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Quantum path minimization: An efficient method for global optimization
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A new unbiased global optimization approach is proposed, based on quantum staging path integral
Monte Carlo sampling and local minimization of individual imaginary time slices. This algorithm
uses the quantum tunneling effect to speed up the crossing of energy barriers. This method differs
in important ways from previous work on quantum annealing and is able to find all the global
minima of Lennard-Jones clusters of size upNe-100, except forN=76, 77, and 98. The
comparison between this new algorithm and several other classes of algorithms is presented.
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I. INTRODUCTION annealing algorithn{simulated annealingSA),** quantum
annealing**® multicanonical jumping walk annealifg,

Global optimization is a crucial and notoriously difficult quantum thermal annealifd, and smart walking an-
problem in many fields of science and technology. Manynealing®], various potential deformation methotfs* and
global optimization problems are NP-compléties., a deter-  some variants of Genetic Algorithm$:2’
ministic polynomial time solution is believed not to exist Delocalization and tunneling in quantum mechanics is
although this has not been proven rigorously. But it has beethe foundation of quantum annealing. Since quantum delo-
proven that all NP-complete problems are equivalent, whicltalization softens the potential, it increases the probability of
means that we can get deterministic polynomial-time solubarrier-crossing even at low temperatures. In addition, the
tions of other NP-complete problem if we can find one forzero point energy can be forced to be above all the energy
global optimization. Thus, global optimization is very impor- barriers whert: is allowed to be sufficiently large. Quantum
tant from a theoretical perspective. annealing can be achieved experimentdlland theore-

In testing the efficiency of different methods, many stud-tically.*>*3152° Through the approximate solution of the
ies have focused on determining the global energy minimunSchralinger equation in an imaginary tiffeor diffusion
configurations of atomic or molecular clusters. The LennardMonte Carlo'® quantum annealing methods have found the
Jones(LJ) cluster is one the most popular test systems. Fororrect energy minimum for a series of Lennard-Jones clus-
LJzg, L5 77.102-104 @nd Ldg, the location of the global ters fromn=2 to 19. Using Quantum Thermal Annealing
minima is much more difficult since the lowest energy struc-with PIMC, Lee and Berne found the global minimum of
tures of these cases are based, respectively, on the fadelsg (Ref. 19 successfully. But for the specific clusters,
centered-cubicfcc) truncated octahedron, the Marks’ deca- LJgg, LJ;5_78, and Ldg, the task becomes much more diffi-
hedra, and the tetrahedron, while the dominant structurault.
motif is the Mackay icosahedron. The global free energy In this paper, we combine staging path integral Monte
minima and the global potential minima coincide with eachCarlo sampling, which efficiently sample barrier crossing
other only at very low temperature where the dynamics ievents and avoids local trapping, with local minimizatfn,
very slow. Through great effort over several decades, candwhich determines the local energy minimum of Lennard-
date global energy minima have been found for clusters ofones clusters. Instead of annealing to the classical region
size up toN=150. Some deterministic approaches, such a§i—0) and then minimizing to find the global minimum as
the branch and bound method invented by Maranas andone in QTAI® we do not anneal ifi, but instead minimize
Floudas’™* have been applied to LJ clusters; however, itsfor the configuration of every imaginary time slice. This
prohibitive computational cost makes this method impracti-method appears to be robust and efficient. It locates all the
cal for large LJ clusters. A wide spectrum of stochastic glo-global energy minima of LJ clusters of size upNe=100,
bal optimization routines have been invented and applied t§xcept forN=76, 77, 98. The computational details are de-
LJ clusters. The biased meth6d®¥ make use of the physical scribed in Sec. Il. The comparison with other popular algo-
insight for particular problems. By constructing appropriatefithms is presented in Sec. Ill.
candidates for the energy minimum configuration, and
thereby greatly reducing the configuration space to be. METHOD
searched, they can locate almost all the energy minima for _ .
clusters of size up tdl=150. However, it requires substan- A. Staging path integral Monte Carlo
tial knowledge of the system, which is not always available ~ Feynman’s path integral approdtho quantum statisti-
for new systems. Several classes of unbiased methods hawal mechanics allows one to interpret a quantum system as a
been developed, for example the methods based on aassical system of “ring polymers.” This forms the basis for
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path integral Monte Carlo sampling on a classical computerB. Implementation of quantum path minimization
Under theprimitive approximation, the primitive partition (QPM)

