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Molecular dynamics studies of two generalized forms of the rough sphere model are reported. The
generalization permits us to vary the coupling between rotational and translational motion through a stick
parameter A. The autocorrelation functions show deviations from the Enskog theory for all values of A
studied—indicating that collective effects are involved. It appears that the angular velocity correlation
function is the sum of two exponentials. A simulation of a mixture of disparate sized rough spheres was
also performed. It is found that the rotational motion of the small particle is not significantly altered upon
introduction of the large particles, but the linear velocity correlation function of the small particle differes
considerably from that of the neat fluid (in the time regime from 5~15 mean collision time units).

. INTRODUCTION

The rough sphere model® first proposed by Bryan is
perhaps the simplest particle that has rotational de-
grees of freedom. A collision between two such par-
ticles is of zero duration and results in the interchange
not only of linear momentum but also of angular momen-
tum. Molecular dynamics studies of the rough sphere
model have been reported previously.? In grazing col-
lisions between two smooth spheres there is no scatter-
ing, whereas a grazing collision between two rough
spheres can result in a large deflection angle. Rough
spheres are therefore the “stickiest” possible particles.
A number of schemes have recently been proposed to
generalize the rough sphere model to handle molecules
of an arbitrary degree or roughness. We shall con-
sider the dynamics of two of these models: the rough
domain model and the kinetic stick model. In both
cases a parameter A is introduced; A=0 denotes pure
slip, while A=1 describes the usual rough sphere mod-
el. Taking 0<A<1 gives intermediate cases of slip.

The main purpose of this study is to provide data for
a test of molecular hydrodynamics. In particular, we
are interested in the relation between the boundary con-
ditions to be used in molecular hydrodynamics and the
microscopic collision dynamics. The results of the
present study are discussed from this viewpoint in a
companion paper® which follows this one. In this paper
we discuss certain conclusions that can be immediately
drawn from the data.

Section II describes the rough domain model, while
Sec. III is devoted to a treatment of the kinetic stick
model. In Sec. IV we describe the molecular dynamics
method, which is followed by a section on the results
for the rough domain model for a neat fluid for A=0,
0.1, 0.25, 0.5, 0.75, 1.0, Section VI describes the
results obtained for a single component fluid made up
of molecules obeying the kinetic stick model. Some
preliminary results obtained from a simulation of a
mixture of rough spheres are described in Sec. VII,
and in Sec. VIII we discuss the results.

2This work was supported in part by grants from the National
Science Foundation.
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{l. THE ROUGH DOMAIN MODEL

When two rough spheres labeled 1 and 2 with linear
and angular velocities (v, v;) and (w,, w,), respectively,
collide the relative velocity of the points of contact on
the surfaces of the colliding molecules g,, defined by

€21 =Vz = Vy = $0x(03W, + 03 w;) (2.1)
is completely reversed by the collision, i.e.,
821 = — 8- 2.2)

Here @i denotes the unit vector along the line of centers
of the colliding molecules and the prime denotes the
relative velocity immediately after collision.

Recently, we have generalized the rough sphere
model.* If g,, is resolved into a part parallel to the
line of centers g, and a part perpendicular to this line
g,, then the dynamical law can be expressed as

g =8, (2. 3a)

g =(1-2by)g,, (2. 3b)
or

821 =g +8,=—8u+(1-2by)g,, (2. 3¢)

where b, =1 for rough spheres and b, =0 for smooth
spheres,

Turning now to the rough domain model we imagine
the surfaces of the two colliding spheres to be covered
by domains of roughness separated by patches that are
completely smooth. Furthermore, we assume that
these patches are distributed randomly on the surface
of a sphere. If o, is the fraction of the surface area of
sphere 1 that is rough and @, the fraction of the sur-
face area of sphere 2 that is rough, then the probability
of having a completely sticky collision is given by
a;ap =b,,. When b,, =1 the spheres upon collision obey
the dynamical laws for rough spheres, while if b,, =0,
the spheres upon collision obey the dynamical laws for
smooth spheres, Intermediate cases of slip are ob-
tained by taking 0< b,, < 1.

