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Three representations of the angle-dependent intermolecular interactions of nonspherical molecules are
compared with one another and with experimental data for nitrogen, carbon dioxide and benzene. The
models are the atomic, Kihara core, and overlap. The effect of including quadrupolar terms in the potential
functions is also considered. It is found that the theoretical virial coefficients are not greatly altered when
the quadrupole terms are added, at least at the temperatures corresponding to the experimental ranges for
the molecules chosen. However, the theoretical solid state heat of sublimation and, to a lesser extent, the
crystal lattice parameter, do change significantly. Satisfactory fits to the experimental second virial
coefficients and the solid state data were obtained by varying €, o, the well-depth and range parameters,
while fixing the other constants appearing in the models (such as the parameter specifying the nonsphericity)
at reasonable values. Quantities of interest, including the equilibrinm distance, angular configuration, and
dissociation energy of the van der Waals’ dimer, are estimated from the best-fit potential functions. It is
concluded that all three models are approximately equivalent when the molecules are only slightly
nonspherical and that there is sufficient flexibility in the models to give good fits to the data even for strongly
nonspherical molecules. It appears that the representations of the N,, CO,, and benzene interactions derived
here are sufficiently realistic to warrant their use in future work. ‘

I. INTRODUCTION

As one progresses from spherical to nonspherical
molecules, the difficulties involved in developing ade-
quate models for the intermolecular interactions in-
crease greatly, especially if one hopes to obtain a po-
tential function capable of accounting for the properties
of the solid and liquid phases as well as those of the
imperfect gas. Even for a molecule as simple as nitro-
gen, one should include the electrostatic interactions
(primarily quadrupolar in this case) as well as the ef-
fect of nonsphericity upon the repulsive overlap and at-
tractive dispersion energies. Oddly enough, the ma-
jority of the theoretical studies dealing with properties
that are dependent upon intermolecular interactions are
based on models that include either the interactions of
the p?rmanent multipoles or the shape effects, but not
both.

An additional difficulty encountered in current treat-
ments arises from the lack of a theory that would serve
as a reliable guide to a unique model for the nonelec-
trostatic part of the interaction between nonspherical
molecules. Consequently, a number of models are be-
ing explored by various workers, including the Kihara
core model?~? (and a recent modification*) and the “atom-
ic” model,’'® among others. Although both of these
appear to be capable of giving reasonably accurate rep-
resentations of selected molecules, they suffer from
practical defects. In particular, let the intermolecular
interaction energy of molecules 1 and 2 separated by a
distance v and with Euler orientations angles ©, and Q,
in coordinate axes defined relative to r be denoted by
u(r, 3, ). The basic Kihara core model then con-
sists in assuming that

u(r’ 9‘15 92)=u(7’/P) ’

where p is the shortest distance between two nonspheri-

(1.1)
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cal “cores” with orientations Q;, ©,, and u(r/p)is a
suitable function such as the inverse 6-12 power law
that is so often employed in modeling the interactions
of spherical atoms. The difficulty in using the Kihara
model occurs when one attempts to calculate p for given
1, §2; even though the theory is valid only for convex
core shapes (a serious limitation in itself), the evalua-
tion of the minimum distance between two such cores
with arbitrary orientations is far from trivial, For
example, the computer time would appear to be suffi-
cient to prevent serious attempts at Monte Carlo or
molecular dynamics studies of dense phases of these
molecules, In addition, it is difficult to use this model
to evaluate the librational force constants that charac-
terize the torsional Raman and infrared frequencies
observable either as lattice modes of the solid or in
the dimeric “van der Waals molecules” present in low
temperature gases.®~'® If an interacting molecule is
represented by n “atoms,” these difficulties can be
avoided. One writes

ulr, @, Q)= 3 u(f—‘i) , (1.2)

i1 \©

where 7, is the distance between atom ¢ in molecule 1
and j in molecule 2, and u(r; /o) is again taken to be a
function of the Lennard-Jones type. (A single value of
well depth and of ¢ implies that all atoms are identical—
this constraint is clearly not crucial,) If the coordi-
nates of atom i in the molecule are givenby L;, 8,

o;, the distance 7;; can be obtained by a coordinate
transformation from the molecule-fixed system to the
r-fixed axes.?® These operations present no particular
difficulties for “diatomic” molecules, or even for tri-
atomic, linear models. However, as the number of
atoms per molecule increases and as the shape becomes
more complex so that the molecule-fixed atomic posi-
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tions are no longer on an axis of symmetry, the evalua-
tion of the summation in Eq. (1.2) becomes prohibitively
time consuming, especially when averages over all con-
figuration space are required (as in calculations of the
second virial coefficient or of liquid state properties).

Recently, another approach to the problem of dealing
with nonspherical shapes was proposed21 which does not
suffer from the defects noted in the atomic and Kihara
core theories. In this model, which is called the over-
lap model, two interacting spheroids of fixed center of
mass position and fixed orientation are assumed to have
a repulsive potential which is directly proportional to
the intermolecular overlap volume. The mass distribu-
tion of each spheroid is assumed to be given by a spher-
oidal Gaussian distribution. The computed overlap
volume is a function of the orientational angles and the
relative distance between the center of mass. Its speci-
fic form is € exp(-7%/¢?), where € and o, the range and
energy parameter depend on the relative orientations
of the two spheroids. The specific form of € and o are
assumed to reflect the symmetry of the molecules, and
are then used in connection in a class of functional terms
like €¢(r/c). In the overlap model one characterizes
shape by defining €, o, the well-depth and range param-
eters of the intermolecular potential, to be dependent
upon orientation. Specifically, for two identical ellip-~

soids of revolution, one writes
(1, 2,)= €(1 - x?cos0) 2 (1.3)

where O,, is the angle between the symmetry axes of
the ellipsoids; and

U(Q]_ H 92)