H 2,33 H
functior®** can be written as In this paper we introduce and apply the Quantum Path

, 3NP/2 Minimization (QPM) on clusters of atoms interacting accord-
E”m(ﬁ):(m> J dryq--drjg--dryp ing to LJ (12-6) pairwise additive potential,
N 12 6
Pm o o
_ oy 2 Ny — | - =
xeXp( gt 2 N T V(M) =4e 2 r”) (rij ) ©)
P
_ EE vdrhn |, (1) wherer;; , ¢, 28 are the interatomic distance between the
Pi= ith and thejth atoms, the pair equilibrium well depth, and

distance, respectively.

In order to obtain the global minimum, we sample the
effective potential associated with the staging Hamiltonian.
We use global MC moves and staging MC moves to update
{he coordinates. For a global move, all of tRebeads rep-
resenting one particle are randomly displaced within a cube
)(/)f Agioba, SUCh that the acceptance ratio approaches 0.5 ac-

cording to the Metropolis criterion. We also move segments

whereP is the trotter number, antl is the number of the
particles,8=1/(kT), r; is the coordinate of theth particle

in the tth imaginary time slice, an¥({r;};t) is the system
potential of time slicet. This partition function can give a
quite accurate description of quantum systems when the tro
ter number,P, goes to infinity. However, the difference be-
tween the true value and this approximate value is usuall
small whenP is large enough. However, the presence of stiff ~ . . ) - .

harmonic potentials between the adjacent time slices makc%f é; és?gasgsaIrl]:(t)?terareoslﬁrt?ri[lﬁc:izil?o:nls:agjggaﬁcb?l?r\lldesc;r
the simulation of quantum systems very inefficient when theunbound c’ontained optimization, is used gs the minimization
trotter numberP becomes Iarge?;413'£1e staging algorithm Wasdriver '
ELZ%OZTdatotirs;loévgsthézﬁgo?r:eiié prlirr]nsittﬁlaed ;L?rﬁ\ﬁr?]? ?nn?he We noticed that in some of the more difficult LJ clusters,

staging algorithm the “polymer ring” is divided into several Slrigzciizsl_s%ulagidl_jr;, mrgc\)/sets(gr::ﬁ\dctig sflenggnlj-tz?lic\teos?en—
segments and a whole segment is moved at each time Steleér' structure, although this second-to-lowest energy struc-
The staging partition function is 9y ' 9 o

ture is quite easily found. In order to escape from deep local
(ﬁmkwﬁ,) rN”/Z minima, we introduce “mutations,” which reset the coordi-
k=2

Bmwjz !
2 H nates of one particle for each time slice randomly in the
simulation sphere.
The procedure of QPM is outlined as follows:

QP B) =

(1) Starting from a random configuration Wf particles{r;},

N n-1 4 choose an appropriate value &f such that the simula-
X exp{ - ﬁ( > Emwﬂuiysj_,_l— ui,(s-l-l)j+l|2 tion can cross the high-energy barriers frequemlytot-
1=1s=0 ter beads, representing each particle, are then placed

N 1 overlapping one another on these sites. Define one global
+> > Emkwéuiysﬁ_k move andP staging MC moves of all the particles as
one PIMC sweep. Conductn PIMC sweeps to
1 let this system expand to some appropriate size. Then
+ = V({ri(u)};t)) 2) the trial configuration for this system becomes
Pi=1 ({riah - rich- {rie}).
wheren andj are the number of “segments” and the “seg- (2) For every set of coordinates belonging to some specific
ment length,” keepingnj=P, with m=mk(k—1), o, imaginary t!met(t:Q,....,P), we minimize thg energy
:(’Bh)flﬁ, wP:(IBﬁ)fl\/ﬁl The original Cartesian and thus find a minimum. From these minima, we
coordinatesr; , can be recursively expressed as the combi- ~ €hoose the lowest ond;({rj}), where{rj} represents

nation of staging coordinates, 'I[EhoeId coEordinates which have the lowest enekjy Let
I'sj+1= Usj+1 3 (a{) Sjtarting from the trial  configuration,
K—1 1 ({riat--Aridh--{rip)), we run m PIMC sweeps
Msj+k = Usjk Trsj+k+1+ W sivte (3) and thus get the next trial configuration,
({r{s},--.Ar{},...r{p}). Then repeat stef?) to get an-
From Eqg. 2 we can know that the coordinates of the 1) other lowest energ;E?ew({rj’}):Ej’ .