The collision dynamics of the rough domain model are
completely determined by the laws of conservation of
linear and angular momentum. If two such molecules,
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labeled 1 and 2, with linear and angular velocities (v,,
v,) and (w;, w,) collide, the velocities immediately after
the collision are given by

V{ =V +2Mz[(Ko+(1 = byy) Ky Kp) fn 821
(2.4)
(2. 5)

+ Dy Ky Kooy 1/ (K Ky + Kg),
“"1' =Wy — AMyK, [ by, (Rix g3y )1/ (K, K5 + Ko) B,

where il is a unit vector pointing from the center of
sphere 2 to the center of sphere 1 at contact, M, =m,/
(my +my), my is the mass of sphere 1 and m, the mass
of sphere 2, K=MK + MKy, and K;, K, are the reduced
moments of inertia defined as k; =4I,/m;0%, Analogous
equations apply for molecule 2. Here b, =1 for a rough
contact and by; =0 for a smooth contact. When b,, is
averaged over all collisions between particles of type 1
with particles of type 2 we obtain (by) = ,,.

It is a simple exercise to solve the Enskog equation
for the transport coefficients of a partially rough sphere
fluid. The shear viscosity of a neat fluid is (see Ap-
pendix B)

ng = Ang(rough) + (1 - X) nz(smooth), (2.6)

where the subscript E denotes the Enskog approxima-
tion. ng(rough) is the viscosity in a purely rough
sphere fluid and 7z{smooth) is the viscosity in a purely
smooth hard sphere fluid. Because A is the function of
collisions which are rough, 7, is seen to be the mean
value of the viscosity from rough and smooth collisions,
The same kind of additivity holds for the other trans-
port coefficients.

It is useful to consider the initial relaxation rates or
Enskog rates 1/7,(«) and 1/7,(a) of the linear and angu-
lar velocity correlation functions, respectively, of
particles of type ¢ in a binary mixture., These are
easily found to be

2

1:22:1 L v 1

(@) 6 T.(a,B)’ T,(a) :le Tula,B)’

(2.7

where 1/7,(a, B) and 1/7,(c, 8) are the contributions
from collisions of molecule of type « with molecules
of type B:

1 K“QB+(1+7\QF)KEKE]
79(05,{3) 'ZMB[ raB’

o
KoKg + K§

(2.8)

1 (ZMKX (2.9)

Tw(a’ B)— KaK8+K8‘> e

where the quantities I',; are

21 8kp T Y2
Log= 3 738 (Oqp) 03’5(@1:’_8 ) ’
where I, is % times the collision frequency, o,,=3(0,
+0g), ligg 18 the reduced mass of the particles, g(o,,)
is the contact pair correlation function, and #g is the
number density of component 8.

(2.10)

In the case of a pure fluid these formulas reduce to

1 (1+M+1 - 1 (1= 1
,(a,B)”  k+1 17" T rough) TV T Y 7 (smooth) ’

(2.11)

1 A 1 1
= =A -A) ———
T, BY k+1 Ty 7rough) © (1 )Tu(smooth) ’

(2.12)
where 1/71,(smooth) is zero, 1/7,(rough) and 1/
T,(smooth) are the linear velocity relaxation rates for
fluids with A=1 and A=0, respectively, and 1/7,(rough)
is the angular velocity relaxation rate for a fluid with
A=1, Thus, the Enskog relaxation times are seen to be
superpositions of the rough sphere and smooth sphere
relaxation times—as were the transport coefficients.

These formulas will be useful for checking the ac-
curacy of the molecular dynamics studies.

1. THE KINETIC STICK MODEL

The alternative model considered here is the kinetic
stick model. According to this model we assume that
when the relative kinetic energy along the line of cen-
ters exceeds a certain energy E,, the collision is rough;
otherwise, the collision is smooth. It is shown else-
where that the fraction of collisions that are rough is
given by*

A4 =8'BEc, (3.1)

where 8=1/kyT. As in the case of the rough domain
model A, varies from 0 (corresponding to perfect slip)
to 1 (corresponding to perfect stick).