=o<1—x
(1.4)

where ©,, 6, are the polar angles between the molec-
ular axes and r, and y is a shape parameter defined as

cos?0, + cos®0, - 2y cos6, cosO, cosem) -1z
1-y%cos?o,, ’

_k%-1
X_K2+1 ’

(1.5)
where « is the ratio of the length of the principal axis
of the ellipsoid to the length of the axis perpendicular
to it. It is evident that the relationship between inter-
action energy and molecular orientation is explicit and
reasonably simple in the overlap model; that no sums
are involved; and that the formulation is flexible in the
sense that any appropriate distance-dependent function
can be utilized, from a hard-core model (with an angle-
dependent ¢) to an inverse power law with arbitrary in-
dices. For example one might wish to vary the form
of the potential in an extension?*2® of the perturbation
theories of dense fluids of spherical molecules, These
theories?® generally are based upon the idea that pair
correlation functions at high densities are determined
primarily by the repulsive part of the intermolecular
potential, Thus, it is convenient to work with a model
where the attractive energies can be omitted when ap-
propriate without redoing the entire problem. (In fact,
all three of the models discussed here share this de-
sirable feature. )

In this paper, the linear Kihara core, the “diatomic”
and the (prolate) overlap models are first compared for
inverse (12,6) power laws and it is shown that the three
theories are similar, especially if the parameter of the
nonsphericity is varied to maximize the correspondence.
Subsequently, data for three specific molecules are fitted
to theory; the systems chosen for study include N,, a
short linear molecule with a relatively small quadrupole
moment; CQO,, a long linear molecule with a relatively
large quadrupole moment; and benzene, a planar mole-
cule that also possesses a relatively large quadrupole
moment, i

It is conventional to test intermolecular potentials by
comparison of theoretical and experimental second vi-
rial coefficients. However, it is well known that this
procedure is insensitive to the functional dependence of
the energy, and serves primarily to determine the two
parameters €, o. Of course, the interactions of non-
spherical molecules involve at least three (¢, o and a
shape parameter), even if values for the permanent
electric moments are obtained from other sources. In-
deed, we will see that the virial coefficient data for
benzene are not even of sufficient quality to determine
unambiguous values for two of these parameters., Con-
sequently, other comparisons between experiment ex-
periment and theory are needed. Of the various pos-
sibilities, we have chosen the crystal packing distances
and heat of sublimation as most suitable, and have
therefore chosen potential functions for N,, CQO,, and
benzene that are consistent with these data as well as
the virial coefficients.

All three models can be fitted to the N, data using an
inverse (12, 6) power law for the distance dependence
of the potential together with the known quadrupole-
quadrupole interaction. The (12, 6) diatomic and tri-
atomic models plus quadrupolar terms can be fitted to
the CO, data. However, the overlap model (plus quad-
rupolar term) is inadequate if either the (12,6) or a
(28, 7) function is used; it is surmised that a power law
with indices intermediate between these two would be
more successful. In the benzene case, the only model
tested was the overlap, quadrupolar potential. (The
application of the Kihara core model to the CQ, and
benzene data has been discussed previously®?®), It was
found that the (12, 6) power law is inadequate, but the
(28, 7) potential is reasonably successful in representing
the benzene interactions. The best fit potentials are
utilized to compute a number of relevant quantities such
as angular correlations and the associated virial coef-
ficient for depolarized light scattering, and the disso-
ciation energy and stable molecular configurations in
the van der Waals dimers of these molecules.

In attempting to compare the potential functions pro-
duced by these models which depend upon the four vari-
ables 7, ©,, O,, ¢, several techniques may be em-
ployed. Two obvious choices are the following: fix the
values assigned to all variables but one (plots of energy
versus distance, for example) or two (contours of con-
stant energy as a function of 6; and ©, at fixed », ¢);
or the coefficients in an expansion in orthogonal func-
tions can be evaluated.®® Although these expansions are
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FIG, 1. The angle-averaged interaction energy is plotted ver-
sus reduced distance for three models of linear molecules.
Since « is the ratio of long to short axis length in the overlap
model, it is comparable to (c+L)/o=1+L*, where L* is the
separation between atomic centers in a diatomic molecule,
distance where the energy passes through zero in the Kihara
model is o for a parallel configuration and ¢ +L for an end-to-

end arrangement, so 1+L* is the axial ratio in this case as
well,

The

convergent in all cases if the variables chosen are the
angles 8,, ©,, ¢ (giving v-dependent coefficients), the
convergence can be quite slow for small » at large val-
ues of the nonsphericity parameter, (This is a con-
sequence of the large changes in energy with orientation
at small, fixed separation distances.) Thus, we will
present curves of some coefficients in the angular ex-
pansion of the energy for those cases where the param-
eters of the nonsphericity can be chosen to be small,
but will use the other methods of exhibiting the poten-
tial functions for CQ, and benzene, which appear to be
too far from spherical to allow one to use the orthogonal
function expansion with a reasonable number of terms.

Il. COMPARISON OF POTENTIALS FOR LINEAR
MOLECULES

In this section, the expansion in orthogonal functions
for the potential will be written:

u(r, 01, 6,, ‘1’):47’2 Utyom ) Pr(©1)

XPyen(0) explime) | 2.1)

where the P,, are associated Legendre polynomials.
The leading term in this series [ug(7)] is the angle-
averaged energy, and the higher terms give a measure
of the angle dependence of this quantity. For sym-
metric linear molecules, only coefficients with even

1, I’ are nonzero.

