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Using a frequency-dependent rotational friction coefficient and viscosity, the angular velocity and linear

velocity correlation functions are calculated for a spherical test particle in a viscoelastic fluid. The theory is
compared with molecular dynamics data using values of the shear viscosity and viscoelastic relaxation time
found from kinetic theory and from least squares fits to the data. While good fits are obtained in all cases,
the viscosities obtained from fits of the angular velocity correlation function are much smaller than the

Enskog values.

. INTRODUCTION

In the early work of Stokes! and Perrin, % the drag
forces and torques on a uniformly translating and ro-
tating spheroidal body were computed by solving the
Navier-Stokes equations for an incompressible viscous
continuum fluid subject to boundary conditions ranging
from complete stick to slip in the low Reynolds number
limit. The friction constants obtained in this approxi-
mation are well-known and have been applied quite suc-
cessfully to polymer dynamices.

In recent years, it has been shown that these fric-
tion coefficients also describe translational and rota-
tional diffusion in simple fluids. For example, Alder,
Gass, and Wainwright® have shown from a computer
simulation of a neat fluid of smooth spheres that the
translational friction constant is within machine error
4mna, where 7 is the shear viscosity and a is the sphere
radius. This is precisely the Stokes result for slippery
spheres. In addition, Hu and Zwanzig* have solved
for the drag torque on a uniformly rotating slippery
spheroid by using a variational principle. Assuming
that benzene is an oblate ellipsoid, their results are in
striking agreement with the recent dynamic light scat-
tering results of Bauer ef a/.° Recently, this approach
has been extended to a more fine grained structure of
benzene leading to the expected improvement.® On the
basis of this, plus much evidence not cited here, it is
fair to conclude that molecular hydrodynamics is quite
successful for the prediction of certain transport co-
efficients.

Several years ago, Zwanzig and Bixon’ generalized a
theory of Boussinesq and applied it to a calculation of
the velocity autocorrelation function of a particle mov-
ing in a neat fluid. In this calculation, the particle
translates nonuniformly in a compressible viscoelastic
continuum fluid. Zwanzig and Bixon solvedthe Navier—
Stokes equations in the low Reynolds number limit for
arbitrary boundary conditions, that is, boundary con-
ditions intermediate between pure slip and pure stick.
Using a single viscoelastic relaxation time model, this
theory gives qualitative agreement with computer simu-
lations. More recently, Verlet ef al, have shown that
with a two relaxation time model, they can reproduce
many of the details of their machine calculations, Anin-
teresting feature of the Zwanzig—Bixon model is that it
also leads to the correct asymptotic #-%/2 tail observed
by Alder and Wainwright. 8
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O’ Dell and Berne® have recently studied the rough
sphere fluid by computer simulation, They have deter-
mined the angular velocity and orientational correlation
functions over a wide range of densities, but could not
explain their results on the basis of any well-known
model. It is therefore of considerable interest to com-
pute the angular velocity autocorrelation function of a
sphere in a compressible, viscoelastic fluid and to
compare this with molecular dynamics.

i1. HYDRODYNAMIC DRAG FORCE

In this section, we briefly indicate how the hydro-
dynamic drag on a sphere executing rotational oscilla-
tions in a compressible, viscoelastic fluid is found,
We resolve the velocity field v(f) into its Fourier com-
ponents v, defined by

v, = f dt e'ty(t).

The Navier-Stokes equation satisfied by v, is given in
convenient form by Zwanzig and Bixon, whose notation

w?v, +C3VV * v, - CEVXV Xy, =0 (1)

we adopt here, We must solve Eq. (1) subject to stick
boundary conditions on the surface of the rotating
sphere,

We assume the sphere to have radius R and angular
velocity Q(f), with Fourier components §,. The vel-
ocity field of the fluid must, therefore, satisfy

v,=9,XR @)
on the surface of the sphere,

We solve the Navier—Stokes equation using the vector
spherical harmonics of Morse and Feshbach, taking €,
along the polar axis. We expand the velocity field as