The initial slopes of correlation functions arising
from this model are again given by Egs. (2.11) and
{2.12) (see Ref. 4), but the same kind of superpositions
should not be expected for the transport coefficients
because the dynamics of a molecule defined by the ki-
netic stock model will display much more correlation
than the dynamics for a partially sticky molecule de-
fined by the rough domain model. A hot molecule may
be involved in a sequence of collisions that are all rough
because the hot molecule may require many collisions
before its energy relaxes to a value below E,. In con-
trast to this, with the rough domain model collisions
will alternate between rough and smooth in a completely
random manner. The kinetic stick model does have the
virtue that it is completely deterministic, i.e., the
nature of a collision—whether rough or smooth—is de-
termined by properties of the molecules, and not by
some external source such as a random number genera-
tor. The rough domain model on the other hand lends
itself more easily to theoretical treatment.

IV. MOLECULAR DYNAMICS METHOD

Given the simplicity of these models it would be of
interest to test against them the tenets of molecular hy-
drodynamics., For this reason molecular dynamics cal-
culations were performed for a series of A values. The
rough domain model was studied for 2=0,1, 0.25, 0.5,
and 0. 75, while with the kinetic stick model 21 =0,1 and
0.5 were the systems simulated. In addition, we also
simulated systems with A =0 and A= 1,

The detailed comparisons with molecular hydrody-
namics are presented in the accompanying paper. s

A system of 108 identical particles was simulated by
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the usual molecular dynamics methods.? The reduced
density which is simply the number density expressed
in units of the density at closest packing was 0. 625,
This corresponds to the liquid phase

I-;Ep/pc.p. = (pos)/ﬁ’

where p is the number density., Reduced units were
employed in which the molecular mass is one, kzT =1
and the molecular radius is also one. The reduced mo-
ment of inertia « can vary from 0 to 2/3, We chose «
=0.4, which denotes a uniform distribution of mass over
the sphere.

(4.1)

The nature of a collision for the rough domain model,
i.e., whether it was to be rough or smooth, was deter-
mined by calling a random number generator (the IBM
subroutine RANDU on the 360/370 series). This routine
gives a sequence of numbers { §;, i=1,2,3, ...} that
are uniform in the interval (0,1). If £, was smaller than
A, then the collision dynamics were that of a rough
sphere; otherwise, the collision was assumed to be be-
tween smooth spheres.

For the kinetic stick model the relative energy of
approach 3 L,, 22 was computed; if this was greater than
E, [Eq. (3.1)], the collision was assumed to be rough.

Six runs of approximately 17000 collisions each were
performed for a given A and density, The phase point
consisting of the linear and angular velocities was writ-
ten on a direct access storage device at intervals of
1/4 mean collision time. Each run required approxi-
mately 10 minutes of CPU time. The value of the pair
distribution function at contact g(o,,) was computed dur-
ing the dynamics run from

guB(oaB)z(ZaBV)/[zﬁNa(NB— 6&8) TUZB]’ (4' 2)

where V is the volume of the box, N, and N; are the
number of particles of type « and 8, respectively, 7 is
the length of the trajectory, and Z,; is the virial cor-
responding to the pair «, 8 defined by®

c(t)

ZUB = 2 maoaﬂ(ty) * Avm(tr) 3 (4' 3)
7=

where 0,, =G,z i, With 0,5=(0, +03)/2, and AV,(¢,) is the

change in the velocity of molecule o at the yth collision.

For a binary mixture of particles a and 8 we can ex-

press the total pressure as

PV P,V PV P,V
—_— = oo’ . afl B8
NeT Yt NBT tMET T NETC (4.4)

where each individual pressure P;; can be determined
from

PyV _ 2 (21 N(N;~5;,)
N2T=W(§5) (N 08;85(03). (4.5)

In order to achieve good statistics in the simulation of
the mixture a larger system was studied, At first, 256
uniform particles at §=0. 625 were studied using the
“cell method” of bookkeeping (see Appendix A). The
initial configuration for our mixture was then obtained
by selecting eight particles out of the 256 and swelling
them to twice the radius of the remaining particles
(see Appendix A). The density of the small particles
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TABLE I, Initial slopes in mean collision times for the rough
domain model.

