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The hydrophobic interaction between two apolar (Lennard-Jones) spheres dissolved in a model of liquid
water (ST 2 water) is simulated using the force-bias Monte Carlo technique recently devised by the
authors. Importance sampling techniques are devised and used to give a relatively accurdte determination
of the potential of mean force of the two apolar spheres as a function of their separation. This
determination shows that there are two relatively stable configurations for the spheres. In one
configuration each member of the pair sits in its own water cage with one water molecule fitting between
them. There is a free energy barrier separating this from the other stable configuration which is such that
no water molecule sits between the spheres. This conclusion is shown to be quantitatively consistent with
the recent semiempirical theory of Pratt and Chandler and is in disagreement with some previous Monte

Carlo studies.

. INTRODUCTION

The unusual properties of aqueous solutions of non-
polar solutes are often attributed to hydrophobic ef-
fects.! It is convenient to subdivide these effects into
two categories. Hydrophobic hydration refers to the
structure of the water molecules in the immediate
neighborhood of the nonpolar solute molecules, and to
the thermodynamic properties of very dilute solutions.
This is the subject of another paper.? The hydrophobic
interaction on the other hand refers to the solvent in-
duced interaction between two or more apolar solute
molecules. These interactions are thought to be respon-
sible for the stability of particular conformations of
biopolymers in aqueous solution, the stability of micelles
and membranes, and the association equiiibria of many
compounds in aqueous environments. Hydrophobic hy-
dration is readily observed experimentally, but because
nonpolar species are so insoluble in water, the hydro-
phobic interaction is not amenable to direct experiment.
Investigators have therefore tried to infer details of the
hydrophobic interaction from solubility data; that is,
from information on hydraphobic hydration.® This kind
of analysis is based on many assumptions and has re-
cently been called into question. Nevertheless, it is the
hydrophobic interaction that lies at the root of several
important phenomena and it is exceedingly important
to better understand this phenomenon. This is an area
where computer simulation can provide answers that are
not otherwise available,

The conventional view of the hydrophobic interaction
is based on a simple picture. Because nonpolar species
are relatively insoluble in water, it is assumed that
there are thermodynamic forces in agueous solution
that will drive two such species together to a much
greater extent than would be the case if these solute
molecules were dissolved in a more accomodating sol-
vent. It is not difficult to see where this driving force
arises. It is well known that the entropy of solution of

aThis work was supported by grants from the National Science
Foundation (NSF CHE 76-11002) and the National Institute of
Health (NIH ROl NS 12714-03).

YIn partial fulfillment of the Ph.D. in Chemistry at Columbia
University.

J. Chem. Phys. 747}, 1 Qct. 1979

0021-9606/79/192975-07$01.00

simple nonpolar solutes in water is negative. (e._g.,
AS¢.=~30.2 cal/moledeg). Most of this entropic
change springs from a restructuring of the water sur-
rounding the solute molecule—a restructuring that leads
to greater order in the solvent in close proximity to the
solute. Thus since two nonpolar molecules in contact
will order fewer solvent molecules than when they are
apart, the entropy change on bringing two solute mole-
cules together should be positive and should thereby
lower the free energy of the solution. From this follows
the clustering alluded to above. Thus our observation
that this is not the case should be cause for much in-
terest.

If g,4(7) denotes the pair correlation function of two
spherical nonpolar species (A particles) dissolved in
water, then the potential of mean force

Waal?) = ~ET Ing, ,(#)

is a good measure of the solvent induced interactions
between two A particles. W,,() is the reversible work
required to bring the two A particles from infinite sep-
aration (»=°9 to ». In a constant volume ensemble,

W, 4(7) corresponds to the Helmholtz free energy change
AA(r) for this process. In this paper, using computer
simulation, we determine the potential of mean force
W, 4{#) for a model of two Lennard-Jones spheres of
diameter 0,, =4.12 A “dissolved” in 214 ST2 water
molecules at 283 °K and a water density of 1 gmem™,
We find that W, ,(#) exhibits oscillations. Each LJ
sphere interacts with each water molecule with an LJ
12-6 potential (¢ ,y="77.82°K, 0,4=3.43 A) and the
simulation was carried out using the force bias Monte
Carlo technique with importance sampling in the (N, V,
T) ensemble with periodic boundary conditions using a
spherical cutoff with truncation »,=8.46 A,

