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Depolarized light scattering from monatomic fluids *
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Computer experiments on dense argon are used to evaluate the depolarized spectrum of scattered light.
Certain features of the spectrum can be associated with the dynamics of atomic motions in the fluid. The
calculations show that the uncorrelated binary collision picture is inadquate since the major time
dependence in the variation of the polarizability of the system comes from the correlated reorientation of

pairs.

Consider what happens during an atomic collision.
At large internuclear distances the electrons are spher-
ically distributed about the atomic centers, whereas
at small internuclear distances, the electrons are dis-
tributed with axial symmetry about the line drawn
between the atomic centers. This axial distribution of
electrons gives rise to an axially symmetric polariza-
bility tensor, and thereby to a depolarized component
in the light scattering spectrum.! It is the purpose of
this note to explore the underlying molecular dynamics
which contributes to this collision-induced light scatter-
ing in dense fluids.

The traceless part of the polarizability tensor of two
interacting closed shell atoms B(R) is axially symmetric
about the separation R with the explicit form

B(R) =B(R) {RR—11},

where R is a unit vector along R, | is the unit tensor,
and B(R)=oy(R)—as(R) is called the optical ani-
sotropy, where | (R) and av(R) are, respectively, the
components of the full polarizability tensor parallel and
perpendicular to R. Although the precise dependence
of B(R) on R is unknown,? it can be shown that
B(R)—R3 as R—w»,

In a dilute gas where only binary collisions are im-
portant, the spectrum of depolarized scattering is given
by the time Fourier transform of the correlation func-
tion

C(t)=(8(0)8(t) PLR(0)-R(£) 1), (1)

where Py(x) is the second order Legendre polynomial,
B = B[R(t)] is the optical anisotropy at time ¢ of the
colliding pair, (---) indicates_the proper equilibrium
ensemble average, and R(O) R(t) is the projection of
the interatomic unit vector at ¢ on its initial orientation.

In dense gases and liquids the situation is more
complicated. It has been suggested® that even in the
high density region the characteristics of depolarized

light scattering can be understood in terms of a binary
collision picture corresponding to Eq. (1) above. How-
ever, our purpose here is to study the behavior of
correlated binary collisions as well as to investigate the
validity of Eq. (1) in describing depolarized light scat-
tering from dense systems. It is assumed that binary
interactions still dominate in dense systems, but that
the binary collisions are not independent. In this case
the spectrum is given by the transform of*

Cl(t) = <Z Z B[le(()) ]B[Rty(t) ]P2[le(0) *

=7 l#m

Ri;() ),
(2)

where (ij) and (Im) designate pairs of atoms. Despite
the fact that only two body contributions to the polar-
izability tensor are considered, Cy(¢) contains two, three,
and four body correlations. It is almost stating the
obvious to say that in dense systems the collision in-
duced polarizability may contain three, four, and many
atom contributions and cannot be ascribed entirely to
two body interactions as in Eq. (2). Nevertheless, we
must understand the nature of the two body terms
before we go on to discuss the many body terms which
have not yet been explicitly considered (except in the
simple dipole-induced-dipole limit).

Although we believe that a strictly two body model
of the polarizability anisotropy is inadequate in dense
systems, we believe that a study of Eq. (2) would be
useful in understanding the phenomenon of the colli-
sion-induced spectrum. To go beyond the two body
theory would require the enormously complicated quan-
tum mechanical calculation of the many body polar-
izability.

In this paper we present a molecular dynamics cal-
culation® of Ci(f) for several suggested models of 3(R)
for argon. The argon atoms are assumed to interact
with a Lennard-Jones (12-6) potential with potential
parameters (e/k=119.9°K, o=3.405 A). Two thermo-
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dynamic states S;= (765 amagat, 88.5°K) and Sp=
(1000 amagat, 300°K) were studied. Fleury et al.° have
shown that the measured depolarized spectrum of argon
can be fitted to a two-branch exponential spectrum

I(w) =1Io exp(—w/A1)
=TIod (w) exp(—w/Ay) (3)

where A (wo) =exp[ (A '— A )wo] and where A, Ag,
wo are parameters which depend on the thermodynamic
state. The parameters corresponding to the two states
in our computer study are

Sl(A1= Ay=21 cm“‘, wp= 0) ,
Sﬁ(A1= 29.5 cm‘l, Ag= 48.3 cm“, W= 42 cm).

O)Swo

wao,

Equation (3) is easily Fourier inverted to find the
experimental time correlation function.