beads between fixed end points can be sampled directly from (b) Compare the two minima:E}‘eW({rj’}) and
Gaussian distribution. Thus the stiff harmonic force is effec-  E({r;}).

tively eliminated. The end pointsg;,;, can be randomly (©) If exp(—B(E"~E{))>¢, where{ is a random
selected to remove the effect caused by the end points being number between 0 and 1, Icﬂj"d= EJ'-‘eW, and let the
kept fixed. coordinates ofr/}, corresponding td]*", to be new
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initial classical configuration. After repeating stép) 200 - - - - |
and step(2), we get another lowest energ({r/}) and | < Primitive PIMC
replaceE[*" with E;. Then go to ste§3h). :

(d) Otherwise, start with the last trial configuration, 150 =
({rist' .- dArig’s...Aript’), go to step(3a). Repeat this
step at mosM times.

(4) If no new minima are found in the ladfl; (M<M)
steps, generate a mutation by resetting the coordinate o§
one particle for each time slice by sampling randomly in ©
the simulation box. Go to ste(3a). 0

mes, t (sec)

100 —

In our simulation, we introduce the soft wall potential,
Voar=ko(ré=r5)@(r—ro), which defines an effective B p——
spherical box to prevent the Lennard-Jones cluster from % 20 40 60 80 100
completely dissociating. The density cannot be taken too Cluster size,N
high as the .pamCI?S then hardly move, nor can it be IC?O IOWFIG. 1. The computational expensi @s a function of cluster sizd. The
Here, the triple point density of the Lennard-Jones fluid Wasime for minimization in this plot is for 40 minimizations, and the time
aimed for. We definen PIMC move and one set of minimi- for the PIMC is for 100 sweeps in primitive PIMC and 24 sweeps in
zations as one pass. The length of a passhould be care- staging PIMC with the trotter numbé&=40. The CPU time is for one 450
fully chosen. If this length is too short, the system will al- MHz Pentium Il processor. The fitting curve is the result of quadratic re-

o . . " ression.
ways fall into the initial basin since the size of the “polymer g
ring” will not grow large enough to penetrate into another
energy basin. If its length is too large, the system will miss

basins that may contain the global minimum. the PIMC sweeps, but it appears that the expense for mini-
mization increases slightly more quickly than that for primi-

tive PIMC sweep when the cluster size is large. We believe
that this is because the system will be close to the local
minima when we finish the PIMC sweeps, thus the optimizer
Itis very difficult to compare the relative performance of can locate the local minimum after only a few iterations. The

different global optimization methods systematically sinceStaging path-integral is about eight times as fast as the primi-

many authors only gave their final result without describingt',ve ,:allgorlthm n ach|evmg the “same 'size” Of _the “pplymer
the computational expense, and many authors have appli&pg (the;\, Spepc'al size 2f the po_Iymer nr;’g is defined as
their methods only to small cluster sizes or to some specidil/NP) Zi=1Z(-1|ri —Til°, wherer;=1/P=._r;;), as can

cases. Given the exponentially increasing number of locaP® S€en from Fig. 1. The typical evolution of the system
minima asN becomes large, and the small energy difference§N€rgy with the time is shown in Fig. 2. To illustrate the

between these minima, LJ clusters can be used as a bendgrformance of our new algorithm, we show the pass number
mark system for the evaluation of different algorithms. LJ needed to achieve the optimal structure for LJ clusters in the

clusters ranging in size fromi=10 to 150 contain the spe- 'an9€ of 11-55in Fig. 3. We can locate the global minima

cial cases, e.9., bd, LI;5_77102-104 LJog, Whose minima
are among the most difficult to determine. This is because
the lowest energy structures of these specific clusters are g,
based, respectively, on the face-centered-cyfic) trun-
cated octahedron, the Marks’ decahedra, and the tetrahedro
while the dominant structural motif is the Mackay icosahe-
dron. Following a suggestion of Walésit is reasonable to
consider the location of the energy minimum of ;4.J
LJ75_77102-104 LJgg a@s the first, second, and third “hurdles,”
respectively. For those methods where explicit computationa®
expense has not been given, we use success or failure ig-
determining the first, second and third hurdles correctly as
the criteria for comparison between methods. In the mean-
time, we present the relative computational cost of minimi-
zations and Monte Carlo sweeps because we want to com
pare methods where minimization is applied to methods -
where minimization is not applied. A comparison of the rela-
tive computational expense of the minimizations and the _ _
PIMC moves is summarized in Fig. 1. From Fig. 1, we find FIG. 2. The total energy vs_the pass number fagsLI he abrupt increase in