Several computer studies have recently appeared on
the topic of hydrophobic interaction.?~ In one study the
average force exerted by the water molecules along
A—A “bond” was computed from a molécular dypamics
simulation® in which the bond length was fixed rigidly
at a sequence of values. This work showed that the
mean force along the bond was an oscillatory function
of the bond length #, a result in qualitative agreement
with the result reported here. Unfortunately, the ac-
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curacy of this force was judged to be insufficient to
permit the integration required to obtain the potential

of mean force. It is worth mentioning in this context
that Swaminathan and Beveridge’ have very recently
adopted precisely this approach for computing the mean
force between two methane molecules dissolved in water
using the MCY ? potential in a Monte Carlo simulation.
Because of the large errors inherent in this method
they also could not determine the potential of mean
force. Dashevesky and Sarkisov® claim to have deter-
mined the potential of mean force for two methane mole-
cules in water using an emperical potential. They did
not observe oscillation in W,,(7), in strong disagree-
ment with results reported here. It is important to
note that they used Monte Carlo procedure to compute
the Helmholtz free energy of the whole solution as a
function of the constrained distance between the methane
molecules. This approach is fraught with difficulties.
For a recent criticism see Ref. 9.

In a very interesting recent study A. Geiger et al.®
studied a pair of neon atoms dissolved in 214 ST2 water
molecules by the molecular dynamics method. The neon
atoms were intially placed in contact, and stayed there
for some time before jumping and settling into separate
cages with a water molecule separating them. This
work indicates that the conventional view of the hydro-
phobic effect may be simplistic. It also provided an in-
teresting picture of hydrophobic interaction. It was not
meant, nor could it be used, to determine the potential
of mean force of the neon atoms. V

In this paper we present the first accurate determina-
tion of the potential of mean force and we are able to
show rather convincingly that there are indeed two rela-
tively stable minima in W, ,(7) for the A-A pair. In
one position the A spheres are nearly in contact, where-
as in the other position an H,O molecule 8its somewhere
between the two A particles. The maximum in W, ,(7)
separating these two minima can be interpreted as a
barrier to the transition

A-A = A(H,0)A.

The conformation A(H,0)A is relatively stable because
the two A particles sit in two cages akin to the struc-
tures observed in the clathrate hydrates. The struc-
ture of the solvent in the neighborhood of the two A par-
ticles is discussed in detail in a separate paper. Using
the determined W, ,{(r), we are able to compute the
relative probability of finding the conformations A-A

vs A-H,0-A. This shows that the latter is more prob-
able than the former by a factor larger than would be
the case in a nonpolar solvent in which the solvent mole-
cules were the same size as a water molecule (diameter
2.8 f\). This result is not consistent with the conven-
tional picture.

Recently Pratt and Chandler®® have proposed a semi-
empirical model for calculating the potential of mean
force. The two apolar species are treated as hard
spheres. The system is modeled by integral equations
of the Ornstein-Zernicke type, which allows the solute—
golute pair correlation function to be expressed in terms
of the oxygen—oxygen pair correlation function goo(7)
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for pure water. Because no accurate ab initio theory
of pure water exists, Pratt and Chandler substitute the
experimental x-ray diffraction data for pure water into
their theory and predict a potential of mean force for
the two hard spheres. Their analysis of the potential
of mean force W,,(»), between the apolar species in-
dicates that the HI becomes more attractive as the size
of the solute particle is increased or as the tempera-
ture is decreased. Also, Pratt and Chandler!? find that
W, a(7) is oscillatory, suggesting that there are other
free energy minima besides the one with the two apolar
species in contact with each other. The second mini-
mum corresponds to the state where the two apolar
species sit in separate cages of water molecules, with
one water molecule located directly between the two
apolar species. We felt that a quantitative determina-
tion of W, 4(#) would be useful at this juncture. It will
contribute to our understanding of what goes on in a
well-understood model (ST2) of liquid water.! It also
allows us to test the recent Pratt-Chandler theory, a
theory that gives results markedly in disagreement with
the conventional picture of the hydrophobic interaction.
To our surprise the simulation shows that the theory is
qualitatively if not quantitatively correct.

