Molecular dynamics of one-dimensional hard rods*
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The validity of computer experiments is tested by comparisons between exact one-dimensional
hard-rod calculations and molecular dynamics experiments with 1000 hard rods. The computer
results are shown to agree with exact values of the pressure, pair-correlation function, velocity

autocorrelation function, and the diffusion coefficient.

INTRODUCTION

While the basic formalism of statistical mechanics has
been extended to many areas, the number of problems
which can be solved exactly, remains small. Yet, a
number of seemingly intractable problems of the three-
dimensional world become amenable to analysis when
recast in one dimension,! One-dimensional investiga~
tions can be used as a testing ground for approximations.

The development of computers has provided an altern-
ative method for attacking the N-body problem. Starting
with an interaction potential and an initial configuration,
Newton’s equations of motion are integrated to generate
a trajectory in phase space. Equilibrium and time cor-
relation functions are then determined by time-averaging
properties over this trajectory, Computer experiments
are done on finite systems, albeit with periodic boundary
conditions. Moreover, the averaging is done over finite
times, rather than the infinite times required by statis-
tical mechanics. In this paper we investigate these lim-
itations by comparing computer experiments on a one-
dimensional system of hard rods with the exact analyti-

COMPARISON OF “THEORY"” AND “EXPERIMENT"
The hard rod (HR) potential has the form

Ulk)=o x<1
=0 x>1 (1)

where the positions are measured in units of the hard
rod length ¢. The equations of motion for a finite sys-
tem consisting of N=1000 rods are solved by the method
described in Appendix A, The number density of the
one~dimensional fluid is 0. 935 in reduced units or
0.2746 A,

In this section we examine a number of properties in
order to test the reliability of the machine calculations.

One of the important properties of a liquid is its pair
correlation function g(R). This function can be obtained
exactly for a periodic one-dimensional system of hard
rods in the length L. The derivation of g(R) is given in

cal solution of this system. Appendix B. It is found that
{
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where I=L/N, o is the hard rod diameter, and the sum~
mation is carried out up to terms for which R — (N, + 1)
xo>0. g(R)has been determined on the computer for
N=1000 from the HR trajectory data by a direct counting
method., To compute g(R), we count the number of rods
in the interval AR at a distance +R from the reference
rod. g(R) was averaged over 800 time origins of data
as well as 1000 particles. The AR spdcing was taken as
0.01¢0. A comparison between the machine calculation
and Eq. (2) for the same mesh size is displayed in

Fig. 1. The agreement is excellent.

Equation (2) gives the value of g(R) at contact g(o),

_-1/N)
g0V =0 N1 - ®)

For our conditions, this expressiongives g(o)=15. 37 but
for a spacing of AR=0.01¢ the machine results gave g(o)
=13.18. Since g(R)isverynarrow around 1o (see Fig.1) it
isnecessary to recompute g(R)withafine meshinorderto
determine g{o). Ifthisisnotdone itispossiblethatahigh-

The Journal of Chemical Physics, Vol. 60, No. 3, 1 February 1974

ervalue of g(R)would be overlooked if it fell between mesh
points. g(R) was recomputed for AR =0.0001¢; g(o) was
then found to be 15, 08 demonstrating the difficulty in the
determination of accurate values of the contact pair cor-
relation function,

The pressure equation of state for a hard rod system
is

PL/NET=1+nglo) , ‘ (4)

wheren=N/L. FromEq. (4), the machine g(¢)(15.08), and
our thermodynamic conditions (see Appendix A), wefind
that P,=5.045%10®dyn. This should be comparedtothe
exactpressure P, =5.136 X10® dyn and the collision pres-
sure P,=5.176 X 10"®dyn (see Appendix B). The g(o) from
Eq. (3)(15.37) gives P,=5.136X10"%dyn. Allof these num-
bers are consistent within machine error.