1/7, /7,
A Exptl. Theory? Exptl. Theory®
1.0 0.859 0.857 0.463 0.476
0.75 0, 821 0,810 0,356 0,357
0.5 0,766 0,762 0,238 0,238
0.25 0,723 0,714 0.121 0,119
0,10 0,688 0,686 0,0488 0,0476
0.0 0, 663 0,666 soe

*Equation (2.11). YEquation (2.12),

was maintained at 5=0,625. In this way the effect of
the motion of large particles on the motion of small
particles can best be studied. The simulation of the
mixture was performed with both the small and big par-
ticle obeying the completely stick boundary conditions
(A=1). Also, « was maintained at 0. 4 for both kinds

of particles.

V. RESULTS FOR THE ROUGH DOMAIN MODEL

According to the Enskog theory of dense fluids cor-
related binary collisions are ignored. If one derives
the linear and angular velocity correlation functions
making the same assumption, one obtains the Enskog
correlation functions

C,(t, \y=e™ /Ty (5.1)
(5.2)

where 7,(N) and 7,(\) are defined in Eqs. (2.11) and
(2.12), respectively, We will first compare our results
with these Enskog correlation functions.

Colt, Ny =e !/ Tutn ,

Table I presents the initial slopes of the various time
correlation functions (CF’s) in the mean collision times
(mct), along with the theoretical predictions from Eqs.
{2.11) and (2.12):

1
slope = -~ log —— (5. 3)

¢
where C(t) was the very first point of the CF after C(0);
in our case this corresponded to the value of the CF at
1/4 mct. The uncertainty in the correlation functions
is + 0. 003 independent of time. Deviations from the
Enskog theory set in soon after such a time interval,
In keeping with our previous notation? the velocity and
angular velocity correlation times determined from
initial slopes will be referred to as the Enskog corre-
lation times.

The correlation times obtained by integrating the
CPF’s are denoted by (area); these times are displayed
in Table II. The data are in units of met. The uncer-
tainty in the areas is typically + 0, 025. Figure 1 shows
how the areas converge to a steady state value. It takes
on the order of 10-20 mean collision times for the pla-
teau to be reached. It is clear from Fig, 2 that the ex-
perimental correlation functions deviate from the En-
skog predicted forms. The nonexponential behavior of
the correlation functions indicates the importance of
correlated collisions (see below). On plotting the cor-
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TABLE II, Correlation times determined from the area for
the rough domain model.
T, (area)

Pogitive  Negative
A portion portion Total 7, (area) glo)
1.0 1,041 0.353 0,688 2,863 4.93+0,05
0,75 1.101 0.279 0, 822 3.707 4,93+0,05
0.50 1,190 0,287 0,903 5.305 4,92+0,05
0,25 1,276 0,238 1,038 10,450 4.92+0,05
0.10 1,341 0.213 1.128 23,2502 4,93+0.05
0.0 1,410 0,161 1,249  --- 4.92+0,05

It was found that the experimental data did not go to long enough
times for the AVCF to have completely decayed to zero, The
value reported here was obtained by extrapolating the area till
a constant value resulted,

relation functions in units of the Enskog correlation
times 7,(}) and 7,() (Fig. 3) we observe that the AVCF’s
for different }'s approximately coincide. However, the
VCF’s display deviations from each other after £~ 37,
[Fig. 3(c)]. Therefore, collective effects are indepen-
dent of X as far as the AVCF’s are concerned, but the
same cannot be said for the VCF’s. Note, however,

that the minima in the VCF’s in Fig. 3(c) occur at
roughly the same point.

We find that the AVCF can be decomposed into a sum
of two exponentials, the first decaying with the Enskog
slope, and the second at a slightly smaller rate, ap-
proximately 0. 8 times the Enskog slope.

The variation in shape and depth of the negative re-
gion of the VCF at a series of A is shown in Fig. 4. With
increasing A the negative region increases, and the
position of the minimum occurs at an earlier time. As
noted earlier a grazing collision between two rough
spheres can result in a large deflection angle. Hence,
as A increases we can anticipate a deeper minimum in
the VCF. The areas arising from the positive and
negative parts of the VCF are separately listed in Table
II. The uncertainty in all these results is on the order
of 1%; hence, our aim is to establish qualitative trends.
Also in Table II we give the value of the pair distribu-