Vo= (A L+A,M+AyN),
where the vector harmonics L, M, and N are given in
Eq. (32) of Zwanzig and Bixon,” By symmetry, in
spherical coordinates v, has no component along the
unit vector specifying the direction of 8. On the surface
of the sphere, the only vector harmonic satisfying the

boundary condition Eq, (2) is M,,, so that the velocity
field is given by

vw =AIIM01’
or explicitly by
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Vv, = Ayhy(kr)sinba,, (3)
where &, =iV - iwp /1 and hy is a spherical Hankel func-

tion, Matching Eqs. (2) and (3) at =R gives
KR?
_ i -ik R
A= T irg e,

This is identical to the incompressible case, as would
be expected intuitively because a sphere rotating in its
own volume would not excite any longitudinal (sound)
modes in the fluid, The drag torque on the sphere is
then evaluated from the stress tensor as in Landau and
Lifshitz. ! The result gives a drag torque N, = - {(w)®,,
where {{w) is the frequency-dependent rotation friction
coefficient

t(w)=L 1 - (kR)?/3(1 - ik,R)]

and where ¢, =8mnR? is the static rotational friction co-
efficient. We find it convenient to use the Laplace
transform of the friction coefficient, which is defined by

()= fo Tat et ()

and obtained from ¢(w) by replacing —iw by p. The re-
sult is

tP)=td1+a?p/3(1 +avp)], (4)

where the penetration time a? is a?=p,R?/7 and p, is
the fluid density (a? is the time required for transverse
momentum to diffuse distance equal to the radius of the
sphere).

I1l. HYDRODYNAMIC ANGULAR VELOCITY
CORRELATIONS (AVCF)

The Laplace transform C(p) of the normalized AVCF
is found from linear response theory™ to be

~ 1
ce® Tp+E@®/T

It is useful when discussing rotating spheres to define
a loading parameter k=I/mR? where I is the moment
of inertia and m is the mass of the sphere. The param-
eter k¥ measures the rotational inertia of the sphere and
can vary between k=0 and k=3, depending on whether
the mass is completely concentrated in the center of
the sphere or entirely on its surface. Intermediate val-
ues of k correspond to other mass distributions, An-
other property of importance is the mass density p of
the sphere, relative to the mass density p; of the sol-
vent,

If time is measured in units of the penetration time
a?, or equivalently p is measured in units of @2, then
C(p) can be expressed as

- 1 +Pl/z
CO) =G T z/Np + 6/ P7E46/A

where X is a parameter combining the effects of bouy-
ancy and inertia

A=K p/ps.

The denominator can be factored so that

~ 1+Vp
CO = W T 155 (5)

where —a, —b, and — b* are the roots of the cubic equa-
tion

A+2 6 6
3 2 -
X +<7\ >x +7\x+7\ 0.

The Laplace inverse of Eq. (5) is then found to be

C(1) G —aé;z(; 11 2 e®* erfe(av1)

+2Re(7_b—§)b*)_(—b1):a—) " exfe(bV7), (6)

where erfc(x) is the complimentary error function of x,
A similar result has been reported by Subramanian and
Davis, 1

The extension to viscoelastic behavior is done by sub-
stituting a frequency-dependent viscosity 1(p) in place
of 7. The single relaxation time approximation is
written

n(p)=n/(1 +vp),

where vy is the viscoelastic relaxation time (in units of
a?), It is, of course, possible to use more complicated
models of viscoelasticity.

The Laplace transform of the AVCF becomes

G- AL +yp)(1 +VA)
MY (N +2)A+8AYE 6

where A=p(1 +yp).

(M

C(p) can be expressed in factored

form as
- (1+yp)(1 +VA)
CO) = A VA DT F) ®

where @, b, and b* are the same as in Eq. (5). We use
the Mellin inversion formula to find C(f), noting from
Eqs. (7) and (8) that C(p) has branch points at 0 and
-1/ and three poles in the complex p plane. The in-
tegral

C(t):-—l—- fl.qmdpe"

27 ey

A1 +yp)(1 +AV D)
A2 (N 2)A +8AY2 18

(9)

can be evaluated by closing the contour as indicates in
Fig. 1. As R—~« and €— 0 (see figure), the integral
along AB becomes the integral of Eq. (9). There is no
contribution in the limit from the semicircles BC, DE,
and FA, The integrals along CD and EF cancel except
between the branch points. Separating Eq. (8) by par-
tial fractions to calculate the residues at the three poles
and using Eq. (7) to evaluate the integrals along the

cut, we have

1-V1+dyad 1+V11dya? )
C(')=( i )ex"(‘ P

- 2 b2 1/7
+ ZRe(—lﬁYL) exp (_ My_ 1>+2_7\ f dxe'Xt
V1 +4y b2 2y T Jb

(1 —yx) (1 —yx)]*/?
Oy a1 —yo6 —xnd —y0p 10

Note that as ¥ — 0, the pole terms vanish and Eq. (10)
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p—plane

FIG. 1. Contour used for the integral of Eq. (9).
cut is indicated by a heavy dark line.

The branch

becomes an integral representation of Eq. (6).