The dynamics of HR systems has been studied by sev-
eral investigators, Jepsen® was able to obtain a closed
expression for the diffusion coefficient, D, if the initial
velocity distribution was Maxwellian, Another interest-
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FIG. 1, Comparison between the machine pair correlation
function and the exact one. R is in units of g,

ing result found by Jepsen was the asymptotic decay of
the velocity autocorrelation function of a labeled parti-
cle (Vy(#)V4(0)). It decays ast™ in contradistinction to
the t/%(d =2, 3) dependence found by other workers® in
two and three dimensions. Furthermore, the tail is
negative whereas in two and three dimensions it is posi-
tive, Lebowitz ef al.* have extended Jepsen’s results to
an infinite system of rods with diameter ¢. Lebowitz et
al. find that the normalized velocity autocorrelation
function, #¥(¢), can be almost perfectly represented by

¥(t) = exp[— 4nt/ (1 — no)mm B)! /2] . (5)

Here n is the number density, m the particle mass, and
B=1/kT. The exact §{f) disagrees with this expression
for

t=(mpm) 31~ on)/n , (6)

where the exact ¥(¢) becomes negative and very small
(=—6x107®), 1In our units this time is ~31 steps but the
computer calculations are not accurate enough to detect
the tiny negative region.

We have determined ¥(t) from the HR trajectory infor-
mation by using the following averaging procedure :

-1 ; .
W N AT V) V()

M= RS V,E 7,6

(7)

where N,= 1000 (the number of particles)and N, = 400
{the number of time origins). The exact and machine re-
sults are presented in Fig. 2. The agreement is very
good. However, in order to see the ™ decay it would be
necessary to do an exceedingly accurate calculation for

a long time and so this interesting property cannot be in-
vestigated with our data. In fact our ¥(¢) has a positive
noisy tail for times larger than 4x 107 sec.

Lebowitz and co-workers have also determined D,
Daet = (1 —n0)/n2rpm)V? . (8)

For our conditions D,,,, =1.28x10% cm?/sec. The dif-
fusion coefficient can be determined in two ways from
the dynamics :

(1) Integrating y(¢) via the Green~Kubo relation,
Dy =(?) [Tdtui) . ©)

(2) Finding the slope of the mean~square displace-
ment vs time and using the Einstein formula,

D,=(1/2t)([x(t)-x(0) F) . ‘ (10)

A Simpson integration of the machine ¥(#) up to the point
at which the exponential went to zero gave D,,
=(1.42+.01)x10® cm?/sec. From Lebowitz’s exponen-
tial expression, D exponent was found to be 1.42x107
cm?/sec. These results are expected to be larger than
the exact value because the negative tail has been ne-
glected. The mean-square displacement gives further
evidence of the “noisy” tail effects in the machine (z).
For short times there is excellent agreement between
{AX?) determined directly on the computer from the dy-
namics and (AX?) found by substituting the exponential
approximation for the exact () into

t
(ax®(@)y =2 [ dtlt- T)p(r)(v?) . 1)
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FIG. 2, Comparison between the machine normalized velocity
autocorrelation function and the exact one. Each time step is
1% 10" sec,
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The above expression can be derived from the definition
of x(#) in terms of the time integral of v(#). The (Ax®())
results are shown in Fig. 3. The errcr estimate is ch~
tained from the Zwanzig- Ailawadi® expression. The
slope gave D =1.42x 107 cm?¥/sec when only times at
which the {Ax2) functions agreed were used, If the full
time scale was used, D, of the machine calculation was
(2.26+0,41)x10% cm?/sec. which is larger than the ex-
act value. - This discrepancy is again due to the positive
noisy tail which hides the negative £3 tail,

Hence, we conclude that the agreement between the
machine calculations and the exact results is quite good
up to the time when the ¢ tail sets in.
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APPENDIX A

The hard rod (HR) potential has the form Eq. (1).
Since particles move with constant velocity until colli-
sions occur, the HR equations of motion reduce to alge-
braic expressions instead of differential equations. We
have adopted the Alder-~Wainwright® scheme to one di-
mension in order to solve the equations of motion. Let
X9 and X§ be the positions of particles i and j at #=0.
Then the positions at time ¢, X; and X, , are X;=X %+ V¢
and likewise for X;. Here V is the velocity of  at 7=0.
Thus, X;;=(X9-X3)+(Vi- V). At the time of a colli-
sion between ¢ and j, ¢, X;,=— 1, where the negative
sign enters from the convention X, <X,. Hence,

te==(L+X%,)/ VS, . (A1)

Clearly X, =1 or else particles would penetrate each
other, Also if V‘},<O the particles move away from each
other and cannot possibly collide. This information re-
duces the number of pairs which have to be examined.