. . . nergy is caused by mutations. We see that the system energy is gradually
that the asymptotic behavior of the average computationglecreased. When this system is stuck in one local energy minimum, the
cost of the minimization is of ordé¥?, i.e., the same cost as mutation will jump the system to another point in phase space.

Ill. RESULTS AND COMPARISON

-490 -

duced unit)

| . | L | L ] .
100 200 300 400 500

Pass Number
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W y T y ' eight trials got stuck in the second lowest energy minimum.
For MJWA, eight out of ten trials found the global minimum,
which is eight times better than SA.

We applied our QPM algorithm independently five times
to LJ;; at the condition ofT=1.0,P=40, #=1.0. Our
method successfully located the global minimum with 100%
assurance within one pass. In each iteration, one p&&s
minimizations and 24 staging PIMC swegpsas made. That
means that the global minimum was determined within a
time approximately corresponding to 4500 MC sweeps since
the time for one primitive PIMC sweep equals that FoMC
sweeps and the time for 40 minimizations approximately
oy L equals that for 100 primitive PIMC sweeps. QPM is 880
0 10 20 30 40 50 times more efficient than MJWA and 7000 times more effi-

Cluster size, N cient than SA for the global optimization of |
FIG. 3. The pass number needed to locate the global minimum vs the cluster Another dImFUIt case 1S _th_e 27-atom Lennard-Jones
size. For every cluster size, we conduct five independent runs from randolUSter (Ld7), which has two similar low energy states, with
configurations. The upper dash and lower dash and the point between theenergiesE,;= —112.874 ande,= —112.826. Even after the
on each vertical bar represent the Iargest., §ma||est, and the average value|gfngth of the simulation is increased to 8000000 MC
time steps needed to reach the global minimum. sweeps, only one of ten independent trials located the true
global minimum for SA, and five out of ten for MJWK.
However, in our algorithm, five out of five independent trials
locate the global minimum within 10 passes under the same
condition as Lg;, which corresponds to 45000 MC sweeps.

180

160 -

Pass Number
8
T
P I I (I (I NI I I S

3

for LJ;1_s5in less than 200 passésonsisting of 40 minimi-
zations and 24 staging PIMC sweeps hesith 100% cer-

tainty. This means our algorithm is 177 times more efficient than

MJWA and 885 times more efficient than SA for the cluster
A. Comparison with some methods based on LJ,;. Comparison between the MIJWA, SA, and QPM is
annealing summarized in Table I.

If the annealing rate in simulated annealing is slow
enough, finding the global minimum is assured, but this isB c . ith ; lobal optimizati
often not feasible. One shortcoming of the standard simu-" omparison with quantum giobal optimization
lated annealing approach, and many of its variants arises Through an approximate solution of the Sadtfirger
from the slow relaxation rate at low temperatures. Anotherequation in imaginary timé= or diffusion Monte Carld?
shortcoming is that annealing methods spend a large amouabme algorithms can find the correct global energy minima
of time in the region near local minima. One powerful vari- for some Lennard-Jones clustéfs® However, some of
ant, named multicanonical jump walking annealingthese methodS do not do well even for very small size, i.e.,
(MJWA),** couples classical simulated annealing with mul-N=8 or 9. And those algorithms have been applied only to a
ticanonical sampling. In MJWA, the canonical Monte Carlo series of small clusters LJqg.
drives the system towards the local minima and the multica- Lee and Bern®?° combined the path integral Monte
nonical sampling surmounts the energy barriers. Unlike it€Carlo method with quantum and thermal annealiQrA)
ancestors, this algorithm is quite successfully when applie@nd applied this method successfully to the BLN protein
to LJ_30. Because Ly} has three low energy structures model. They also successfully found the global minimum of
with very similar geometries and close potential energieshe first hard case Lg. But their method does not find the
(E;=—-61.318,E,=—61.307,E3=—61.297), it presents a global energy minima for the larger “hard cases.”
challenge for global optimization methods. Using the opti-  Using our algorithm, almost all of the lowest-energy
mized schedule, a total of 4000000 MC sweeps is used istructures of LJ clusters with a size of up kb=100 have
each of ten trials. Only one out of ten trials located the exacbeen located. The first hurdle, dgJ is easily passed; we can
global minimum for simulated annealing, while the otherlocate the energy minimum in less than 200 passes with