Figure 1 shows g /€ computed for three models. In

all three cases, the distance dependence of the energy
was assumed to be
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ne m m/{m-n) o\m o\
2SS e
with m, n=12,6. For the diatomic model, x=v,,, the
intermolecular atomic separation and L = the intra~
molecular atomic separation (L*=L/¢); for the Kihara
model, x=p, the core separation and L =the core
length; for the overlap model, x =7, the intermolecular
separation, with €(Q;, ©,) and o(Q,, Q,) given by Egs.
(1.3) and (1. 4), respectively. For reference, the (12,
6) Lennard-Jones function for spherical molecules is
also shown, It is immediately evident that the three
nonspherical models are qualitatively similar, and that
the angle-averaged potentials all exhibit shallower mini-
ma at greater »* than the curve for spherical mole-
cules. The results for the overlap and the Kihara core
models are closest to one another, for comparable val-
ues of the parameters of nonsphericity. (Evidently,
1+ L* is a length-to-thickness ratio that should be com-
parable to x.) The difference in well depths observed
for the diatomic and the other two models can be at
least partially eliminated by comparison with ugg/€
for the diatomic model with a smaller L*; however,
the minimum will then occur at a different value of »*,

Figures 2 and 3 show two of the coefficients of the
angle-dependent terms in the expansion of u(r, Q, Q).
Again, the three models are qualitatively similar, with
the diatomic model exhibiting shallower wells than the
Kihara core or the overlap models. However, the
well-depth differences are magnified by the change in
scale relative to that for Fig. 1, and are actually rather
insignificant (differences of ~0, 1 for uy /€ and ~0, 01
for ugy/€, compared to ~0. 3 for ugyg/€). If the mole-
cules under consideration possess an appreciable quad-
rupole moment @, one finds that the quadrupolar con-
tributions to s, s and ug, overwhelm the shape-
dependent parts at distances greater than those that
correspond to the steeply rising parts of curves such
as the ones shown in Fig. 3. One can write the quad-
rupolar energy Eqq as?®

OS—— Ty — T 7 T T T 1
1 T
o4 LVt o =
\\ | o *
03 \ \ o««—— Kihara core,L = 04 _
Y200 \ o=
3 Diatomic,L = 0.4
0.2 ]
k=3
O+ Overlap —
=14
00— (
P
T -
L }Vo"”‘:f—"—
-0 A -
- | 1 1 §
0.2” 1.6 17 1.8 19 20
r/o

FIG. 2. The coefficient u,,,, which is a measure of the angle
dependence of the energy after averaging over orientations of

one member of the pair, is plotted for the same models as in
Fig, 1,
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FIG., 3. The coefficient u,,, which is a measure of the angle-
dependence of the energy after averaging over all values of the
azimuthal angle ¢, is plotted for the same models as in Figs,
1 and 2,

Eqq=47[ui3d(r)P2o(61) P2(O5)
+ 2 ug(r) P51 (01) P24 (0;) cosd

+2 ufS) (r) Pp2(01) P2-3(02) cos 29] ; (2.3)
with
uf3dr)=6Q%7r° |
uf'r)=4Q%7° | (2.4)

usB0)=Q%/r°

This preliminary comparison indicates that the three
models should give comparably good fits to experi-
mental data, especially if one optimizes €, o, and the
shape parameter. Of course, allowable molecular
shapes are restricted to some degree by one’s knowl-
edge of bond lengths and van der Waals radii¥” and we
have chosen to proceed by assuming reasonable values
for L (or k) and then optimizing € and ¢ only.

HI. NITROGEN

The second virial coefficients of nitrogen gas have
been measured to good accuracy over a wide tempera-
ture range®; in addition, the heat of sublimation®® and
crystal structure® of the low temperature, low pres-
sure phase of solid nitrogen are well known (cubic, a
phase). All three potential models are capable of giving
a good fit to these experimental data. The quadrupole
moments?®# and shape parameters utilized are listed

TABLE I, Selected experimental properties.

Q AH!@ a
Molecule (e.s.u. cm?) L* « (kcal/mole) (Ig)
N, 1.5+10726% 0.3 1.3 1,81° 4, 00t
CO, 4,3.10°28" 0.8 1.8 6.4° 3.94%
Cq Hg 5.6-10726" ses 0.5 10.7° 7.20b

23ee Refs, 26 and 31,
PSee Ref, 39.
¢See Ref, 29,
dSee Refs. 12 and 32,

°See Ref. 37.
See Ref. 30.
fSee Ref. 33.
iSee Ref, 36.

TABLE II. Calculated properties for nitrogen.

€/k 4 AHyy, a
Model (deg.) (A) (kcal/mole) (K)
Spherical (12,6), y=0 94 3.70 1,51 4,04
Spherical (12,6), ¥y=0.25 94 3.70 1.84 4,00
Diatomic (12,6), ¥y=0 140 3,36 1.70 3,96
Diatomic (12,6), y=0,27 139 3,34 2,04 3. 88
Schnepp et al.*
(diatomie, (12,6), ¥=0]
L*¥=0,33 149 3,35 1.81 4, 00
L*=0,25 135 3,45 1.81 4,00
Overlap (12,6), v=0 94 3,87 1.52 4,04
Overlap (12,6), ¥ =0, 40 94 3.37 1.85 4,00
Kihara core (12,6), vy=0 119 3,13 e e
Das Gupta et al.®
[diatomic, {(12,6)y=0)] 140 £ 10 3.35+0,05

aReference 10, breference 22.