The details of the calculation are presented in Sec. II.
Using a modification of the recently devised force-bias
MC technique, %13 we were able to determine W, ,(7).
Our approach in determining the potential of mean force
ig similar to that of Patey and Valleau'* who obtained
the same quantity for a pair of ions dissolved in a di-
polar fluid,

Although the material of this paper is subject to
criticism on the grounds that measured thermodynamic
quantities for aqueous systems display a strong depen-
dence on the type of boundary condition used for the
simulation!® we feel that the present study is justified
for the following reason. The radial structure, in con-

‘tradistinction to the angular structure, does not display

a marked dependence on the boundary condition.!® We
therefore speculate that the radial structure arising
from dissolution of spherical apolar species in water
will be insensitive to the boundary condition used in the
simulation. W, ,(r) for spherical species depends only
on the radial structure, and thus will be roughly inde-
pendent of the boundary condition. In any case this
study should be regarded as exploratory in view of the
difficulties of simulating water.!® The cost of simula-
tion imposes severe restrictions on the size of the sys-
tems to be studied and on the length of the runs. The
work described in this paper consumed over 100 hours
of CPU time on the IBM 360/91.

The results of the simulation are described in Sec.
I, together with a comparison with theoretical predic-
tions for W,,(»). The work reported here supports the
conelusions of Pratt and Chandler!® and takes issue
with the work of Marcelja et al. 18

{l. METHOD

In the MC simulation we considered 214 water mole-
cules at a density of 1g cm®, interacting with each
other through the familiar ST2 potential, !1:1%
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The usual spherical cut-off convention was used, with
a cutoff distance r, =8.46 A beyond which all interac-
tions were disregarded. The system also contained
two apolar species interacting with the water molecules
through a Lennard-Jones (12-6) potential with param-
eters 0,y =3.43 &, €,4/k="TT7.82°K:

=t - (2

The apolar species also interact with each other through
a Lennard-Jones (12-6) potential with o, , =4.12 A,
€aa/p=170.1°K. The A-W interactions were also
truncated at v, =8. 46 A.

(2.1)

Two apolar species labeled a and b, dissolved in
water and not constrained to any fixed position, will be
distributed according to the pair correlation function

gaal?),
gM(r) = eXD[ -8 WM("')] s

where W,,(¥) is the potential of mean force for the par-
ticles a and b. It should be noted that the procedure de-
scribed here could also be used in a MD simulation. As
seen from Eq. (2,2), W,,(r) can be easily deduced from
Zaa(7). In principle this could be determined by per-
forming a very long simulation of two solute particles

in water, thereby enabling the species a and b to sample
all possible separations r»,,. However, this approach is
fraught with difficulties, the principal one being that the
pair may get trapped at certain separations 7,, for very
long times.® Instead we determined g, ,(7) for smalil
segments, or windows, of 7,,, and then joined the vari-
ous portions of g,,(») as described later in order to ob-
tain the complete pair distribution function.

(2.2)

In a homogeneous system the density of molecules A
at a position r with respect to a given molecule of type A,

PagRA(Y) =<§; B(r - ra,,)> ,

depends only on the distance ». Expressing the delta
function in spherical polar coordinates allows us to
write

PAg?A)(‘V) =<bz*: ;.19: 8(r - 7,,) 6(u "unb)> s

where u,, is a unit vector along r,,. Integration of u
over 47 then gives

P(r)= 4npAg§2A(r) = <E pl— B(r - ra,,)> .

byr “ad

(2.3)

(2.4)

(2.5)

Specializing to the case where there are only two apolar
species of type A in water then gives

P<r>=4npAgxzx<r)=<pf: o(r—r,,,,)) , (2.6)

with p,=2/V.

