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In recent theoretical investigations of hydrodynamic
interactions in dilute solutions of spherical Brownian
particles, I? we have observed that translation-rotation
coupling plays a fundamental and somewhat unexpected
role, In this note we point out several approaches to
this problem and their surprising consequences,

Consider a model of rotational relaxation in solution
making the assumption that the velocities u, of all par-
ticles are zero (i.e., a lattice of rotors). By well
known hydrodynamic technigues, the rotational self
diffusion tensor satisfying stick boundary conditions is
found to lowest order in the inverse interparticle sepa-
ration to be
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A similar calculation of the translational self diffusion
tensor, 3 for a nonrotating model (all angular velocities
Q, zero) yields
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In contrast, the hydrodynamic solution for two bodies
simultaneously rotating and translating gives® to lowest
order
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differing from (1) and (2) above in the distance depen-
dent corrections to the usual Stokes-Einstein terms.
Equations (1) and (2), correctly derived for models with
frozen translational or frozen rotational degrees of
freedom, none the less incorrectly represent the effects
of hydrodynamic interaction that would be observed in

a real solution, Felderhof! has recently noted the dis-
crepancy between Eqgs. (2) and (3), but without sug-
gesting an explanation,

The difference between Eqgs. (1), (2) and (3), (4) is
due to hydrodynamic coupling between translational and
rotational motions, For spherical particles, this ef-
fect occurs only in multiparticle systems, That is, a
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single sphere subject to a force (torque) executes only
translational (rotational) motion-—unlike a propeller,
for example, However, a translating particle will exert
both a force and a torque on a second particle within its
velocity field. These effects® cannot be neglected in a
discussion of diffusion in many particle systems.

This is manifested in the generalized Einstein rela-
tion® satisfied by (3) and (4)
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Equations (1) and (2) correspond and are obtained when
the coupling terms {5, £zr in (5) and (6) are neglected.

We note that to lowest order only, coupling effects
may be neglected. That is

D5=kT(}7)™" DR =kT (£%)7,
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In this limit, the usual Oseen tensor description of in~
teractions between translating particles is recovered.

Finally it should be noted that both the translational
motion and the rotational motion along the line of cen-
ters is precisely the same for the two cases, that is,
for coupled and uncoupled rotations and translations,
ie.,

i" (D T)ll . ;[Eq (2)] =r. (Dr)u . ;[ Eq. (3)], (M.

T+ (Dp)y -« F[Eq. (1)]=# . (Dg)y - T [Eq. (4)], ®)

In this connection it should be noted that (D;),,, and
(D)2 are identical for the coupled and uncoupled
cases.®® The absence of the manifestation of trans-
lation—rotational coupling for motion along the line of
centers is a consequence of symmetry in the flow and
should persist to all orders in the interparticle separa-
tion, Accordingly the conventional procedures’ for cal-
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culating the hydrodynamic effect on the rate of diffusion
controlled reactions, which ignore rotations, are not
in jeopardy.
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Polymer solutions exhibit fascinating rheological be-
havior; they are non-Newtonian fluids. In order to
characterize such systems, one needs to know the nor-
mal stresses, in addition to the shear stress behavior
which determines the viscosity in the linear region.
Under shearing flow, normal stresses are second-order
quantities which depend on velocity gradients at least
quadratically. Relatively little theoretical work has
been done on molecular theories of normal stress.

Most existing calculations are for the simplified cases
of either free draining molecules or preaveraged hydro-
dynamic interactions under static flow; they have been
reviewed recently by Curtiss, Bird, and Hassager. '

Exactly soluble model polymer systems would be help-
ful in examining the mathematical approximations in-
volved in other calculations. Paul and Mazo® have found
an exact solution of Kirkwood’s formalism of rheologi-
cal processes for the model of a planar polygonal poly-
mer. They calculated the normal stresses under an
oscillating shearing flow among other transport process-
es. Recently, Curtiss, Bird, and Hassagerl have also
calculated normal stress differences for plane-polygons
in the free draining limit by using a Giesekus type for-
mula derived by them. Their result is different from
that published by Paul and Mazo.? This difference has
not previously been resolved. In this paper, we re-ex-
amine this question and repeat the calculation of Paul
and Mazo according to Kirkwood’s formalism. We find
Eqs. (24)-(28) of Ref. 2 to be in error. The corrected
normal stresses presented in the following agree with
Curtiss ef gl.? in the free draining limit.

We will use the notation of Paul and Mazo.? The im-
posed shearing flow, in laboratory coordinates, is

vi=¢€R- 3)e,, (1)
¢ =Relégexpliwt)] . (2)
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Then the excess stress tensor due to the solute particle
is
(©-0°)y==n) ((F,- &) R,- &), 3)
H

where F, is the force acting on the lth “pearl” at R;:

F,=—¢(vi-u)~t D T, F, 4)

s#l

T,s is the Oseen tensor.

For a rigid ring, the velocity of an individual element
u, is u; =Q%xR;, where @ is the angular velocity given
by

=Qy-Dg* Vinf. (5)

§, is the angular velocity that the polymer would have
in the absence of Brownian motion, Dy is the rotation
diffusion tensor, fis the distribution function for molecu-
lar orientation. An expansion of fin powers of the ve-
locity amplitude, &, has been given by Paul and Mazo, ?

The calculation then involves collecting terms of the
same power in ¢, in Eq. (3). Some of the g, dependence
comes from the f in the averaging process, some comes
from the f dependence of F,, through Eq. (4) and (5).
Paul and Mazo’s error occurs in missing one term of
order €5 contributed by the F; term in Eq. (3) for nor-
mal stresses. Omitting all the details, we present the
corrected results. We have not recomputed the €}
terms in the shear stress, given in Ref. 2; we believe
the linear (Newtonian) terms to be correct:
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