in Table I. In this case, the virial coefficients were
fitted to theory for the diatomic and overlap potentials
with and without including quadrupole interactions. The
results listed in Table II show that the inclusion of these
electrostatic terms hardly affects the virial coefficients;
i.e., the angle averaging is quite effective in eliminating
this contribution at the relatively high temperatures of
the gas phase experiments. In contrast, the crystalline
lattice contains molecules with fixed orientations; in
calculating the theoretical AH, and lattice cell size
a,, the experimental values for these orientations were
used to calculate the distance and value of the minimum
intermolecular energy. One sees that the calculated
quadrupolar énergy amounts to roughly 10% of the total
AH, for this crystal. Presumably, the results ob-
tained using the Kihara core potential will be essentially
the same; the values listed in Table II for this model
were taken from an earlier study in which quadrupolar
terms were omitted. Also listed are the parameters

of the diatomic potential used by Schnepp et al.'®in a
successful calculation of the lattice frequencies of solid
N,, together with the “best” diatomic parameters de-
duced by Das Gupta ef al.?? primarily from a study of
the liquid structure factor, but including results of
other studies as well, It seems highly probable that

all three models are capable of giving an adequate rep-
resentation of the physical properties of nitrogen. The
diatomic model has been used most extensively to date,
although the quadrupole energy has not always been in-
cluded in previous work. Of course, not all properties
are sensitive to this term; in general, it should be most
important in low temperature, high density phases
where the orientational correlations are most pro-
nounced. The importance of including a nonspherical
shape is somewhat more difficult to assess. It is clear
that the virial coefficients can be fitted using a spheri-
cal Lennard-Jones function, with and without quadru-
pole energies; Table II shows that the calculated AH 4,
and a, for this potential agree with experiment if one
includes the quadrupole terms. Presumably, the non-
sphericity will play a more important role in developing
adequate theories of the compressed liquid and solid.
For example, it is hard to see how one can account for
the a- y phase transition in the solid at high pressure
if the only angle-~dependent potential energies are quad-
rupolar, in view of the fact that the relative molecular
orientations are quite different in the two phases, 3
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FIG. 4. The angle-averaged part of the interaction energy is

shown here for four potential functions that reproduce the prop-

erties of nitrogen.

We note that the potential parameters were derived
in this work for N, by fitting theory to the experimental
second virial coefficients. The inevitable uncertainties
in the data give rise to a range of “best fit” € and o val-
ues, even for fixed L*; simultaneous optimization of
all three parameters would probably give perfect fits
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FIG. 5. The coefficient u,,, in the spherical harmonic expan-
sion of the interaction energy is shown for the same models of

nitrogen as in Fig, 4 (Clearly, uy, =0 for the spherically sym-
metric potential, )

Intermolecular potential for anisotropic molecules
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FIG, 6. The coefficient uyy,, with and without the quadrupolar
contribution, is shownfor the models of Figs. 4 and 5.

to the gaseous and solid data (i.e., within experimental
error) in all cases.

Figures 4-7 show the components obtained for the
spherical harmonic expansion of u(r, @, , ,) for various
models of N,. Figures 6 and 7 illustrate the dominance
of the quadrupolar terms in determining u,y, and uyp
at larger distance; Fig. 4 indicates that the fitting pro-
cess gives rise to curves of the angle-averaged energy
that do not differ greatly for the three models.

75 T T T
—e~e-e— Quadrupoiar energy
50 —
Yzal
k
deg.
{deg) Net, diotomic
25 -
Net, overlap
0 —
Overlap, y =0
Diatomic, y =0
- 1 1 1
2520 50 60
r (R)

FIG. 7. The coefficient uy, with and without the quadrupolar

contribution, is shown for the models of Figs. 4 and 5.
J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



MacRury, Steele, and Berne:

50 i
|
|
1
!
|
i
o— h
* !
ul(r™ |
k \
(deg.) %
\
_SOB— ‘
]
\
- 100 -~— Digtomic
II —=—= Diatomic
plus Eqq
A4
- 1 | | 1 1 1
1500870 12 14 16 18 20 22
P
FIG. 8. The energy of interaction between two nitrogen mole-

cules with fixed orientations is plotted as a function of the sep-
aration distance, The curves are for the best diatomic model,
with and without quadrupolar energy Egq, and the orienta-

tions chosen are the following: parallel (8,, 6,, ¢=90°, 90°, 0°);
T-shaped (0°, 90°, any value); and crossed (90°, 90°, 90°),

Of course, the spherical harmonic expansion is only
one of several ways of presenting these potential func-
tions; a second possibility is illustrated in Figs. 8 and
9, where curves of interaction energy are shown for
pairs of N, molecules with fixed orientations. Figure
8 shows the potential versus distance for the diatomic

50

u(r®)
k

(deg)
-50

=100

—— Overlap
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plus Eqq

- | 1 1 1
Is00,8 0 L2 14 *I‘G

r

1 I
18 20 22

FIG. 9. The distance dependence of the interaction energy
given by the overlap representation of nitrogen is shown for

the same orientations as in Fig. 8, with and without quadrupole
terms.
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FIG, 10. Equipotential contours are shown for the diatomic
model of interacting nitrogen molecules (including quadrupolar
energy) for varying polar angles 6, and 6,, but with ¢ and r*
fixed at the indicated values. The dashed lines indicate mirror
planes of symmetry.

model, with and without the quadrupolar term, and Fig.
9 shows the same curves for the overlap model. It is -
evident that the most stable (N,), molecule has the T
shape, with a calculated dissociation energy and equilib-
rium separation distance of 282 cal/mole and 4, 03 &

for the diatomic model (plus quadrupole) or 254 cal/
mole and 4. 29 & for the overlap (plus quadrupole).
These predictions are relevant to experimental studies
of the van der Waals molecules which are currently un-
der way.