In computer simulations the pair separation is treated
as a discrete variable. A mesh Ar is chosen and one
defines a coarse grained correlation function

1

Eamr)=55 |
AAVT § Ay r‘-Ar/ B

~ri*ar/ 2

drg@lr) . 2.7

2977

This differs somewhat from the coarse graining in previ-
ous computer simulations.

Substitution of Eq. (2,6) then gives

1 1
ganlry)= m<p: Ha(n,,,)> , (2.8a)
a
where
i A
1, »,- 92157“,,5 Y+ =LA ,
Hy(7,) = (2.8b)
20 , otherwise .

Adopting Eq. (2, 8a) to the Monte Carlo simulation we
find
(2.9)

M
gaalry)= 1 IIWE ?bi(a—)Hi[rab(a)] ’

47TpA Ar az1l “a

where v,,(a) is the separation between the two species
a and b in the ath configuration and the sum goes over
all M Monte Carlo configurations. Obviously only those
configurations contribute to the sum which lie in the ith
cell.

We restricted the range of v,, sampled in a given run
to a small value around rfh by applying a harmonic re-
storing potential between a and b:

Uylr,,) =3 Bylrgy — 2&)2; (2.10)

‘where ky is a force constant. Neither of the particles
was bound to a lattice point in the box; they were allowed
to wander freely within the constraints of Uy(r,,). The
two particles move in spherical shells of radius ~r2,,
around each other. An alternative form for the har-
monic potential is

Ul 7,5 ) = 3y (x4 ~ 2| % . (2.11)

The potential Uy would restrict the motion of the apolar
species to a much smaller volume than does Uyl(r,,).

For this reason we used Uy. Patey and Valleau!* in their
study of the hard dipolar fluid used weighting functions
{(instead of Uy) similar in form to Wya (7). Although the
final form of the potential of mean force does not depend
on the weighting function, a judicious choice for this
function aids in the convergence of W,,(»). Unlike Patey
and Valleau we did not have a well-tested W,, () to use
for the sampling and thus were forced to use a different
scheme—hence Uy(r). Apart from this extra constrain-
ing force the system is similar to the one used previous-
ly in the MD simulation. Of course, the temperature in
a Monte Carlo walk is always constant, unlike the case
of a MD simulation where it fluctuates around a mean
value. In our case T=298.0°K for the MC simulation.

Ensemble averages for the Monte Carlo walk can be
expressed as

fdrq drydrg .- dryAe® sy
(4)=

/dr,, dr,dry .-« drye™™¥

fdra <o dry (A/e'ﬂ"”) exp[— B(uﬂ+ui{)]

fdre cesdry (1/e'B“”) exp[— ;8(%\"4““!1)]
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fdr,, .+« dryexpl - Bluy + uy))
X

= <A/e-‘“”)”/(1/e-"”)ﬂ

(2.12)
where uy is the total potential energy of the system with-
out u,, ( ), denotes averages over an ensemble with uy
switched on, while { ) denotes average with u, switched
off.

fdra <« dryexpl ~ Bluy +uy)]

The Monte Carlo walk was performed with the force-
bias method (see Ref. 13), with parameters for the
translational and orientational steps for water molecules
set as follows: Ar=0.6 A, and A6=0.898 rad. The tem-
perature was set at 298 °K and the density of water was
constrained at 1 gem™, The solute particles were
moved with much smaller steps, Ar=0.06 A, in order
to ensure that a move involving the solute particle was
nearly always accepted. As pointed out by Owicki, °
not only does the system around the solute relax faster
if the solute particle is moved with a greater probability
than the solvent molecules, but the statistics for the dis-
tributions g,,(r) and g,y (7)—the latter is the apolar spe-
cies water distribution function—are greatly improved.
This arises from the fact that a successful move of the
solute will generate 1X (N ~ 2) new pair distances for
computing g,w(?), while a successful move of a solvent
particle provides only one new pair distance for g, (7).
The center of mass of the A-A pair was not held fixed
in the box because this would impose an unnecessary
constraint on the system. Four separate runs were
performed to study small regions A7r,,=1.4 A (or win-
dows) centered around initial A~A separations of 73,
=3.88, 5.33, 6.08, and 6.60 A. The starting configura-
tions were taken from the molecular dynamics study de-
scribed elsewhere.* Each run was further equilibrated
for 500 passes, after which averages were taken over
trajectories of 5000 passes (1080000 configurations) for
each window. At each pass the separation 7,, and ¥
were used to accumulate the distribution P(»), see Eqgs.
(2.7) and (2.9). 7,, was binned at intervals 67,,=0.15 A.