1.50r

5 H_"_“-—W——X—X—n—x—»—x—x 0.0
> * a Q.
@ 100+ T~ 2025
= e e T ©0.5
5 e v 0.75
« Tt —e—e—t—t—0o—o—s |0
w
& 050r
(0] i — L
0 10 20
TIME  (mct.)
FIG. 1, The integral of the VCF as a function of the upper

limit of integration for a series of the stick parameter A,
Time is measured in units of mean colligsion times (mct).
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FIG. 2., The angular and linear velocity correlation functions
for a series of the stick parameter A on a semilog plot showing,
respectively, the positive and negative deviations from the
Enskog result, The Enskog curves (not shown) are just
straight lines with slope given by Eqs. (2.11) and (2. 12).

tion function at contact g(s). This function is indepen-
dent of A, as expected, and provides a reasonable check
on the accuracy of the dynamics.

VI. RESULTS FOR THE KINETIC STICK MODEL

In contrast to the rough domain model (RDM), which
required the use of a random number generator, the
kinetic stick model (KSM) is completely deterministic.
It remains to be shown which of these models corresponds
more closely to physical reality. Table III summa-
rizes the data obtained for the two cases (A=0.1, 0, 50)
studied using this model. Figure 5(b) shows that prop-
erties for the KSM scale in a very nonlinear fashion.
In this context we note that in the negative region (in
the time regime from 5-15 mct) C,(1,£)=C,()\ ¢)
= C,(0,%), but that as A is varied from 0 to 1 C,(}, ¢)
approaches C,(1, ) much more rapidly in the KSM than
in the RDM.

The errors in the correlation functions are small
enough for us to conclude that the VCF’s for a given A
do differ for the two models discussed here.

Vil. MIXTURES

A mixture of eight particles of radius equal to twice
that of the 248 solvent particles was simulated. The

TABLE III. Correlation times determined from the initial
slope (Enskog) and from the area for the kinetic stick model.

T, (area)
Positive Negative
A 1/r, 1/r, portion portion Total 7, (area) glo)
0.50 0,764 0,233 1,168 0,328 0,840 5,093 4,95+0,05
0.10 0.684 0,044 1.339 0,233 1,106 25,750 4.,91+0,05

3See footnote for Table II.
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FIG. 3. (a) The angular velocity correlation functions are

plotted vs reduced time ¢/7,), where 7, are the experimentally
measured initial slopes given in Table I. (b) The linear velocity
correlation functions plotted vs reduced time (¢/7,), where 1,
are the initial slopes from experiment (see Table 1), (¢c) The
VCEF’s in (b) plotted on a different scale to show the negative
region, See Fig. 4 for further comments.
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FIG. 4. The velocity autocorrelation functions measured in
units of mean collision time, The uncertainty in the results
is £ 0,003, The points shown are not actual data points but a
guide for the artist, Data points were obtained at intervals of
0. 25 mct.

mass of the big particle was taken to be 8, while that
for the small particle was 1. In both cases the mass
wasg distributed uniformly in the spheres (k =0, 4) and
the stick parameter A, was set equal to 1.0. In these
units the moment of inertia of the small particle is 0.4
while that of the big particle is 12. 8, The density

of the small particles was 0. 625 after excluded volume
effects due to the big particles had been taken into ac-
count [the volume available to the small particles was
taken to be that of the box minus the excluded volume of
the big particles, the latter being $7(055/2)°x8]. The
results of the mixture will be compared with a simula-
tion of a neat fluid of 256 particles at a density p =0, 625.

In Table IV we present the results for the pair cor-
relation function and compare them with Percus-Yevick
theory,® denoted by PY. The uncertainty in gg5(055)
is large (+ 0. 80) because the trajectory was not long

TABLE IV, Collision rates and the contact pair distribution
functions for the mixture,

a B Las(0ag) PY r$, r*
s S 3.68+0,03 3.341 427,7 432,5°
S B 4,63+0,33 3.885 59,46 59.46°
B B 6.58+0,80 4,973 1® 1¢

25 denotes the small particle and B denotes the big particle.
"The normalization constant for I'% ia 226.
°Collision rates calculated from Eq, (7.1).
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FIG. 5. (a) The angular and linear velocity correlation func-
tions for the kinetic stick model. (b) The velocity correlation
functions at A=0.1 and A=0,5, studied with the kinetic stick
model. The uncertainty is again + 0,003,

enough to sample very many collisions between big par-
ticles.