Yet another method of presenting the potential ener-
gies of the N,~N, pairs is adopted in Fig. 10, which
shows energy contour lines for variable polar angles
©6,, 6, with ¢ fixed to give a planar dimer, and at two
different but fixed values of »*. The curves shown are
calculated for the diatomic model (plus quadrupole) at
7* corresponding first to the minimum in the energy
for the T-shaped molecule and then for a somewhat
smaller value of *=1.11. (Although the X-shaped di-
mer has its minimum energy at this »*, it is nonplanar
and thus is not the configuration illustrated in the fi-
gure.) In fact, the most stable configuration of the pla-
nar dimer with »*=1.11 is with parallel axes but with
both molecules canted at 63° to the intermolecular vec-
tor, rather than the 0° and 90° angles for »*=1, 21 that
is shown in the upper part of the figure.

The contour diagrams of Fig. 10 are useful in making
theoretical estimates of the molecular orientations and
librational frequencies in the solids. Although no quan-
titative conclusions can be drawn from the planar con-
figurations of Fig. 10 (¢=0°), it is evident that the
equilibrium orientations shift radically as r* decreases
and that the force constants for libration should in-
crease rapidly as 7* decreases. Both predictions are
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FIG. 11. Smoothed second virial coefficients of carbon dioxide
are shown on a log—~log plot, with an uncertainty of 2% indicated
by the vertical bars. The circles show theoretical virial coef-

ficients for the atomic models, calculated using the same values

of €/k, ¢ and L*, but with different reduced quadrupole mo-
ments ¥, or different number of atoms per molecule. The
solid curves are for the overlap models with fixed €/&, o but
varying shape factor k and quadrupole moment 7.

at least in qualitative agreement with experiment,!0+1* 34
(Because the diatomic and overlap potentials for N, are
in substantial agreement, features of the two contour
plots would be essentially the same. For this reason

a separate contour plot for the overlap model is not
given. )

IV. CARBON DIOXIDE

The difficulties encountered in successfully fitting
theory to experiment were noticeably greater for the
CQO, data than for N,. In the first place, the quadru-
polar term is considerably larger for these molecules
than for N,; secondly, the overlap model does not fit
both the second virial and the solid state data if a (12,
6) distance dependence is assumed.

The presence of a large quadrupole term causes the
calculation of an appropriate curve of B* versus T*,
the reduced second virial coefficient versus reduced
temperature, to be time consuming and expensive. In
these computations, the quadrupolar energy appears in
reduced units, with a constant of proportionality ¥ =Q%/
€¢®. One thus guesses y; calculates B* versus T*; fits
to experiment to determine €, ¢; calculates a new y;
and iterates until internal consistency is obtained.

A log-log plot of the second virial coefficients for
CO, versus temperature?® is shown in Fig. 11, with er-
ror bars indicating an uncertainty of + 2 cm3/mole in
each point. Also shown are a number of theoretical
curves plotted in part to show the quality of the fit be-
tween theory and experiment, and in part to show the
effect of changing the parameters of the potentials. In
particular, the three “atomic” curves were calculated

using €/k=537°; 0=3.054; this gives a good fit for a
diatomic model when the reduced quadrupole constant
y=0.65 (but this corresponds to @ =8+ 1028 ¢, s, u, cm?
which is not equal to the experimental value for CO,
listed in Table I). When the quadrupolar term is omit-
ted, the calculated virial coefficients shift appreciably,
as shown in Fig. 11, Since it appeared that this mole-
cule is sufficiently long to perhaps invalidate a diatomic
representation, a triafomic model was investigated (all
atoms identical), Figure 11 indicates that very little
change occurred when this refinement was attempted.
Parameters for the final best fit of the diatomic (12, 6)
potential with a quadrupole moment of 3.9x10%6 ¢ 5. u,
cm? are listed in Table III.

All the models listed in Table III give virial coeffi-
cients that fit the data with experimental error, except
the one used by Suzuki and Schnepp, which was fitted to
solid state data only.

Although the inclusion of such a large quadrupolar
term gives rise to a noticeable shift in the parameters
of the diatomic potential, the overlap model does not
seem to be as sensitive to this interaction; the curves
in Fig. 11 show this, as well as the fitted values of €/k
and o listed in Table ITI. Solid CO, forms the same
crystal lattice as @-N,, and the calculations give a
quadrupolar stabilization energy of ~1 keal/mole in this
system, which is roughly 15% of the total. Thus, for
example, calculation of Suzuki and Schnepp would be
in error by this amount when this energy is included.
(In addition, their computed crystal lattice size will
shrink by roughly 0,1 A.)

It is interesting to note that the best overlap (12, 6)
potential (y=1.3, €/k=180°, 0=3.484, @=4.1.107%8
e.s.u. cm?) does not give satisfactory values for the
solid state properties; the theoretical stabilization en-
ergy is too small and the lattice size, too large. In
contrast, the solid data are reproduced nicely by the
best diatomic (12, 6) model (y=0.90, €/k=519° ¢
=2.984), and it appears that this model (or its tri-

TABLE IIl. Calculated properties for CO,.