TABLE |. Comparison between the MJWA, SA, and our quantum path minimization. The number of total MC
sweeps were employed is same for MJWA and SA, but much less for @#Motal cost for QPM is expressed
in the form of MC sweeps The successful trials are those that located the global energy minima.

Total MC sweeps Successful trials/total trials

Molecular Global
system minimum MJIWA/SA? QPM MJIWA? SA? QPM
LJ;; —61.318 4 10° 4.5x10° 8/10 1/10 5/5
(I —112.874 & 10° 4.5x 104 5/10 1/10 5/5

®Reference 14.
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100% success ratio. We even find the global minimum of one 25 L e e e
of the second hurdle cluster, 45J In QTA, the time- L . .
consuming annealing process is repeated again and againar | . . ..-.'.. o |
does not stop until the “polymer ring” has collapsed into one * . . ° .
classical bead even when most beads of the “polymer ring"sz | o o ° 7
have fallen into the superbasin containing the global mini-£ 1sf- . . T
mum. In our algorithm(QPM), we can find the energy mini- & * _
mum even when onlpne bead is trappedear this mini- £ L . o* |
mum. To our knowledge, QPM is the most successful of theg o ®
guantum global optimization algorithms. r .,.°' 7
05 Sad —
C. Comparison with the genetic algorithm (GA) L .." _
It is of interest to compare the QPM to genetic algo- g -

rithms, another widely-used approach for global optimiza-
tion. The genetic operations such as mating and mutation can
generate children which are dramatically different from theirFiG. 4. The logarithm of the CPU timeas a function of cluster sizH.
parents, such that crossing the energy barriers is not rat&ach time shown in the graph is the best result of five independent runs.
determining. Thus one advantage of the GA is that the Sysglote_that they-axis scale is nganthmlc. The CPU time is for one 450 MHz
. . .. . entium Il processor. The time to calculate the displacement cpgs,

tem will never be stuck in some local minimum if the selec- 3,44, is not included.
tion standard is appropriate. In our algorithm, the path-
integral simulation increases the possibility of barrier
crossing through quantum tunneling effects. In addition, wefind that our algorithm scales a®(N*?%, which means
adopt a “mutational” approach by resetting the coordinateghat our algorithm is more efficient than the seeded version
of some beads randomly in the simulation sphere, whictof both of these two genetic algorithms as well as the un-
partly helps the system escape from the local minimum. seeded version at least for the range of clusters used in our

Deavenet al?* studied the LJ clusters using genetic al- study. The seeded genetic algorithm, requires much prior
gorithm. In this paper, the relaxed energies is used as thgnowledge about the structures of the clusters. Another
criteria of fithess. The first hurdle, gl was passed by this weakness of the seeded version of the GA is that it is not
modified genetic algorithm. However, the minima forg$,J  suitable for the “hard” cluster systems, since the genetic
LJs5_7g, LJgg were missed. Using QPM, we not only found information inherited from the cluster of another size will not
all the minima reported by Deaven, but we also located thde helpful in locating the global minimum, but might, in fact,
minima for L&y and LJs 7. However, we did not locate the be detrimental to the task by trapping the system in the local
global minima for LJg_77. minima.