The procedure outlined here was first tested on a sys-
tem of two Ar atoms dissolved in 214 other Ar atoms de-
scribed by Lennard-Jones parameters 0=3.40 A, (e/k)

04+

0.24

P(r)
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=119.6 °K at a reduced density p* =0.77 and a reduced
temperature 7*=0.7. The object was to determine
roughly the length of the run needed to reproduce g(7)
for Ar by averaging over only the two harmonically
bound particles. With run lengths of 8000 passes our
g(r) differed by no more than 4% from another simula-
tion result'” using the usual method involving N(N —-1)/2
pairs.

We now describe our procedure for matching the P(7)’s
from the different windows. Let P,(7), Pa(7), Py(7),
and P,(r) represent these frequency distributions corre-
sponding to the windows around rﬁ,,: 1.20, 1.550, 1.750,
and 2.010, respectively (see Fig. 1) obtained from our
simulation on Ar. The distributions are assymetric,
reflecting the shape of the pair distribution function g(r).
The two distributions P(r) and P,(7) do not superpose
in the overlap region because the normalization constant
for the individual P,(r)’s depends in a nontrivial way on
the window. We therefore renormalize P,(r) to obtain
a new distribution P;(r) such that the latter is given with
the same normalization as P,(7). One simple way of
doing this is to require that at some point =7, both
P,(7) and P;(r) have the same numerical values, i.e.,

Py(r) =P,y x Ealal

Pr) (2.14)

In this manner we can obtain a single distribution func-
tion P(») covering the total range of r,, spanned by P(7)
and P,(r). As seen from Fig. 1, the statistics for these
distributions P,(7), i = 1,4 get poorer towards the tails,
so that if P,(r) and P,(r) are to be matched it is essen-
tial to do so at a point where both P,(r) and Py(») have
reasonable error bars, say for 1,350=7,=<1.450. Of
course, the final function should not sensitively depend
on where the matching is carried out.

ill. RESULTS AND DISCUSSION

To assess the accuracy inherent in the method used
to determine the pair correlation function, we performed
a MC simulation on neat liquid argon at a temperature
of 84 °K and a density given by p=0.77/0°. In Fig. 2 we
show the pair correlation function g(r) for Ar obtained by

FIG. 1. The probability dis-
tribution functions P,(r) defined
in Eq. (2.1) from the simulation
of two labeled Ar atoms in a
system of 216 Ar atoms. The
two labeled atoms were held to
together by a harmonic poten-

P3(r) tial and their motion was used
T to generate the P(r)’s shown
Pa (r) here.
o T —/
05 20 2.5
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PAIR CORRELATION FUNCTIONS FOR Ar

30
o—=2 THIS WORK
o—8 DATA OF KALOS et al.

20}

o
10k §
0 It 1 |
6] 1.0 2.0 3.0

r/o

FIG. 2. The pair correlation function obtained by matching the
P{rY's of Fig. 1. For comparison with the exact result we
show the data of Kalos et al. (Ref. 11).

the procedure outlined in Sec. II. In this method two
argon atoms are constrained using Eq. (2.11). For a
comparison with the exact result we have also presented
the g(r) given by Kalos ef al.'7in Fig. 2. The latter was
obtained from a lengthy simulation of 864 Ar particles
at the same density and temperature as our system, and
it may be regarded as the exact result. We normalized
our g(7) to yield the same value of g(7) as the exact re-
sult at »=1.10¢. It is clear that the method yields a
pair correlation function in fairly good agreement with
the exact result, except at large separations »/o= 2. 20;
corresponding to the large 7 tail of P,(»), where the sta-
tistics, as we have remarked before, are poor. Since
we were merely concerned with establishing the feasi-
bility of the method with the simulation of the Ar sys-
tem, we did not feel compelled to improve the statistics
for r=2.20 by undertaking another run with a window
centered around r~2,200. The good agreement for

r< 2,00 amply vindicates the procedure for computing
glr).