€/k a AHgy ay

Model eg.) (&) (kcal/mole) (A)
Diatomic (12,6), L* =0.8,
Y= 0 566 3,22 4,59 4,33
Y- 0,65 537 3.05 6,14 4,02
v 0,90 519 2,98 6,62 3,90
Diatomic (Suzuki and Schnepp®
(12,6), L*=0,78, y=0 770 2.95 6,48 4,94
Kihara core (12,6),
L*=0,69, vy=0 309 3.36 4,72 4,19
3. 90 4,16)®
Triatomic (12,6),
L*=0,8, y=0 550 3,25 4,15 .37
Overlap (12,6), k=1,8,
¥=0 182 3,52 3.01 4,85
¥=1.3 180 3.48 4,06 4,69
Overlap (12,6), k=2,0,
¥=0 181 3.31 3.04 4.69
Overlap (28,7), «=1,8,
¥=0 695 2,44 9.62 3,27

*Reference 12,
hQuadrupole energy added without refitting virial coefficients.
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FIG, 12, The potential energy, as given by three models of the
carbon dioxide interaction, is shown here as a function of dis-
tance for three fixed intermolecular orientations. (These con-
figurations are the same as in Figs., 8 and 9,)

atomic modification) is a satisfactory representation

of the interactions between CO, molecules. Studies of
the spectrum of the van der Waals dimer (CO,)!® indi-
cate that the equilibrium orientation angles are 0°, 90°,
0° (T shape) and the equilibrium distance is 4.1 &.
Curves of the interaction energy versus distance at
several fixed orientations are shown in Fig. 12 for
some of the potential models considered for CO,. The
minima in the curves for the best diatomic model clearly
are in excellent agreement with the experimental orien-
tation and separation (r*=1. 38 or 7,,=4.11 A); the dis-
sociation energy of the dimer is predicted to be 1. 04
kcal/mole (experimental value unknown at present).
Figure 13 shows contour plots of energy versus the po-
lar angles ©;, 6, for a dimer at the equilibrium sepa-
ration (r*=1.4), for the planar configuration (¢=0°)
and for a twisted arrangement (¢ =30°). H is evident
that the diatomic model energy is not very sensitive to
the value of ¢. On the other hand, the changes in ener-
gy with ©,, ©, are much larger for (COy), than (N,),,
as expected; one anticipates that at least some of the
librational frequencies in the dimer will be large, in
qualitative agreement with the spectral data, 18

The fact that only one crystal structure is known for
solid CO, can be also rationalized by the curves shown
in Fig, 12, which indicate that large decreases in well
depth occur as the orientations shift away from the T-
shaped arrangment. Indeed, the parallel configuration
of (CQ,), is repulsive at all distances because the quad-
rupole repulsion overwhelms the attractive diatomic
energy. This is in sharp contrast to the relatively
small change in energy with angle for nitrogen that is
shown in Figs. 8 and 9.

In view of the failure of the overlap (12, 6) model to

reproduce the solid state properties of CQ,, other
distance-dependent functions were considered. Of
course, very large numbers of such functions exist
which have some claim to physical reality, and one
would like to have a rationale for selection that did not
depend entirely upon the quality of the fit between ex-
periment and theory. Some time ago, it was shown®
that the potential functions for large molecules with in-
teracting elements on their periphery tend to vary more
rapidly with center-to-center distance than a (12, 6)
power law. In effect, the important separations are
the periphery-to-periphery distances; if the energy de-
pends primarily on these quantities, it can change by

a very large amount for a relatively small change in
center-to-center separation. Indeed, it was shown that
the (12, 6) law for interacting elements on the surfaces
of spheres tended to give a function approximating a
(28, 7) dependence on the center-to-center distance. In
view of the relatively large separation of the oxygen
atoms from the center of symmetry of a CQO, molecule,
it seemed reasonable to see if an overlap (28, 7) inter-
action would be an improvement over the (12, 6) with
the same shape factor . A preliminary calculation
where quadrupolar energies were omitted gave quite
different results from the (12, 8), y=0 function, as is
shown in Table III, The parameters that fitted the vi-
rial coefficients give solid state energies that are larger
and lattice parameters that are smaller than the ex-
perimental values. It appears that the overlap model
with a distance function having indices intermediate be-
tween (12, 6) and (28, 7) would give a satisfactory rep-
resentation of the CQ, interaction. At this stage, the
choice of power law seemed too arbitrary to warrant
further computation; hopefully, future studies will give
some kind of independent criterion for this choice.

90° 60° 30° 0,180° I50° 120° 90°
T I I

300° $=0o —B500° \ |
-400°
-300°

-200°

::TP~\F::|\\| ] |

0,180° 150° 120° 90°

FIG. 13, Equipotential contours for the diatomic model (plus
quadrupole energy) of interacting carbon dioxide molecules
are shown here for varying polar angles, but with 7* fixed at
1.4 and with ¢ fixed first at 0° and then at 30°,

J. Chem. Phys., Vol. 64, No. 4, 15 February 1976

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



1296 MacRury, Steele, and Berne: Intermolecular potential for anisotropic molecules

TABLE 1V, Calculated properties for benzene,

c/k o AHg, ag
(deg.) A) {kcal/mole) (A)
Kihara core (see text),
¥=0 740 3.6 10,2 7.6
Overlap (12,6), k=0,5,
¥ =0,005 176 12,1 2.4 15.1
¥ =0,007 195 11.2 2.7 14,2
Overlap 28,7), x=0,5,
Y=0.0 912 5.76 8.8 7
vY=0.039 912 5.76 9.9 7

The dotted and dashed lines in Fig. 12 show the over-
lap (28, 7) and (12, 6) energies calculated for several
fixed orientations using the parameters listed in Table
I1I [but including quadrupolar terms for the (28, 7)].
The curves exhibit the same general characteristics
as the diatomic model, which tends to give energies in-
termediate between the overlap (28, 7) and (12, 6) cal-
culations; presumably, an intermediate power law in
the overlap model would give energies that would lie
reasonably close to the curves for the best diatomic
model.

