.

Lee and Berne15,29 combined the path integral Mont
Carlo method with quantum and thermal annealing~QTA!
and applied this method successfully to the BLN prote
model. They also successfully found the global minimum
the first hard case LJ38. But their method does not find th
global energy minima for the larger ‘‘hard cases.’’

Using our algorithm, almost all of the lowest-energ
structures of LJ clusters with a size of up toN5100 have
been located. The first hurdle, LJ38, is easily passed; we ca
locate the energy minimum in less than 200 passes w

ter
m
em
e of
l MC
d

TABLE I. Comparison between the MJWA, SA, and our quantum path minimization. The number of tota
sweeps were employed is same for MJWA and SA, but much less for QPM~the total cost for QPM is expresse
in the form of MC sweeps!. The successful trials are those that located the global energy minima.

Molecular
system

Global
minimum

Total MC sweeps Successful trials/total trials

MJWA/SAa QPM MJWAa SAa QPM

LJ17 261.318 43106 4.53103 8/10 1/10 5/5
LJ27 2112.874 83106 4.53104 5/10 1/10 5/5

aReference 14.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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100% success ratio. We even find the global minimum of o
of the second hurdle cluster, LJ75. In QTA, the time-
consuming annealing process is repeated again and agai
does not stop until the ‘‘polymer ring’’ has collapsed into o
classical bead even when most beads of the ‘‘polymer ri
have fallen into the superbasin containing the global m
mum. In our algorithm~QPM!, we can find the energy mini
mum even when onlyone bead is trappednear this mini-
mum. To our knowledge, QPM is the most successful of
quantum global optimization algorithms.

C. Comparison with the genetic algorithm „GA…

It is of interest to compare the QPM to genetic alg
rithms, another widely-used approach for global optimiz
tion. The genetic operations such as mating and mutation
generate children which are dramatically different from th
parents, such that crossing the energy barriers is not r
determining. Thus one advantage of the GA is that the s
tem will never be stuck in some local minimum if the sele
tion standard is appropriate. In our algorithm, the pa
integral simulation increases the possibility of barr
crossing through quantum tunneling effects. In addition,
adopt a ‘‘mutational’’ approach by resetting the coordina
of some beads randomly in the simulation sphere, wh
partly helps the system escape from the local minimum.

Deavenet al.24 studied the LJ clusters using genetic a
gorithm. In this paper, the relaxed energies is used as
criteria of fitness. The first hurdle, LJ38, was passed by this
modified genetic algorithm. However, the minima for LJ69,
LJ75– 78, LJ98 were missed. Using QPM, we not only foun
all the minima reported by Deaven, but we also located
minima for LJ69 and LJ75,78. However, we did not locate th
global minima for LJ76– 77.

By incorporating new mutational operations~twinning
and add-and-etch process!, seeding of the initial parent popu
lation with some structural motifs frequently encountered
addition to random configurations, and incorporating cert
acceleration techniques, the improved genetic algorith26

can pass the first and second hurdles. But the introductio
the seeding means that this method is no longer an unbi
one.

In order to compare the relative performance of GA a
QPM quantitatively, we ran our program for five runs f
each cluster fromN511 to N555, since Niesse27 has re-
ported the best performance of their modified genetic al
rithm for cluster fromN54 to N555. The CPU times re-
quired for our algorithm are given in Fig. 4. From Fig. 1
Ref. 27, it can be seen that the computational expense fo
GA will increase so rapidly when no seed is used that o
the global minima for clusters up toN529 were calculated
However, with QPM, the global minima for large cluste
can be found in reasonable time even if we start from
random configuration without seeding.

It is important to determine the time scale required
QPM as a function of cluster size. Assuming that the CP
time can be expressed in the form of the power law,t}Ng

(N is the cluster size!, we determined thatg53.2 from the
log(t) vs log(N) data in Fig. 4. The comparison of QPM wit
DS-GA and SF-GA is given in Table II. From this table w
Downloaded 29 Dec 2003 to 128.59.114.15. Redistribution subject to A
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find that our algorithm scales asO(N3.2), which means
that our algorithm is more efficient than the seeded vers
of both of these two genetic algorithms as well as the
seeded version at least for the range of clusters used in
study. The seeded genetic algorithm, requires much p
knowledge about the structures of the clusters. Anot
weakness of the seeded version of the GA is that it is
suitable for the ‘‘hard’’ cluster systems, since the gene
information inherited from the cluster of another size will n
be helpful in locating the global minimum, but might, in fac
be detrimental to the task by trapping the system in the lo
minima.