Given the success of our study on the simpler Ar sys-
tem we applied the method discussed here to a study of
two Lennard-Jones spheres dissolved in water. The
various distributions P;(r) were matched as described
in the previous section to obtain P(r). From Egs. (2.2)
and (2.3) it is clear that

P(r)=Cyexpl- W, . (")] , (3.1)
or, equivalently,
W (") =~kTIP(r)+C , (3.2)

where C and C; are constants. The potential of mean
force W,,(») determined from Eq. (3.2) with a particu-
lar choice of the constant C (see next section) is shown
in Fig. 3. W, () displays an oscillation. The first

minimum occurs at a separation of 4.34 A and corre-
sponds to the two particles being in contact. The second
minimum is located at 7.13 A which is roughly o,
+0y,0. The two minima are separated by 3.0 R, i.e.,
by roughly the diameter of a water molecule. The pre-
cise distribution of water molecules around the two A
particles as a function of their separation is discussed
in Ref. 2. Suffice it to say here that the second minimum
corresponds to a water molecule being located in the re-~
gion between the two A particles. The two mimima are
separated by a free energy barrier at r,=5.73 A. Con-
sider the pseudoreaction

A-A=A - (H;0)-A ,

where the left side corresponds to a configuration in the
first minimum and the right side corresponds to a con-
figuration in the second minimum. The barrier height
for the forward reaction is 0.95kT kcal/mole and for
the reverse reaction it is 0.46kT=0.27 kcal/mole. Thus
there is a free energy barrier which must be surmounted
in the reaction and this corresponds in part to the re-
moval of the intermediate water molecule.

IV. DISCUSSION AND COMPARISON WITH THEQRY

The Pratt—Chandler theory!? of hydrophobic interac-
tions is based on the ideas of the WCA theory of dense
liquids. The basic viewpoint is that the short range,
strongly repulsive part of the potential determines the
structure of the solution whereas the long range part of
the potential gives the enthalpy of solution. The start-
ing point is the breakup of

Upa(n) = UR(M) + URK) (3.3a)

@ MONTE CARLO
——— PRATT-CHANDLER RESULT

Wap /KT

FIG. 3. The potential of mean force obtained from a simula-
tion of two Lennard-Jones particles dissolved in 214 ST2 water
molecules is shown in circles. Solid line shows the Pratt—
Chandler result.
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Upw(r) = UR(r) +

where the U® and UV stand for the repulsive and at-
tractive potentials defined in the usual WCA sense. No
potential model is ascribed to the W~W interaction. In-
stead the measured g&3(») function is used. One of the
important approximations is that

U (3. 3b)

USR], (3.4)

where yii{») is the cavity function for the two A par-
ticles in a reference system in which the attractive
parts of the potential, namely U')(») and U, (») are
turned off. Likewise, gii(») is the pair correlation
function in this reference system. Pratt and Chandler
then approximate y'’) (») by the cavity function for two
hard spheres dissolved in water, that is

YUY = Yuol7) (3.5)

To compute vy, 7) for two hard spheres in real water,
Pratt and Chandler! propose and solve coupled “Orn-
stein-Zernicke like” integral equations. This intro-
duces several approximations. It is our aim to give a
measure of the adequacy of these approximations. To
this end then we note that when Eq. (3.5) is substituted
into Eqs. {(3.4)

FAVGERT (o) expl - BUR (M) .
Taking the logarithm then gives
WER(P) = =k Tinyys(r) + UQ(r) 5 >0 .

gl = gl =y QR exp[-8
Q)

{3.6)