V. BENZENE

The benzene molecule is an excellent example of a
simple nonlinear molecule, The crystal structure of
benzene (at low pressure) is orthorhombic, with cell
dimensions 7.29, 9.47, and 6.74 A at 78°K. % The
solid state®3” and second virial coefficient data have
previously been fitted® to the Kihara model using a hex-
agonal core of edge length 1.94 A. The shape of the
molecule defined by this model is thus hexagonal, with
thickness 3.6 A and corner-to-corner size 7.5 A. The
parameters of this model that fit the virial coefficients
are listed in Table IV. Using a simplified expression
for the known molecular orientations, the Kihara poten-
tial gives rise to a minimum in the energy at unit cell
dimensions of 7.6, 11,0, and 6.9 4; as can be seen in
Tables I and IV, the theoretical and experimental AH .,
are also in good agreement. However, this calculation
suffers from omission of the quadrupolar energy.

A major problem encountered in studies of the ben-
zene system is caused by uncertainties in the second
virial coefficient data®® % which have been measured
over a relatively narrow range of temperature. The
result is a rather severe problem in determining the
“pest fit” € and o for a given model. This is illustrated
in Fig. 14, where a 5% uncertainty in the smoothed
experimental points®® is indicated by the vertical lines;
some recent experimental data®® (with a stated preci-
sion of ~19%) are shown by the points. In fact, the range
of € and o that give a fit of the overlap model to these
data is so large that other criteria were introduced in
an attempt to optimize the values. Specifically, o was
chosen so that the size of the benzene molecule con-
formed to preconceived notions; i.e., so that the cor-
rect lattice size was obtained, if possible.

The overlap model with a (12, 6) potential plus quad-
rupolar interactions was first fitted to the data using
the semiempirical estimate® of @ listed in Table 1. The
“pest fit” curve is shown in Fig. 14; a « value of 0.5

was chosen for the oblate ellipsoid that represents the
molecular shape, giving a molecule with thickness equal
to half its diameter. Since the ¢ value listed in Fig, 14
(and in Table IV) for the (12, 6) model corresponds to
the diameter, the thickness would be 6 A. These di-
mensions are unreasonably large for a benzene mole-
cule. (Similarly large dimensions have been obtained
from the virial coefficients for a model composed of a
spherical Lennard-Jones (12, 6) function plus quadru-
polar terms. %) Figure 14 also shows the theoretical
curve for the smallest ¢ that still gives a fit to the data
(within 5% uncertainty); this value of ¢ is still much too
large to be realistic. Consequently, the overlap (28, 7)
model plus quadrupolar terms was studied; although the
best fit curve still corresponded to an excessively large
o, a theoretical curve could be constructed that fits the
data reasonably well with a ¢ value that also is capable
of accounting for the solid properties. This is shown
by the solid curve in Fig. 14, and the calculated solid
state properties are listed in Table IV. It is evident
that this model can be forced into agreement with both
the virial coefficient and the solid state data.

If we now take this overlap (28, 7) as the best available
representation of the benzene-benzene interaction,
curves of energy versus distance at fixed orientation
can be constructed, as shown in Fig. 15, We see that
the T-shaped dimer is the most stable (after the quad-

3.2__\ T T T I

Overlap, x=05

(28.7)
(12,6) —
. expt., ref 38

3.4 \ —

log (-B)
3.0+ -

log T

FIG. 14, The smoothed values of the experimental second
virial coefficients of benzene, with an uncertainty of 5%, are
indicated by the vertical lines; a recent set of measurements
is shown by the points, and the curves show the fit between ex-
periment and the theoretical virial coefficients calculated for
the overlap model (plus quadrupole energy) with fixed shape but
for different choices of potential parameters and for different
power laws for the distance dependence of the interaction.
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FI1G. 15, The interaction energy of a pair of benzene molecules
with fixed orientation is plotted as a function of separation dis-
tance, The potential is calculated from the overlap model and
a (28,7) power law, with and without quadrupolar energy Eqq.
The orientations chosen are the following: face-to-face

6y, 85, $=0°, 0°, anything); end-to-end (90°, 90°, 0°); and T-
shaped (0°, 90°, anything).

rupolar energy is included), and one predicts that a van
der Waals molecule (CgHg), should form with this con-
figuration, an intermolecular separation of 4. 8 A and
a dissociation energy of 2.3 kcal/mole. The fact that
the minimum energy in the end-to-end configuration is
quite close to that for the T-shape indicates that more
than one solid phase of benzene may exist, in agree-
ment with the experimental finding of a high pressure
monoclinic solid in addition to the orthorhombic phase.
It is interesting to note that an x-ray study indicates
that an important difference between the two phases is
that “the ring planes are more nearly parallel in the
monoclinic phase. 7%

The quadrupole repulsion causes the face-to-face
orientation to be repulsive at all distances, as shown
in Fig. 15; without the electrostatic energy, the overlap
model would predict a minimum energy of - 2, 3 keal/
mole at r*=0, 53 for a pair of benzene molecules in this
orientation.

In other studies,®'%!5 gne of the most popular poten-

tial energy models for benzene has been an atomic
model (which unfortunately does not include quadrupolar
energies). In this case, the very large number of
terms (144) in the summation of Eq. (1, 2) prohibits the
use of this model for any but the most restricted prob-
lems; nevertheless, calculations of the lattice modes
of both crystalline modifications have been performed“
in which the molecular positions in the crystals were
taken as known quantities., Even though the calculated

1297

frequencies agree well with the spectral data for solid
benzene, it is difficult to see how one could utilize this
model in studies of either the liquid or the gas.

Vi. DISCUSSION

The intermolecular potential functions obtained in this
work can obviously be used in a variety of ways. In
addition to the calculations of solid state lattice struc-
ture and intermolecular frequencies, and the properties
of the van der Waals dimers alluded to previously, stud-
ies of equilibrium and dynamics of the liquid can be
performed either by computer simulation® or by using
one of the more successful theories of the liquid
state. 1*#%% For examples, molecular dynamics com-
putations of the orientational time-correlation functions
for benzene have been performed using the overlap (12,
6) potential without quadrupolar terms.* It would be
of interest to compare these resuits with calculations
that utilize the overlap (28, 7) potential, and which in-
clude the quadrupolar interaction, Inasmuch as Fig.