The Mansoori—Carnahan—Starling-Leland’ (MCSL)
equation of state gives the total pressure of the system
as 0. 572 (in reduced units) compared to the molecular

dynamics value of 0,574+ 0,005, The latter was deter-
mined from Eq. (4.4). The compressibility and virial
forms of the Percus—Yevick equation of state yield

0. 598 and 0. 521, respectively, for the pressure, Thus,
the MCSL equation of state, in contrast to the PY equa-
tions of state, provides a surprisingly accurate value of
the total pressure of the system. Also given in Table
IV are the collision rates for the different kinds of col-
lisions; these are compared with the calculated rates
using

]
r*= (%) d FaB(NB - 6a(B) ’ (7- 1)

where I'*® gives the rate of collisions of molecules of
type o with particles of type 8 and I',; has been de-
fined previously. The latter are normalized to give the
correct value for big-particle collisions. In Table V
we compare the experimental relaxation rates with
those calculated from Eq. (2.7). They are given in
units of the mct for small particles colliding with small
particles, The agreement is seen to be extremely
good. The areas obtained from integration of the auto-
correlation functions are also given in Table V.

We have plotted the autocorrelation functions for the
mixture in reduced units (Fig. 6). To facilitate a com-
parison with the results obtained for the neat fluid cor-
relation functions for a simulation of 256 identical rough
spheres at the same density as the solvent are also
shown in Fig. 6. It is seen that the AVCF’s for the neat
fluid and for the small particles in the mixture very
nearly coincide, indicating that the big particle has little
or no effect on the rotational motion of the small par-
ticles. However, the VCF’s do not coincide in the nega-
tive region. The negative region of the VCF for the
small particles is significantly reduced, although the
packing is unchanged, i.e., the density p of the small
particles is still 0,625,

Viii. DISCUSSION

The rough sphere fluid has recently been studied by
Mehaffey et al.® They present a renormalized kinetic
theory for tagged particle motion in such a fluid which
includes the effects of correlated collisions, The ki-
netic theory is ableto account for all of the qualitative
features of our results and moreover it provides con-
siderable ingight into the nature of the deviations of the
VCF and AVCF from their predicted Enskog behavior,
An examination of the various mode coupling contribu-

TABLE V. Correlation times for the mixture in units of the
mean collision time for small particles colliding with small
particles.

1/1(9)* 1/7B) 1/7,(8) 1/7,(B)
Exptl. 0.974 0.486 0.529 0.255
Theory 0.961 0.474 0.534 0.263
Eq. (2.7)]
Area® 1,857 0.417 0,448 0,229

Symbols § and B denote the small particle and the big particle,
respectively,
YIn units of (met)"1,
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! a AVCF for neat fluid

° AVCF for small particle in mixture
4 VCF for neat fluid

® VCF for small particle in mixture

°

o
o

AUTOCORRELATION FUNCTION

—T T

O.OOIO L 2‘ 1 4 —
t/v
o
l e Neat Fluid
004 o Small Particle in
Mixture
1
. (c)
o02r l
S
o
-002+
\/’
-0.04f
o 10 2
t/c

tions reveals that for the VCF the coupling of the ve-
locity to density fluctuations in the fluid dominates for
short times and leads to a “cage” effect and an initial
negative deviation from the Enskog form. On the other
hand, the coupling to the transverse angular velocity
fluctuations of the fluid dominates for short times in the
case of AVCF leading to positive deviations from the
Enskog theory; coupling to the longitudinal fluctuations
of the fluid is precluded because of the symmetry of the
rough sphere. The negative region of the VCF is as-
cribed to the coupling of the linear momentum of the
tagged particle to the density fluctuations in the fluid,

It would appear from Fig, 4 that this coupling increases
with A, In fact, we find that the negative region dis-
plays a rather complicated dependence on the stick pa-

AVCF for neat fluid
AVCF  for big porticle in mixture
VCF for neat fluid
VCF  for big particle in mixture

e b o O

Ol

AUTOCORRELATION FUNCTION

0,0IE

FIG. 6. (a) Comparison of the small particle motion in the
mixture with results from a simulation of 256 identical rough
spheres. The time is given in reduced units; =7, for the VCF
and 7 =71, for the AVCF. 7,and 7, for the small particle are
given in Table V, while for the neat fluid 1/7, and 1/7, were
experimentally determined to be 0, 862 and 0,476, respectively.
(b) Comparison of the big particle motion in the mixture with
results for a neat fluid of 256 particles. Symbols as in (a).