This is the Pratt—~Chandler approximation to W, (7).
Pratt and Chandler have computed yy4(7) for two spheres
of variable diameter by solving their integral equations
and using the radial distribution function gi&(r) obtained
from x-ray diffraction studies on real water. In the
computer simulation we determined W,,(7) for two Len-
nard-Jones spheres in ST2 water —a system not exactly
corresponding to the model discussed by Pratt and
Chandler. To make a proper comparison we should use
the g‘a’(r) of ST2 water in the Pratt—-Chandler theory.
Unfortunately the computer simulation is based on a
finite system and cannot be used to determine the long
range correlations in ggg(r) which appear to be impor-
tant in the Pratt-Chandler theory. Thus we are forced
to compare the computer simulation with the same em-
pirical model using the x-ray diffraction data. This re-
quired solving the Pratt—Chandler equations for an
equivalent hard sphere diameter of 0,, =4.075 A. This
diameter was determined from the table presented by
Verlet and Weiss using our Lennard-Jones diameter of
oan=4.12 A,

The potential of meanforce, W3$ (r), obtained using the
Pratt and Chandler theory is compared with the result
of our computer simulation W,,(7), in Fig. 3. The
arbitrary constant C in Eq. (3.2) is fixed such that
W ES(r) = Wy (7) at the first minimum. This does not
affect the shape of W,,(7); it merely facilitates com-
parison between theory and experiment. The curves
appear to be in qualitative agreement. The second mini-
mum is deeper in the PC case. The reader will notice
that error bars for W, () grow towards small ». This
arises from a propagation of error from P,(r) to P (r)

Pangali, Rao, and Berne: Monte Carlo simulation of hydrophobic interaction

when the latter is rescaled to match the former. We
deliberately matched the P;(») from right to left in or-
der to keep the eifects of errors arising from the match-
ing of the P (»)’s to a minimum for the large » region

of W,,(»). This is precisely the region for which dif-
ferent theoretical predictions exist.

It is possible to define a pseudo “equilibrium constant”
for this pseudo reaction as

r2
K= XA-(HgO)-A/XA-A = f dr exp[ - fW an (1) ¥}/
1

frldrexp[-BWM(r) Y],
0

where 7, =5.73 A is the position of the first barrier and
7, is the position of the second barrier. In our simula-
tion we did not locate the second barrier. We thus take
¥Yy="7.75 10\, the maximum separation studied. Clearly
the K =1.81 obtained is smaller than would be the case
if we had located the second barrier. It is possible to
estimate the location and height of the barrier using the
Pratt—Chandler theory discussed in the next section.
This allows us to predict that our correct value should
be K~3.0.

In a recent paper Pratt and Chandler!® have predicted
on the basis of their theory for hard spheres in “real
water” that X =4.0 while hard spheres in a hard sphere
solvent {(with diameter 2.7 f\) gives K=2,90. Attributing
much significance to this difference, they concluded that
water led to considerably higher fraction of A — (H,0) -A
than would exist in an ordinary solvent. Given our re-
sult, we believe that caution should be exercised here.

Our results are in marked disagreement with the pre-
dictions of Marcelja ef al.® and of the Monte Carlo work
of Dashevsky and Sarkisov.® Both of them fail to see a
second minimum in W, ,(r), suggesting instead a mono-
tonic decay of W, () to zero after the first minimum.
Indeed, conventional wisdom on the hydrophobic effect
disdains the notion of apolar species separated by a
molecule of water. The very term hydrophobic suggests
as much. Our results demonstrate that although pairing
exists, it is not the only stable condition for a pair of
apolar species dissolved in water.

Ben Naim and others® have presented arguments sup-
porting the idea of a net expansion of the system when
apolar solutes are added to water. This suggests that
(N, P, T) ensemble is more appropriate to the study of
aqueous solutions on the computer than that (N, V, T)
ensemble used here. We chose the latter ensemble
partly because of custom and partly because of the cost:
Owicki and Scheraga® estimate the cost for volume per-
turbation acquired in the (N, P, T) ensemble to be N/2
times the cost for a single particle move. Moreover,
present model potentials for liquid water are not accu-
rate enough to give the experimentally observed densi-
ties when used in the NPT ensemble.

