TRAPPING AND DAMPING OF MOLECULAR EXCITON STATES

[with a similar equation for /@1 ()] where £’ is given by
E()=Z"1B (" )[1—exp(—ha'/RT) ],

BW)= [ et o (P (4, E)
[1]

Xexp(—E/kT). (B7)
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The Hamiltonian may be written now as
H=1hwo+1{10¢, +10%_} 4+ H,O® (B8)

in terms of the uncoupled loss field operators. From the
equations of motion of the Pauli operators—found from
(B8)—one can find the equations (26) and (27).
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The theory of the dispersion of the refractive-index anisotropy induced in nonpolar fluids by external
electric fields is extended to the case of chemically reacting fluids. Explicit expressions for the induced
anisotropy are derived for a model nonpolar fluid with (1) no pair correlations, (2) rotational diffusion
dynamics, and (3) a simple two-state (or species) chemical equilibrium. Limiting cases of the results

are discussed.

I. INTRODUCTION

Nonlinear optical techniques have proved useful for
studying the physics of fluids, but as yet few chemical
applications have arisen from this work.»? In this
article, we derive relations between chemical reaction
rate constants and a phenomenon whose measurement
in the high-frequency range has become possible be-
cause of the development of nonlinear optics—the
dispersion of the refractive-index anisotropy induced
in fluids by external electric fields. Of course, mea-
surements of refractive index anisotropies have been
routinely performed for many years at low or static
frequencies (0 to about 10° Hz), but the newer tech-
niques allow the higher end of this range to be ex-
tended to optical frequencies.?

In a previous article, general relations for the dis-
persion of the refractive-index anisotropy of a one-
component system have been obtained in terms of
molecular rotational correlation functions.? By suitable
arguments, the results were then applied to a dilute
solution in the rotational diffusion approximation.
In a separate article the effect of chemical reaction
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rates on the depolarized light scattering spectrum was
calculated in the same approximation.? In the present
article, we modify the correlation functions derived
for the light-scattering theory and then apply them
to the refractive-index calculation.

II. THEORY

It was shown in I that for a nonpolar fluid the
difference between the refractive indices induced in
directions parallel to the z and x axes, respectively,
#n,—#z, by an external electric field of frequency w,
is related to the fluid density, p, the fluid refractive
index in the absence of the field, #,, and the induced
polarization anisotropy, (= (w, w.)), by the relation

7:(w, we) — 1z (w, we)
=2mp[ (nt(w) +2)%/no(w) ] {m (@, @) ). (1)

The induced anisotropy may be expressed in terms
of the basic correlation function of this article,

(AB)m(0) )o, by
(m (@, we) y= (2RT) (4 (0)(0) Yo

+ (2kT)1Re {epriwetE(A (0)7(0) )o

— i, f” AO) (D) exp(—2iwet)dt}. 2)

4B. J. Berne and R. Pecora, J. Chem. Phys. 50, 783 (1969);
51, 475 (1969), referred to as IT in the text.
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The correlation function may, in turn, be expressed
in terms of molecular polarizabilities ai; in a labora-
tory fixed coordinate system and the amplitude of the
local field on a molecule, Fy,

(A0 (1) Y= (2N il [ @(1))

2,j=

— @ (2(1) ) Ja® (2(0) ):FoFo)  (3)

where N is the number of molecules in the fluid,
the zero subscript on the brackets denotes an average
over an equilibrium ensemble, and Q(f) represents the
Euler orientation angles of a molecule at time £

The polarizabilities in the laboratory system above
may be expressed in terms of those in a molecule-
fixed system by using the transformation law between
the spherical components of the polarizability tensor
a, in the two systems.

(279 (Q) = (81(2/5)1/2 Z] Dn,n’2(9)aﬂ' (4)

where the D.,’ are the Wigner rotation matrices
and Q=a, 8, v represents the Euler angles through
which the laboratory coordinate system must be ro-
tated in order to coincide with the molecule-fixed
system® and

a_s=3 (s ayy) — oy
Q= O™ iazy
o= 2/6Y cts— b atzrt-oy) ]
o= — {(ay)*
= (a2)*. (3)

The correlation function {4 (0)=x(f) ) was evaluated
in II for systems with (1) no correlations between
different molecules [terms with ¢#j=0 in Eq. (3)],
(2) the rotational motion obeying the rotational dif-
fusion equation. This theory should apply to solutes
in a dilute solution whose solvent molecules are op-
tically isotropic. We now extend this theory to the
case where, in addition, the molecule may transform
between two states with, in general, different polar-
izabilities and diffusion coefficients. When both the
polarizabilities and rotational diffusion coefficients of
the two species are equal, the rate constant for the
transformation does not, as we show below, affect
the dispersion of the refractive index anisotropy.

For the two-state system we obtain by the same
reasoning as used in II

(A4(0)7 (1) do=C ilcam 7)) (6)

a,y=

5 The conventions for the Dk’ matrices (except for the
normalization condition used here) and the Euler angles are
those given by K. A. Valiev and L. D. Eskin, Opt. Spektrosk.
12, 758 (1962) [Opt. Spectrosc. 12, 429 (1962) ]; and K. A.
Valiev, ¢bid. 13, 505 (1962) [13, 282 (1962) J.
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where the subscript ye indicates that the average is
to be taken with the molecule in the state a at time
zero and in the state vy at time £ The equilibrium
concentration of species a is Ca=(N./V) and the
total concentration is C=[ (N,+N:)/V]. Equation (6)
does not yet include the stated assumptions about
the absence of pair correlations and the dynamics of
rotation and chemical transformation.