IV. DECAY OF THE AVCF AT LONG AND
SHORT TIMES

In this section we find the limiting behavior of the
AVCF at long and short times and compare it with pre-
vious results. First consider the behavior of Eq. (10)
at t—~, Ignoring the pole terms, since their asymp-
totic behavior is uninteresting, Eq. (10) becomes

20 t/r 2
cw=2 £ dze

B
RIS e

In the limit = it is clear that

where z = xt.

c(t)~ ts/zfdz 2
_ A
‘z4rt

where £ is in reduced units.

A Rz 5/2
C(t)-m(;t—) ] )

This result is in agreement with the asymptotic be-
havior predicted from generalized hydrodynamics by
Ailawadi and Berne!* and corrects a slight misprint in a
previous result given by Berne,® Note that viscoelas-

In real time

ticity does not alter the long-time behavior of the AVCF.

Now consider the behavior of the AVCF for £<1,
Expanding Eq. (8) to lowest order in 1/p and taking p
- we obtain

cp)~ H},g 0(;)

Laplace inversion shows that the initial decay of the
AVCF is given by

C(t)~1—-——=1+0(t?. (12)

7\«/_
Thus, the initial decay of the viscoelastic AVCF is
linear, Similarly, the initial decay of the viscous
AVCF of Eq. (6) is found by an expansion of Eq. (5):

1 2 1
C(p) I; —W +O<Z)-2-> ,
which gives on inversion

c(H~1- JT +0(1), (13)

\/_
Note that for £<1 this decay is faster than exponential
(indeed, at the origin, the viscous AVCF has infinite
slope). This clearly shows that viscoelasticity is re-
quired if a hydrodynamic theory is to reproduce the
linear initial decay required in hard systems,

The initial decay of the AVCF is governed by binary
collisions rather than hydrodynamic effects., In an as-
sembly of rough spheres, it follows from the exact col-
lision dynamics that the short-time behavior of the
AVCF is®

t
Cl(t = 2
C(fy=1- 3(k IR +0(8?), (14a)
where the collision time £, is
1 _ 2 B T\M 2
3= amopof) (140)

where 0=2R and g(0) is the equilibrium radial distri-
bution function at contact between two spheres. Com-
paring Eqs. (14a) and (12), we find an expression for
the viscoelastic relaxation time in terms of the viscos-
ity 7 and the collision time (in real time):

9(x +1)? <nt )

o (15)

We will return to this point later.

V. COMPARISON WITH MOLECULAR DYNAMICS

As atest of the hydrodynamic behavior of the AVCF
and VCF, we compare our theory with the molecular
dynamics results of O’Dell and Berne® for the rough
sphere fluid,

Since the present theory has its origin in macro-
scopic hydrodynamics, ithas in it two undetermined
parameters—the viscosity and the viscoelastic relaxa-
tion time., We have shown previously how the visco-
elastic relaxation time can be found for hard systems
from the Enskog theory. The Enskog viscosity for the
rough sphere fluid has been found by Dahler and co-
workers?® 18 to be

n= 17"(1 +5K 5 bng(cr))

K+1

16 P80 Txsd (—) " ong(o),

7= 15 (K+1)2(ka 1/2
T 80%g(0) 6+13k \ 7 ’
b=%2m02 ps=nm,
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TABLE I. Comparison of Enskog and least squares parameters for the AVCF and VCF.

P B(Enskog)  p(fit, AVCF)  B(fit, VCF)  7y(Enskog, AVCF) ~y(fit, AVCF)  ¥(fit, VCF)
0.100 5.46 0.383 2,13 0.0868 0.128 1.20

0.333 0.855 0,103 0.598 0.0680 0.0909 0.3804
0.500 0. 597 0.059 0. 455 0, 0464 0.0639 1.06

0.625 0.536 0.040 0,528 0.0355 0, 0449 2.55

Using g(0) as found by molecular dynamics, we may
calculate theoretically the dimensionless parameter

B= fe 1k
“a? TpR®’

by which we characterize the viscosity in the rough
sphere fluid. We have also found B8 and X numerically
by a least squares fit to the molecular dynamics data.
Table I compares the parameters obtained from the
Enskog theory with those obtained by least squares.
Figures 2 and 3 show the agreement between the molec-
ular dynamics data and the theoretical correlation func-
tion obtained by least squares. For p=0, 333, molec-
ular dynamics data accurate at longer times were ob-
tained, 7 and the least squares fit to the AVCF is dis-
played in Fig. 4.