15 indicates that the presence of electrostatic terms
strongly affects the probability of face-to-face orienta-~
tions of pairs of benzene molecules in the fluid, one
might anticipate that such terms will have a large ef-
fect on the angular correlations, static or dynamic.

Of course, it is straightforward to compute angular
correlations for the dilute gas. For example, in the
limit of zero density, one has ‘

[+ [ cos®o,, exp[-ulr, Q, Q)/kT]dQdRs
[+ [exp[-ulr, i, Q:)/kT]dQ dQ ’
6.1)

where cos ©, = cos 6; cos 9£+ sin ©; sin 6, cos¢. At large
separation distances, {cos®®©,,) approaches the random

(cosze” Y=

06 T T T T T T
0.5} —
~ Benzene, 4|0°K:
s no Eqq | 547°K
04 ¢
A
/N
é: “‘ \\..0 —————
> o34
g |3
o
N4 311° K
0.2 |
¢ 467°K Co,
?
] 311PK, no Eqq
0.l -
] | 1 ] ! | ]
00— 77 14 16 18 20 22 24

r/c.L

FIG. 16, The mean square cosine of 8;,, the angle between
molecular symmetry axes, is plotted as a function of reduced

distance for CO, and benzene. In each

case, the average was

performed at two temperaturesin the limit of zero density,
The effect of omitting quadrupolar energy upon angular correla~
tion for CO, at 311 °K is shown by the points,
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FIG. 17, Computed values of the depolarized light scattering
virial coefficient are shown as a function of temperature for
best fit models. Curves for N, were obtained for the diatomic
model; with and without quadrupolar energy and for the overlap
(12, 6) model, with quadrupole energy; for CO,, the diatomic
model with the overlap (28, 7) model without-quadrupole terms
was used, The values calculated for benzene are quite large
and thus are reduced by a factor of ten in order to fit them on
the figure,

orientation value of 1/3; at smaller 7, this quantity will
deviate from its limiting value as angular correlations
become important. Figure 16 shows curves of ( cosze,,)
calculated using the diatomic (12, 6) model for CO, with
and without quadrupolar energy and the overlap (28, 7)
model without quadrupolar energy for benzene. It is
evident that a sharp rise in (coszeu) ocecurs as r* ap-
proaches unity for this representation of benzene; this
corresponds to the large preference for face-to-face
orientations (with ©,=0°) at these diatances. Of
course, the probability of finding a pair of benzene
molecules at 7* less than 0. 8 is quite small unless one
omits Eyq , as indicated by the curves in Fig. 15. Since
this corresponds to /o less than 1,6, the behavior of
(cosaeu) at these distances is of no importance, phys-
ically.

It should be emphasized that a value of (cos®©;,) ~}
does not necessarily mean that all orientations are en-
ergetically equivalent; for example, the curves for CO;
in Fig. 16 pass through this point at »*=1,4; however,
the energy contours in Fig. 13 were computed for this
separation and show a strong dependence upon angle.

If we recollect that cos® 6= 4 for the “magic angle” ©
=55°, we see that an apparently random value can also
result from a probability distribution that is symmetric
about 64, =55°.

An observable that is explicitly dependent upon static

orientational correlations is the intensity of depolarized
light scattering.*® If one expands this quantity as a
power series in the density, a depolarized light scat-
tering second virial coefficient B g that accounts for

all but the collision-induced scattering can be defined as

B
BIS=T:§'§=J.°°/((%°°SZGH_§)

—ufr, szl,szz)] w21y A9 L dQ
xexp[———————kT y*dy* —— 1———417 2
(6.2)

47
Figure 17 shows curves of B;s calculated for the best
models of each gas considered. It is interesting to note
that the values for the planar benzene molecule are con-
siderably larger than those for the linear CQO,; it is not
surprising to find small B¥; for the weakly nonspherical
N,, especially at the relatively high temperatures shown
in the figure, It is unfortunate that experimental data
of this kind are apparently unavailable at present, since
they are one of the most direct measures of orienta-
tional correlation known.

Although the research reported in this paper was ini-
tially aimed at comparing the overlap model with some
other, better known representations of nonspherical
molecules, several additional results were obtained in
the process. Hopefully, the best-fit potential functions
obtained for the three nonspherical molecules con-
sidered here will prove useful in future statistical me-
chanical studies of these substances; more detailed ex-
perimental characterizations of the properties of the
van der Waals dimers of these and other simple sys-
tems should be extremely helpful in determining the
intermolecular interaction laws; and a reconsideration
of calculations of solid state properties (such as spec-
tral frequencies) is suggested in which potential func-
tions are employed that are simple enough to be useful
in studies of the liquid and the gas, but realistic enough
to give theoretical crystal structures and lattice fre-
quencies that agree with experiment.

We note that our experience with the overlap model
indicates that the most appropriate values of the indices
(m, n) in a power law expression for the distance de-
pendence of the energy appear to increase as the molec-
ular shape becomes more nonspherical; it seems likely
that this is a consequence of the presence of interacting
elements (atoms or regions of high electron density) at
large distances from the molecular center of symmetry.
The development of criteria for choosing (m, n) for a
given molecular structure would be an important step
in developing the overlap model into a convenient, re-
alistic representation of the nonelectrostatic part of the
intermolecular interaction energy of polyatomic mole-
cules,

*This work supported by grants from the National Science
Foundation,
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