Several models have been suggested!’ for 8(R), but
its precise form is unknown. In order to ascertain the
sensitivity of the computed spectrum to the form of
B(R) we have computed the autocorrelation function
C(?) for state S; for the models indicated in Curves b
and d of Fig. 1. Although we have not included error
bars, the errors can be estimated on the basis of the
analysis of Zwanzig and Ailawadi.® This analysis shows
that the differences between these models can be ascer-
tained from the decay.

In addition to determining C;(¢), we have also deter-
mined the following two functions:

Co(t) = (X 2 B[R:;(0) IB[Rm (1) 1),

25 I#m
C(t)=(X T P[Ri;(0)-Rin]) (4
=] I#m
5
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F16. 1. Normalized time correlation functions for argon in
thermodynamic state S:(1000 amagat, 300°K). a: Distinct cor-
relation function, Eq. (1), for 8(x) =43—0.473x793. b: Total
correlation function Ci(¢f), Eq. (2), for B(x)=x"8—28.32 X
exp(—2.72x). c: Experimental correlation function, with A1=29.5
cm™1, Ap=48.3 cm™, wp=42.0 cm™!. d: Total correlation function
Ci(t), Eq. (2), for B(x) =x3—0.4732793. e: Time correlation
function ¢(t), Eq. (6).
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F1c. 2. Comparison between the different normalized time cor-
relation functions Ci(#), Ci(f), Cs(t) for the indicated models
B(x) for argon in thermodynamic state S;(765 amagat, 88.5°K).
In this figure Ci(?) is given by O, Ci(¢) is given by @, and Gs(#)
is given by |}

for different models of 8(R). These functions are pre-
sented in Fig. 2. Ci(#) depends on the relative radial
motion of pairs through 3(R) and on the reorientational
motion of pairs through the Legendre polynomials,
whereas C,(f) depends only on the radial motion, and
C;(t) depends only on the reorientations. From Fig, 2
it should be noted that Cz(¢) decays much more slowly
than either Ci(f) or Ci(f). Moreover, C1(¢) and C;(¢)
closely resemble each other. This seems to be true for
all models of B(R) studied. It can be concluded that
the time scale for the decay of Ci(¢) in dense systems
is determined by the correlated reorientations of pairs.

To ascertain what the effects of correlated collisions
were we compared the foregoing three functions to
analogous functions reflecting only independent pair
correlations [as in Eq. (1)]. These functions reflect
pure pair correlations and do not reflect correlated colli-
sions. For all models of B{R) we found that the inde-
pendent pair theory [based on Eq. (1)] does not agree
at all with the full calculation. In curves a and d of
Fig. 1 we present a comparison of Eq. (2) for state S..
It can be concluded that correlated collisions are im-
portant and, moreover, calculations of liquid state
spectra based only on independent binary collisions
and/or head-on collisions should be avoided. Any cor-
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respondence between such theories and experiment is
purely fortuitous.

Two models have been suggested for 8(R): one by
Levine and Birnbaum’:

B(x) =[x3—0.473x793] (5a)
and one by McTague ef al.%:
B(x) =[x*—28.38 exp(~—2.72x) ], (5b)

where x=R/o and 8 is in reduced units. These forms
are based on fitting assumed functional forms of 8(R)
to the observed moments of the depolarized spectra.
In curves b, ¢, and d of Fig. 1 we present a comparison
between these two models and experiment for S,. The
difference between computer and real experiments may
be due either to the inadequacy of the models or the
failure of a strictly two body theory to account for the
phenomenon.

The collision-induced spectrum seems to be related
to the density fluctuations in a fluid that destroy
spherical symmetry around given atoms. Since the
force on a particle is zero if the distribution around it

*Work performed in part under the auspices of the U. S.
Atomic Energy Commission.
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'See, for example, J. P. McTague and G. Birnbaum, Phys. Rev.
A 3,1376 (1971).

*There have been several attempts to compute B(R) for some
gases. See, for example, D. B. DuPré and J. P. McTague, J.
Chem. Phys. 30, 2024 (1969), and V. McKoy (private
communication).
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is spherical, it might be thought that the induced
spectrum is related to

v ()= (PLF(0)-F(1)]), (6)

where ¥ is a unit vector specifying the orientation of a
given force on a typical atom. This idea has surfaced
many times in connection with collision-induced spec-
troscopy. From curves e, b, and d of Fig. 1 we see that
there is no similarity between ¢(¢) and Cy(¢), thus
negating this idea.

We have not yet found a model consistent with all of
our results. We present these results in the hope that
they will stimulate a more active search for a workable
model.
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