The influence of boundary conditions on the properties
of simulated water has been explored in Ref. 15. As
pointed out there, it appears that the radial structure of
water is comparatively insensitive to the boundary con-
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dition used in the simulation compared to the angular
structure. It is our belief, in view of this observation,
that our results reported here will not be greatly changed
in going to the cubic cutoff convention. However this
matter should be explored before extending the implica-
tion of our results to real system. A related question
is that of the size of the system. Here again we believe
our system to have been sufficiently large for interfer-
ence effects such asthe influence of the image of b uponthe
structure of water around a to have been small. It is
worth pointing out that previous studies of aqueous solu-
tions of apolar species!® have usually involved only 64—
100 particles. We have studied as large a system as
our budget would permit.

A question that may occur to the reader is the follow-
ing: Can one use W, ,(7) to simulate an aqueous solution
of apolar species. In this connection it must be borne
in mind that fluctuations are an important part of any
simulation. Although the well depths of W ,,(7) appear
to be small, a pair of apolar species trapped in either
of the wells will simply stay there for very long times,
as observed by Geiger ef al.® in their MD simulation on
a pair of Lennard-Jones spheres in ST2 water. It ap-
pears that the breaking of a cage of water molecules is
an extremely infrequent event. This information cannot
be deduced from W, ,(7) and therefore a simulation with
this potential and without any extra information on the
fluctuations of the system would give misleading results.

A detailed picture of how the water molecules distrib-
ute themselves around the two A particles as a function
of the A-A separation is given in a companion paper.?

ACKNOWLEDGMENTS

We would like to thank Professor David Chandler for
many interesting discussions, and providing us with their

2081

theoretical results.

lw. Kauzmann, Adv. Protein Chem. 14, 1 (1959).

’C. Pangali, M. Rao, and B. J. Berne, J. Chem. Phys. 71,
2982 (1979).

3A. Ben Naim, Water and Aqueous Solutions (Plenum, New
York, 1974). See Chap. 7.

‘C. Pangali, M. Rao, and B. J. Berne, ‘“Determination of the
Mean Force of Two Noble Gas Atoms Dissolved in Water,”

in “Computer Modeling of Matter,” ACS Symp. Ser. 86, 32
(1978).

5A. Geiger, A. Rahman, and F. H. Stillinger, J. Chem. Phys.
70, 263 (1979).

8G. Dashevesky and G. N. Srakisov, Mol. Phys. 27, 1271
(1974).

’S. Swaminathan and D. L. Beveridge, “Monte Carlo Computer
Simulation of Hydrophobic Bonding,” Preprint (1979).

80. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem.
Phys. 64, 1351 (1976).

8J. C. Owicki and H. A. Scheraga, J. Am. Chem. Soc. 99,
7403 (1977).

107, Pratt and D. Chandler, J. Chem. Phys. 67, 3683 (1977).

g H. stillinger and A. Rahman, J. Chem. Phys. 80, 1545
(1974).

2. Pangali, M. Rao, and B. J. Berne, Chem. Phys. Lett.
55, 413 (1978).

13M. Rao, C. Pangali, and B. J. Berne, Mol. Phys. 37, 1773
(1979).

4G, N. Patey and J. P. Valleau, J. Chem. Phys. 83, 2334
(1975).

15C, Pangali, M. Rao, and B. J. Berne, ‘A Monte Carlo study
of structural and thermodynamic properties of water: Depen-
dence on the system size and on the boundary conditions,”
Mol. Phys. (in press).

185 Marcelja, D. J. Mitchell, B. W. Ninham, and M. J.
Sculley, J. Chem. Soc. Faraday Trans. 2, 5, 630 (1970).

M. H. Kalos, J. K. Percus, and M. Rao, J. Stat. Phys. 17,
111 (1977).

181, Pratt and D. Chandler, Preprint {1979).

J. Chem. Phys., Vol. 71, No. 7, 1 October 1979

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