(c) The linear velocity correlation functions in (a) drawn on a
different scale to show the effect of packing, The abscissa
denotes time in reduced units ¢#/7, where 7 is the experimental-
1y measured initial slope for A=1 in Table I,

rameter A. The total area under the VCF very nearly
goes as

1/7,(area)=A/7(area) + (1 - N)/7 $(area), (8.1)

where 7% and 75 refer to the areas under the VCF’s for
A =1 and 2=0, respectively, However, although
T,(area) is an inverse function of A, it does not simply
depend on X as 7, (area)=71F(area)/A. The translational
and rotational diffusion coefficients are related to
T,(area) and 7,(area) by Dy =(kT/m) 7,(area) and D,
=(kT/I)T,(area). The dependence of the diffusion co-
efficients upon A is displayed in Fig. 7.

The AVCF and the VCF are not simple superpositions
of the rough and smooth sphere correlation functions,
i.e., the relation

J. Chem. Phys., Vol. 67, No. 10, 15 November 1977

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4578

TRANSLATIONAL DIFFUSION COEFFICIENT
OF PARTIALLY ROUGH SPHERES (5=0.625)

i.4

o6

04r

ROTATIONAL DIFFUSION COEFFICIENT
OF PARTIALLY ROUGH SPHERES (= 0.625)

w._

40+
D

20

0 1 1 1 N 1
(0] 0.4 0.8
A

FIG. 7. (a) Dependence of the translational diffusion coefficient

upon A, Dy i8s given in reduced units where the mass of the
particle is one, its radius is one, and time is measured in
units of mean collision times, (b) Dependence of the rotational
diffusjon coefficient upon A, Dy is the same reduced units as
Dy [Fig. 7(a)].

C(t,)=C(t, A=1)+(1 = 21)C(¢, A =0) (8.2)

is not obeyed. As seen from Fig, 3(a), the AVCF ap-
pears to be very clearly a sum of two exponentials, the
first one having the Enskog slope and the second a slighily
smaller slope. The VCF displays a more complicated
behavior in contrast to the AVCF [Fig. 3(b)).

The kinetic stick model shows features quite distinct
from the rough domain model. In particular, the VCF

C. 5. Pangali and B. J. Berne: Rough sphere fluid. 11|

for moderate values of A (e.g,, A =0.5) approaches that
for A =1 in the time regime from 5-15 mect.

Finally, the results from the simulation of a mixture
of disparate sized rough spheres reveal that the AVCF
of the solvent particles is not significantly altered upon
introduction of large particles. Although it might ap-
pear that around ¢=4 - 57, the two AVCF curves in Fig.
6(a) differ, it must be pointed out that the accuracy in
this region is small (as indicated by the error bars).
However, a change in packing has a more profound ef-
fect on the VCF of the solvent particles [Fig. 6(c)]. This
is not altogether surprising since back-scattering
events which are of greater importance in the study of
the VCF than the AVCF® are likely to be altered in the
presence of the large particles. It appears from Fig.
6(c) that the presence of the large particles diminishes
the coupling of the linear momentum of the solvent par-
ticles to the density fluctuations in the fluid.

The data reported here will be used to test hydrody-
namic theories of the angular velocity correlation func-
tion and the concept of particle roughness.?

APPENDIX A, PROGRAMMING TECHNIQUES

The molecular dynamics (MD) technique used here
computes the trajectory of hard-core particles, sub-
ject to periodic boundary conditions. For an excellent
didactic exposition of the method see the treatment given
by Erpenbeck and Wood.® We describe here the book-
keeping method used for our code.® Two lists of neigh-
boring cells were enacted. In the first the neighbors
of each cell were listed such that no two cells were
counted as neighbors more than once. This list was
used to initialize the program. After a collision has
occurred one needs to recompute only the collision
times for the molecules involved in the collision with
the rest of the particles. The second list gave the 26
neighboring cells for the cell containing one (or both)
of these molecules, so that once a collision had oc-
curred the code identified the cell containing the collid-
ing particle (or particles) and then proceeded to com-
pute fresh collision times with particles in that cell and
in the neighboring 26 cells. The region required for
these two lists was found to be nominal.