To evaluate the average in Eq. (6), we first cal-
culate the distribution function for molecular rotation
and chemical transformation using the assumptions
stated above. Let P,(%, f) be the probability that the
molecule is in state a with orientation @ at time /.
It was shown in Appendix A of IT that P.(Q, ) obeys
the coupled differential equations

[8P.(Q, ) /0t]=6:V P (2, )

+ k1 Py(Q, £) — bnPi(S, 1)
[0P,(Q, 1) /06]=6:Y o2 Po(S, 1)

FEaPUQ, ) — kuPa(2, 1), (7)

where 0, is the rotational diffusion coefficient of
species a and k., is the rate constant which describes
the disappearance of molecules from the state y. We
emphasize that there is no reference to molecular
translational diffusion in Eqs. (7). Although trans-
lational diffusion is important in light scattering, it
is clear from Eq. (3) that it does not explicitly affect
the refractive index anisotropy. We have also assumed
for simplicity in Egs. (7) that the rotational motion
is isotropic.

Another important assumption in Egs. (7) is that
when one species is converted into the other it pre-
serves the same orientation in the new state as it
had in the old. When this assumption is not valid
Egs. (7) must be modified. We do not treat this
case further here.

The functions needed are the solutions of Egs. (7)
subject to the boundary conditions

PralQ, 0) =8,a8(2—). (8)

We see that the solution satisfying this boundary
condition may be interpreted as the probability den-
sity that a molecule which is in state a with orienta-
tion Q, at time O is in state @ with orientation @ at
time £ P,a(Q, Qo {) may be expanded in terms of
Wigner rotation matrices with coefficients independent
of the €, Qy,

P’Yﬂ (Q, Q07 t) =J KZ B’yaJ(DDKMJ*(Q) DKMJ(QO) . (9)

Then
(A(0)7 () )re
= (87!'2)“1 f &> f deO[azz(Q; 'Y)_azz(Q; ’Y):'

a(Q, @) :FoFoPya (2, U, £).  (10)
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Solving Egs. (7) by Laplace transformation, using
the expansion Eq. (9), and Eq. (5), we obtain
{A(0)7(8) Yya= (Fo2/10) [ cos?d— sin?6 cos’¢ ]

X 2 an¥(@)an(we) Bya®(8), (11)

where 8, ¢ are the polar and azimuthal angles, re-
spectively, describing the orientation of the external
field in the laboratory coordinate system and the
Laplace transforms of the B,.®(f) are given by

Bu®(s) =[(s+60:+ k) /A(s) ]
B,® (s) =[ka/A(s) ]
Bu® (s) =[ku/A(s)]

By (5) =[ (s46014ku) /A(5) ], (12)

where
A (S) = ES—I— 662+ klz:l ES+ 601+ k21]_ k21k12.

Substituting Eqs. (12), (11), and (6) into Eq. (3)
and setting S=2iw gives the induced anisotropy,

(m (0, we) )= (F*/20CkT) [cos®l— sin’f cos?p |
>< {Z Z Caan" (O)) an"* (we>5'ya

Ya n

+ Refexp(2iwd)[>° 3 Cortn” (@) ™ (w,)

Y,a n

X Bay—2iweBya® (s=2i0))]}}. (13)

The simplest case arises when A=rkptk: >0, 6.
Equation (13) in this case reduces to the analog of
Eq. (57) of 1,

F 2
(m{w, w,.) )= % COkT [cos?0— sin cos?¢ |
cos (2wd—yyp)
X {A-{-B —_[(Zw/k)2+1]1/2 ) for w26y, 0,
where

A= C1 E Cln(l) (w)an(l)*(we) +C2 Z an(2) (w)aﬂ(z)*<we)
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and

B=G{2 an® (@) an®*(we) [1—(C/C) ]
. Z a.® (@) 2, @*(w.) (Co/C) }
+Csf Z 4 ® (@) 2, @*(we) [1— (Co/C) ]
- Z an® (@) V*(we) (C1/C) }. (14)

Note that when o, (w)=0,%(w.) and @,?(w,) =
@, (w), B=0 and all dispersion effects disappear as
we expect on physical grounds.

Equation (3) reduces to Eq. (57) of I when it is
assumed that 6;=6,=6¢ and the polarizability anisot-
ropies of the two species are equal, oY=, P=q,.
In this case the birefringence is, of course, not af-
fected by the chemical rate constant and the system
behaves, as far as birefringence is concerned, as one
species with diffusion coefficient 6 and polarizability
anisotropies ay.

When A=0, Eq. (13) reduces to the equation for
the birefringence of two independent species each with
its own 6, and a,* Each of the species contributes
to the total anisotropy in proportion to its fractional
equilibrium concentration.

III. SUMMARY AND DISCUSSION

Equation (13) when multiplied by the constants in
Eq. (1) (setting p=C) gives the refractive index
anisotropy induced by the external electric field. The
most serious limitation of this expression is that it
applied only to species with no permanent dipole
moments or else to frequencies high enough to ex-
clude any molecular orientation by coupling of the
electric field to the molecular permanent dipole mo-
ments, )

The simplest case that still retains rate constant
information in the dispersion equation is that in which
the reaction rate is much faster than the rotational
diffusion rates. This condition is probably difficult to
satisfy for small molecules in solution but might be
satisfied in certain cases for reactions of macromole-
cules in solution. Such reactions must, of course, be
accompanied by a change in the spherical polarizabil-
ity components for any refractive index dispersion
effects to be observed under the stated conditions.
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