In order to minimize surface effects and to simulate
an infinite system periodic boundary conditions are im-
posed on the equations of motion., This means that if
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FIG. 3. Comparison between the machine mean-square dis-
placement and the exact one, The error bars are calculated
from the Zwanzig—Ailawadi formula. Each time step is 1

x 10714 sec,
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X, is the position of particle ¢ in the line, there are two
periodic images at X;+ L where L is the length of the
basic cell, L is determined by fixing the number den-
sity N/L. The particles at the ends of the line can col-
lide with these periodic images, The boundary condi-
tions have the consequence that when a particle leaves
the line through one end, its image enters the other end,
thus preserving the number of particles in the line.

The initial configuration is specified as follows :
starting with N particles (N=1000), the one-dimensional
number density (0.935 in reduced units or 0, 2746 par-
ticles/A) is selected to correspond to a three-dimen-
sional Ar liquid (mn=1.374 g/cc where m#n is the mass
density), Particles are initially placed on lattice sites.
The particle velocities are selected from a Maxwellian
distribution whose temperature is preassigned as
88.14 °K. The rejection method of Kahn’ was used in
the selection process. These initial conditions are used
to determine ¢§; for all colliding pairs. The shortest #°
is selected from the list and all the particles moved for
this time, #{, to their new positions X=X%+ V%, At
this time particles 7 and j collide. Since hard collisions
take place, all that happens is that the equal mass par-
ticles (mass of Ar) exchange velocities. A cycle is
started by subtracting ¢ from all the other listed times.
It is then necessary to recompute the collision times in-
volving the pair which collided at # since they now have
new velocities, I these new times are larger than the
longest one on the list they are discarded; otherwise they
replace their old values, The next shortest time is se-
lected from the list and the process repeated until all
the tabulated times are exhausted,

The particles involved in the collision, the time of the
collision, and the positions and velocities of the entire
system are stored on 9-track magnetic tape. The above
process yields data at unequally spaced collision times;
it is simpler to treat data at equal intervals. The col-
lision time scheme can be converted into an equally
spaced one by considering the collision times as ordered
by their magnitude on the time axis. Dividing this axis
into equal intervals of length A¢, it is simple to trans-
form the data. Just find the largest #° in a given interval
and use the stored positions and velocities at #“to
“move” to the end of the interval, Then X=X°+V°¢
X (NAt-¢°) and V=V ° since no new collisions have oc-
curred, N is the number of the equally spaced time in-
terval. The time step, Af, is chosen as 1Xx107* sec.

Since there is no a priovi guarantee that the initial ar-
bitrary configuration is an equilibrium one, the approach
to equilibrium must be monitored by following some dy~
namical quantity. For the HR system the temperature is
a constant of the motion and so the pressure is used to
follow the approach to equilibrium. The pressure equa-
tion can be obtained from the virial theorem as modified
for HR,

PL m dZ

NET

+NkT dt ; Z= EXUVU ’

coll

(A2)

where P is the pressure, L the line length, N the number
of rods, k Boltzmann’s constant, T the temperature, m
the rod mass, and Z the “momentum sum.” Thus, the
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pressure can be determined from the slope of Z vs time.
Figure 4 shows the results for 2000 collisions =~ 69 equal
time steps. A least squares fit for the segment from
collision 750-1000 (32-39 steps) gave P=4.613x10"% dyn
whereas collision 1750-2000 (63-69 steps) gave P
=5.176x10® dyn, Since there is an exact equation of
state for one~dimensional hard rods (see Appendix B)
the equilibrium pressure (Pe) is known to be 5.136x 1078
dyn. Thus, equilibrium is reached in 69 steps. The HR
trajectory was continued for 700 additional steps. The
run time was 11 min on Columbia’s IBM 360/91-75.