D. Comparison with hypersurface transformations

One of the difficulties encountered in the global optim
zation problem is that the number of local minima grow
exponentially with the size of the cluster. Hypersurfa
deformation-based algorithms17,18 were designed to sur
mount this multiple-minima problem. Through deformatio
of the original potential energy surface~PES!, the number of
minima can be reduced by orders of magnitude. Thus
topological details of the deformed PES become feasible
us to explore. Using the reversing procedure the original
tential is gradually rebuilt. However, the global minimum
the highly deformed PES does not necessarily track bac

FIG. 4. The logarithm of the CPU timet as a function of cluster sizeN.
Each time shown in the graph is the best result of five independent r
Note that theY-axis scale is logarithmic. The CPU time is for one 450 MH
Pentium II processor. The time to calculate the displacement cubesDglobal

andD local is not included.

TABLE II. Best fit parametersg of data in Fig. 4. The value ofg is obtained
through linear regression of log(t) vs log(N). The integers in the bracket
represent the fitting bounds of cluster size. For seeded determin
stochastic genetic algorithm~DS-GA! and space-fixed genetic algorithm
~SF-GA! algorithms, we choose the value of cumulative CPU time as
fined in Ref. 27.

DS-GAa SF-GAa This work

Unseeded 3.9@4–20# 4.4@4–29# 2.0@11–29#
Unseeded ¯ ¯ 3.2@11–55#
Seeded 4.5@4–29# 3.3@4–55# ¯

aReference 27.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that of the original PES when the highly deformed PES
mapped back to the undeformed PES. In the worst circu
stances, the information about the true global energy m
mum will be totally washed away when the deformation
conducted, and there is then only a remote possibility
locate it. Some hypersurface deformation methods h
passed the first hurdle, LJ38. One of the most sophisticate
methods, called self-consistent basin-to-deformed-ba
mapping~SCBDBM!,18 locates all the lowest energy stru
tures of the Lennard-Jones atomic clusters up toN5100 ex-
cept for the clusters LJ75– 77and LJ98. However, it found the
second-to-lowest energy structure for these ‘‘hard cases.
this method they couple the superbasins in the original P
to basins in the highly deformed PES iteratively and then
to locate a group of basins including the true energy m
mum in the original PES. The distance scaling meth
~DSM! is used as the deformation scheme and a short Mo
Carlo minimization search in the near region of the minim
in the original PES is integrated to improve the performan
However, this method is very expensive for large s
Lennard-Jones clusters because of the large number of
minimizations in the local search. For example the locat
of the global minimum of LJ70 required 3.5 h using 10 pro
cessors on the IBM SP2 supercomputer. In our algorith
minimization is also used frequently. But the time for ea
local minimization scales only asN2 after the PIMC sweeps
and the number of such operations is less than in SCBD
due to the quantum tunneling effect. For LJ70, we can find
the minimum in 150 passes with a successful ratio of 4
equivalent to only 2.8 h on a single 450 MHz Pentium
processor.

Basin-hopping is one of the most successful algorith
which can efficiently locate the minimum energy of LJ clu
ters. The transformed energy,Ẽ(X)5min(E(X)), becomes
the energy obtained by minimization from the current co
figuration. Through the elimination of the transition state a
the acceleration effect of the catchment basin transition
the global energy minima for clusters up to LJ110 have been
located. The variant of basin-hopping in favor of the dow
hill moves locates the global minimum of LJ98 for the first
time.21Although the minimum for LJ76 was only found in the
short runs seeded from the LJ75 or LJ77 according to the
literature,20 recent unpublished work shows that all th
minima can be located without any prior knowledge.37 In our
program, we can locate the minimum of LJ75. The outstand-
ing performance of optimized basin-hopping has be
reviewed.38 For example, it can locate the global minimu
of LJ70 within 3 min on one 250 MHz Sun Ultra II processo

Many changes can be implemented to improve the p
formance of the QPM. For example, it is not necessary
minimize the configuration of every time-slice in the ‘‘poly
mer rings’’ since the configurations of two neighboring tim
slices are similar. We can optimize the parameters:P ~the
trotter number!, T ~simulation temperature!, \ ~the parameter
to control the extent of quantization!. Since a large amoun
of local minimizations are used to compare the local mini
and the speed of the minimization subroutines are hig
dependent on specified tolerances~the stop criterion!, we
can use a rough tolerance for rough comparison when
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jecting the high energy structures and then increase
precision.

IV. CONCLUSIONS

We have introduced the quantum path minimizati
~QPM! algorithm and applied it to the problem of determi
ing global energy minima for Lennard-Jones clusters c
taining up to 100 atoms. Using local minimization to loca
the local energy minima and staging path-integral Mo
Carlo to accelerate the crossing of energy barriers, all
known global minima can be reproduced except for LJ76,77

and LJ98. In these cases, our algorithm found the second
lowest energy structures instead. The CPU time require
locate the lowest energy structure scales asO(N3.2) in the
region ofN511– 55.

Considering the computational expense and the ability
locate the global minima of some special cluster sizes,
the ‘‘hard’’ clusters, we have compared the performance
QPM with other popular algorithms. From these compa
sons, we have demonstrated the robustness and the effic
of our new algorithm. We are applying our method to oth
systems, i.e., Morse clusters, which will provide a critic
test.
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