By incorporating new mutational operatiofisvinning
and add-and-etch processeeding of the initial parent popu- D. Comparison with hypersurface transformations

lation with some structural motifs frequently encountered in One of the difficulties encountered in the global optimi-
addition to random configurations, and incorporating Certairkation problem is that the number of local minima grows
acceleration techniques, the improved genetic algofithm exponentially with the size of the cluster. Hypersurface

can pass the first and second hurdles. But the introduction Q:feformation-based algorithiis® were designed to sur-
the seeding means that this method is no longer an unb'as‘?]qount this multiple-minima problem. Through deformations
one. _ of the original potential energy surfa@ES, the number of

In order to compare the relative performance of GA andyinima can be reduced by orders of magnitude. Thus the
QPM quantltatlvely,_we ran o_ur program for ;'é’e runs for topological details of the deformed PES become feasible for
each cluster fromN=11 to N=55, since Niess€ has re- 545 explore. Using the reversing procedure the original po-
ported the best performance of their modified genetic algogenia| is gradually rebuilt. However, the global minimum of

rithm for cluster fromN=4 to N=55. The CPU times re- o nhighly deformed PES does not necessarily track back to
quired for our algorithm are given in Fig. 4. From Fig. 1 in

Ref. 27, it can be seen that the computational expense for the
GA will increase so rapidly when no seed is used that onlyTABLE Il. Best fit parametery of data in Fig. 4. The value of is obtained
the global minima for clusters up f§=29 were calculated. through linear re;g_ression of lag(vs log(N). 'I_'he integers in the brackgt_s _

. .. represent the fitting bounds of cluster size. For seeded deterministic/
However, with QPM, the global minima for large clusters stochastic genetic algorithfDS-GA) and space-fixed genetic algorithm
can be found in reasonable time even if we start from gsr-GA) algorithms, we choose the value of cumulative CPU time as de-
random configuration without seeding. fined in Ref. 27.

It is important to determine the time scale required for

Cluster size,N

. . . DS-GA? SF-GA Thi k
QPM as a function of cluster size. Assuming that the CPU- s wor
time can be expressed in the form of the power lewN? Unseeded 3[@-20 4.44-29 2-2[[11—23
; ; ; — Unseeded 3.711-5
(N is the cluster size we determined thay=3.2 from the Seoded AB-29 34455

log(t) vs log(N) data in Fig. 4. The comparison of QPM with
DS-GA and SF-GA is given in Table Il. From this table we Reference 27.
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that of the original PES when the highly deformed PES isjecting the high energy structures and then increase the
mapped back to the undeformed PES. In the worst circumprecision.

stances, the information about the true global energy mini-

mum will be totally was_hed away when the deformat?gn IS|\/. CONCLUSIONS

conducted, and there is then only a remote possibility to

locate it. Some hypersurface deformation methods have We have introduced the quantum path minimization
passed the first hurdle, g1 One of the most sophisticated (QPM) algorithm and applied it to the problem of determin-
methods, called self-consistent basin-to-deformed-basilf!d global energy minima for Lennard-Jones clusters con-
mapping (SCBDBM),' locates all the lowest energy struc- taining up to 100 atoms. Using local minimization to locate
tures of the Lennard-Jones atomic clusters up 0100 ex-  the local energy minima and staging path-integral Monte
cept for the clusters Ld_,;and Ldg. However, it found the Carlo to accelerate the crossing of energy barriers, all the
second-to-lowest energy structure for these “hard cases.” Iffnown global minima can be reproduced except fofgld

this method they couple the superbasins in the original PEGNd Ls. In these cases, our algorithm found the second-to-
to basins in the highly deformed PES iteratively and then tryOWest energy structures instead. The CPU time required to
to locate a group of basins including the true energy minilocate the lowest energy structure scalesOgsI*) in the

mum in the original PES. The distance scaling method®gion ofN=11-55. . 3
(DSM) is used as the deformation scheme and a short Monte  Considering the computational expense and the ability to
Carlo minimization search in the near region of the minimalocate the global minima of some special cluster sizes, i.e.,
in the original PES is integrated to improve the performanceth€ “hard” clusters, we have compared the performance of
However, this method is very expensive for large size@PM with other popular algorithms. From these compari-
Lennard-Jones clusters because of the large number of loc&pnS: We have demonstrated the robustness and the efficiency
minimizations in the local search. For example the locatior’ 0ur new algorithm. We are applying our method to other
of the global minimum of L} required 3.5 h using 10 pro- systems, i.e., Morse clusters, which will provide a critical
cessors on the IBM SP2 supercomputer. In our aIgorithmEeSt'

minimization is also used frequently. But the time for each

local minimization scales only as? after the PIMC sweeps ACKNOWLEDGMENTS
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