APPENDIX B

In general the canonical partition function for a sys-
tem of N rods of length ¢ located at positions x, ,
Xy, *°° xy is given by

Z(L,N)z—]\% J dxye oo j dx yexpl= BVixy, e+ ¢, x,)]
' (B1)
where V{x,, ..., xy) is the interatomic potential and g
=1/kT. This expression can be evaluated for a periodic
system of period L if the variables are changed into rel-
ative ones where one of the rods serves as the origin.
Moreover, the N~ 1 relative distances are restricted
for a hard potential because such a potential forces the
particle order to be maintained. Then Eq. (B1) becomes

L - 1) Lo %140 X13=0
Z(L,N):-—(%,'—)f dxm-“f dxnf s
: o(N-1) 20 (4
(B2)

where the L comes from integration over the reference
rod and the (N~ 1)! comes from the possible ways of
labeling the other N-1 rods. Equation (B2) is evaluated
by setting W;=X,,,, ~jo as the new variables. Thus,

Z(L,N)=L(L-Ng)" /N1 . (B3)

The pressure for this system is

1/ 8lnZ 1 N-1
P:E(_BL )B=kT(—L+L_NO_> . (B4)

The pair correlation function, g®' (¥, ,x,), can be deter-
mined from the theory of distribution functions,

g8 (xy,x,)=p & (xy ,x,)/ [P (x) P (B5a)

and

Jdxy+ < [dxsexpl= BV(x;, =+ ,x,)]
fde°'° fdxlexp[— BV(x]_, 200 ,xN)] *

Here x; and x, refer to any two particles in the system.

1

P (y ,xp) = (B5b)
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FIG, 4, Impulse term of the virial equation of state for the
HR 1000 system. Each time step is 1% 10" sec. Equilibrium
is reached in 69 steps.

Consider these particles as fixed at x, and x,. They di-
vide the system into two regions because of the hard po-
tential : a length x,~x, containing N, particles and a
length L - (x, - x;) containing N, particles such that N,
+N,=N-2, Hence, Eq. (B5b) becomes

-3 é(xa‘ﬂlNﬂZ(L_(xz-xl)sz)
= v, Z(L,N)

PRy, %,) (B6)

where Z(L,N) is the partition function for N particles in
a periodic line and Z (w,N'") is the partition function for
N particles on a line of length w which is bounded by
two other fixed particles, The sum is over all possible
combinations of N, and N,. It is simple to show that
Zw,N')=[w- '+ 1)e"/N'1 . (B7)

Furthermore, the hard potential introduces a step func-
tion 6(x) such that

6(x)=0, x <0
-1,x>0 . (B8)
Let y =x,—x,. Since p®(x)=N/L Eq. (B5a) reduces to

g0)-L 5 b= 0 Vol {fp = O+ 1a]/Q= N MR- 1)L gy - (v, < 1)0] (89)

N Ny=0

It is of interest to see if the periodic g¥’(y) becomes
equal to the thermodynamic limit (N— ) case deter-
mined by Salsburg et al.® If N~ o,

(1-a/Ny¥-e™
and (B10)

N (V= N, = 2)1 (I - o) It

N=1D1/(N=N;=2)IN"1*1 .1 |
then

Ly —ko)lexp[- (y—ko)/(1-0)]6ly - ko)
g20)=12) G-1)I0-oF ’
(B11)
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I=L/N,

which is exactly the form obtained by Salsburg et al,

*Supported by Grant No, NSF GP 22881.
Twork done in partial fulfillment of the Ph.D. degree at Co-
lumbia University. NIH Predoctoral Fellow, Present ad-

dress: National Bureau of Standards, Washington, D.C.
20234,

TAlfred P. Sloan Foundation Fellow.
‘Mathematical Physics in One Dimension: Exactly Soluble

897

Models of Intevacting Particles, edited by E. H. Lieb and C.
C. Mattis (Academic, New York, 1966),
D, W. Jepsen, J. Math. Phys. 6, 405 (1965},
’B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
4J. L. Lebowitz and J. K. Percus, Phys. Rev. 155, 122 (1967).
J. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev,
171, 224 (1968),
SR, Zwanzig and N, K. Ailawadi, Phys. Rev, 182, 280 (1969),
B, J. Alder and T. E. Wainwright, J, Chem. Phys. 31, 459
(1959),
TH. Kahn, Atomic Energy Commission Report No, AECU-3259.
87. W, Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J..
Chem,. Phys. 21, 1098 (1953),

J. Chem. Phys., Vol. 60, No. 3, 1 February 1974

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