A few words on the swelling procedure used for gen-
erating the initial configuration of the mixture would be
in order. First, the box containing the 256 particles
was expanded to the required size. Then eight of the
particles were selected at random and identified for the
swelling. A list of collision times was drawn up and
the shortest collision time £, selected. The system was
advanced in time by 3£, and the distances between the
eight particles and their nearest neighbor particles cal-
culated. The smallest of these distances v, was se-
lected and the radius of the eight particles was in-
creased by ~v,/2. Fresh collision times were com-
puted and a collision performed. The procedure was
now repeated by computing collision times, finding £,
advancing by ¢,/2, etc. until the radius of the eight se-
lected particles reached the desired value.
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APPENDIX B

Let us first consider the binary collision operator Tj,
for a collision between a molecule 7 and j. If the col-
lision is rough Ty, = T},, whereas if it is smooth 7},
= T3, This allows us to write

Tu=buT?1+(1 'bu) Tf,':TiJ(bif)s (B1)

where b;, =1 if the collision is rough and b, =0 if the
collision is smooth. Thus, the T operator T7y,();,) is a
linear function of &,,.

The total Liouville operator L is

L=L0—ZTU(bil)’ (B2)
i>J

where L, is the free particle Liouvillian and the sum

goes over all pairs of particles.

In the rough domain model a collision is rough or
smooth depending on the value of b;; sampled. For each
collision the value of b;; is sampled independently and
the average value of by, is (b;;)=A. Thus, the various
b;,’s are statistically independent.

In order to formulate the dynamics of the rough do-
main model, we must use the theory of stochastic
Liouville equations, First note that the resolvent or
Green’s operator is

1

G(Z’)“—‘m . (B3)

4
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Substitution of Eq. (Bl) in (B3) gives after obvious
operator manipulations

Gl2*)=Gy(2*) + ;j Go(2*) Ty, (by,) Go(2")

+ Z Z' Go@*) Ty5(5;;) Go(2*) Ty (bay) Go(2*) +.. L

i>f Pl

(B4)
where Gy(2*)=(E - Ly+in)™ is the free particle Green’s
operator and where adjacent 7’s can’t involve the same
pairs [i.e., (i,j)#(k, 1)]. Let G(z*) be the average
Green’s operator, i.e., the operator averaged over the
independent random variables b;,. Since Gy(z*) doesn’t
depend on the &’s, it follows that

Gz =6y(2")+ 2 Gofe") TyyGola”)

+ Z E’ Go(2*) T“GO(z*) TmGo(z’)+ ey (B5)
7 w1
where the average T operators are given by
Ty=TH+Q=-NTF. (B86)
Thus, Eq. (B5) may be resumed to give
5(z')=<z—L0—§ i‘_”+ir/>-l . (B7)

This shows that the Liouvillian for the rough domain
model contains the average T operators. Standard
tricks may now be employed to derive the Boltzmann—
Enskog equation!

(a;zﬁuvl-wm"zr-%) f1=)\[ff(g21er?)o(fl'f;—flfz)dlcdwdeaHl—A)ff(gzl~i€)o(f{f; —fif2)dRdV,.

Here F=F(r) is the external force upon a molecule with
center of mass at r, f; =f(r, V;, w;; f) is the singlet dis-
tribution function prior to a collision, and f;=f(r, V,,
w;; t), where the primed variables are defined by Eqs.
(2.4) and (2.5). Solving Eq. (B8) in the manner out-
lined in Chapman and Cowling (Ref, 1) we obtain the de-
sired result [Eq. (2.6)]

Ne=ANg+{1-2)n,. (B9)

Similar results apply to all other transport coefficients.
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The bookkeeping scheme used in our code was an adaptation
from a scheme devised by L. Nady.
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