Table I shows reasonable agreement between the
least squares and Enskog values of 8 (note that we did
not attempt to calculate y theoretically for the VCF,
since the theoretical VCF does not have the proper ini-
tial value). For the AVCF there is reasonable agree-
ment between the Enskog and least squares results for
the viscoelastic parameter v but poor agreement for
the viscosity parameter 8, the values of from least
squares being much smaller than the Enskog values,

If the AVCF is computed using the Enskog initial

slope and viscosity, the function so obtained has large
unphysical oscillations, seen in Fig. 5. We cannot rule
out the possibility that some more sophisticated descrip-
tion of the viscoelastic response might produce agree-
ment with the data using the Enskog viscosity. It is, how-
ever, true that the theoretical AVCF does not become
asymptotic until a much longer time than required for
the theoretical VCF to become asymptotic, as seen in

-

AVCH

1 1 L L L L I L L

6 0 2 4 6 O 2 4 6
TIME IN MEAN COLLISION TIMES

FIG. 2. Comparison of theory and experiment for the AVCF.
The points are the molecular dynamics data of O’Dell and
Berne, and the solid curve is computed from Eq. (10). 0
=n0%/VZ is the number density relative to closest packing.

Fig. 6. It is therefore clear that it will be very difficult
to observe the long time tails in the rotational motion,

APPENDIX A: VISCOELASTIC THEORY OF THE
VELOCITY CORRELATION FUNCTION (VCF)

In this section viscoelasticity is introduced into the
Boussinesq friction for a translating particle and the
VCF is computed. In a later section this result is com-
pared with the molecular dynamics study of the rough
sphere fluid.

The Boussinesq result for the translational friction
iglt
¢(w)=6mMR — 2rR%wp - 67R%Y Twpn. (A.1)
The Laplace transform {(p) expressed in our units, is
t@)=tr[1+(/9p+VP],  £r=6mnR.

Note that this is the result obtained for stick boundary
conditions. Using the viscoelastic model introduced
for the AVCF,

£V~ (1+ B39 5 (1 +79) (4.2)

1+yp

and following a similar development, the Laplace trans-
form of the normalized viscoelastic VCF is found to be

(A.3)

~ 1

Culp) Tpt)/m
B 2e(1+yp)
TRe+1p(1+vp)+9VD(1+vP) +9°

where €=p/p,.

We find the inverse Laplace transform by a contour
integration, the result is

VCF

L 1 L

50 2 4 60 2 4 &
TME IN MEAN COLLISION TIMES

FIG. 3. Comparison of theory and experiment for the VCF.

The points are the molecular dynamics data of O’Dell and

Berne, and the solid curve is computed from Eq. (A.4).
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AVCF

L L

o] 2 4 6 8 10 12 14
TIME IN MEAN COLLISION TIMES

FIG. 4. Comparison of theory and experiment for the AVCF
at long times p=0.333.

2t a, 1+V1+yad t)
cu=-F [Fm 0 - VTeH® exp(- Hp R

i O - TR exp L TR )]
18¢ (V7 VH(1 —yx)¥?
A (g~ (@e+ a1 —y2)F +81x(1 - y2)
(A.4)

dxe™*t
0

where a, are given by

9
a*—m[liv 1—%(26-#-1)].

Note that this correlation function has an initial value
less than unity, reflecting the fact that a particle in an
incompressable fluid translates with an effective mass
M* =M+ %p,mR®. A similar result is given by Chow!®
(whose result corresponds to replacing M* by M in the
above equations). It should be noted that the long and
short time limits of the viscoelastic VCF are found to
be (in real time)

_S_ Rz 3/2
D =5 <E?> (A.5)

and

o8f

o6+

0.4

0.2
{a)

AVCF

-02r
L (b)

L TRt L L ' L

0 2 4 6 8 0 7 w4
TIME IN MEAN COLLISION TIMES

L L

FIG. 5. Curve (a) is the least squares AVCF for p=0.333.
Curve (b) is the AVCF with Enskog initial slope and viscosity.

2165

1OXAVCFx 172
o4t n
W 372
o VCFxt
Z —
0.2+
O 1 L 1 I 1 L I\ 1
0 20 40 60 80
TIME IN MEAN COLLISION TIMES
FIG. 6. Asymptotic behavior of the least squares VCF and
AVCF,

2¢ 9 t
C()y——— (1l -—— o(t?

v<)‘_02€+1<1 s «?)* (2), (A.6)
As expected, our asymptotic decay is in agreement
with the results of Ernst, Hague, and van Leeuwen!?
and Dorfman and Cohen,?® Note that for short times

the viscous VCF (obtained when y - 0) is to lowest order

Vi +0(t)) .

2¢ 18
€l S 2en (1 T (e+l)VT
=0

Once again, a purely viscous model does not give the
required linear initial decay.
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