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The Hamiltonian flow of a system of two degrees of freedom, capable of undergoing geometrical
isomerization, is studied as a function of the coupling between the reactive and unreactive degrees of freedom.
The reaction dynamics are analyzed from the perspective of the KAM theorem and the transition to chaos.
Conditions are found for the validity of linear rate laws and RRKM theory in isolated molecules.

I. INTRODUCTION

Geometrical isomerization can be described by the
motion of a reaction coordinate {often an internal angle)
in a double or multiple potential well. For isomerization
to occur, an isolated molecule must suffer an activating
collision with a photon or another particle. "' Ina very
dilute gas or in a molecular beam, the time between
successive collisions may be made very long on the time
seale of molecular vibrations., The subsequent dynam-
ies of the activated molecule under collisionless condi-
tions is of considerable interest. If the reaction coor-
dinate is not coupled to other intramolecular degrees of
freedom, the motion over the barrier willbe periodic,
rate constants will not exist, and the usual linear rate
laws will be invalid. When the reaction coordinate is
coupled to other intramolecular degrees of freedom,
energy exchange between modes may or may not give
rise to a linear rate law. If the coupling is sufficiently
weak, the dynamics will still be quasiperiodic and will
be described by motion on many dimensional invariant
tori in phase space.? In this KAM regime the usual
rate laws will be invalid. It is shown here that for weak-
ly coupled two-dimensional systems, for energies above
the barrier, the tori can be subdivided into two distinct
classes: frapping tori (TT) and crossing tovi (CT).
Motion on TT corresponds to librations in one or another
well with no crossing of the barrier. Motion on CT cor-
responds to periodic crossing of the barrier with no trap-
ping. As the “coupling”® is made stronger, there is a
transition to “chaos” in which a measurable subset of
CT are destroyed, but in which the TT are preserved.

In this region, motion over the barrier cannot get
trapped in any of the wells. An important consequence
of this is that again rate constants will not exist and the
linear rate law will be invalid. As the coupling is furth~
er increased, more and more of the CT are destroyed
until all of them are finally destroyed; only then do TT
start getting destroyed. At this point, some of the tra-
jectories which pass over the barrier get trapped for
periods of time in one or another of the wells. This is

a necessary condition for the existence of rate constants,
and for the validity of linear rate laws. We are still
uncertain as to whether it is a sufficient condition be-
cause, even though the motion is irregular, it displays
a great deal of coherence whenever the trajectory visits
regions of phase space near undestroyed TT. For very
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strong coupling, almost all the CT and TT are finally
destroyed. The trajectories are then highly stochastic.
In this regime it is clear that rate constants exist, and
moreover can be determined.

It follows from the foregoing that when the reaction co-
ordinate is coupled strongly enough to other intramolecu-
lar degrees of freedom that a large measure of TT and
all CT are destroyed, energy exchange between the
modes can give rise to linear rate laws, and well-de-
fined rate constants. If there is very rapid equiparti-
tioning of the energy between these modes, it might be
expected that the RRKM theory applies, and that the rate
constant can be computed using purely statistical argu-
ments. For illustrative purposes consider motion on the
potential energy surface given in Fig, 1. The reaction
can be described phenomenologically by

A¥E g,
Ryl E)

where k,(E) and k,(E) are the forward and backward rate
constanis at total energy E. Relaxation kinetics deter-
mines the kinetic rate constant

)

This is the rate constant in the exponential time decay of
an initial deviation from equilibrium, This rate con-
stant in the RRKM theory is!

1/Trrru= (X, Xp)* { (0)5[ »(0) -y JdyODg,

where X, and Xy are the equilibrium mole fractions of
A and B, y, is the value of the reactive coordinate
(ordinate in Fig. 1) corresponding to the barrier maxi-
mum, $(0)56] y(0) ~y.] is the flux over the barrier, and
6(31) is the unit step function specifying that > 0. The
step function counts only trajectories moving from A to
B. The (++- )z indicates an average over a microcanon-
ical ensemble. According to Eq. (1), all trajectories
initially passing over the barrier and moving from A
to B contribute to the rate constant-—even trajectories
that might during the next instant, recross the barrier.

1/ Tp =y (E) + R, (E) .

(2a)

The RRKM rate constant depends on an equilibrium
microcanonical average and thus does not depend on
the molecular dynamics. The true rate constant depends
on the dynamics and only under special circumstances
will RRKM theory describe the chemical dynamics.

Because RRKM theory plays a very important role in
the theory of chemical kinetics and in the interpretation
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of experiments, it is worth considering the circum- and
stances under which it breaks down. If conditions are
1/Tgp> 1/ Trrku - (5)

such that the energy hypersurface H(I') = E is metrically
decomposable into regular and irregular regions, then
any given trajectory crossing the barrier will not be
able to visit some measurable regions of phase space.
The motion will then be nonergodic and any statistical
theory, such as RRKM which assumes ergodicity will
be in error. It is nevertheless possible to pose a mod-
ified statistical theory in which it is assumed that all
states in the irregular part of phase space are “equally
prabable.” The details are given in Appendix A. This
leads to a rate constant 1/75, for a symmetric double
well

1 Q(E) ( 1 ) (

S A Sl AN (P 2b)
Too  SirelE) \Trrxu ’

where we assume that all crossing tori have been des-

troyed by the coupling, and where

drs [E - H(T)] (3a)
allT

QE)=

Qyer(E) = dT' 5[ E — H(T)] (3b)

irreg.T’

are, respectively, the full density of states at energy E
and the density of states counting only the irregular re-
gion of the energy hypersurface. Obviously

r(E)<QU(E) (4)

Inthis modified RRKM theory it is assumed thata trajec-
tory starting at the barrier can visit all parts of the ir-
regular region of phase space, i.e. , the motion in the
irregular region must be “ergodic” in the sense that
the trajectory spends equal times in irregular regions
of equal measure.

Even in a system where all the trajectories are irregu-
lar, RRKM theory becomes a poor approximation if
there is correlated motion across*®™ the barrier, or if
there are short-time recrossings of the barrier. (Even
in fully stochastic models of barrier crossing there can
be substantial deviations from RRKM theory.) Then the
rate constant will depend on dynamics, and will not be
given by a statistical theory or our modification of it.

It is the aim of this paper to clarify the conditions un-
der which isomerization dynamics in isolated molecules
gives rise to unimolecular rate laws and rate constants.
Moreover, it is of interest to ascertain when, if ever,
statistical theories such as the RRKM theory apply.

To apply the above questions, we study the dynamical
behavior of a classical system with the Hamiltonian

H=4(+5%)+ 442 - 1)e™™™ + A3 (1 —e™)f + 1. (6)

The potential® represents a quartic bistable potential (in
y) with energy barrier ¢™** coupled to a Morse oscilla-
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tor (in x). The coupling arises from the dependence of
the barrier height® on x, the displacement from equilib-
rium of the Morse oscillator. Energy is measured in
units of the barrier height corresponding to x=0. A3

is the dissociation energy of the Morse oscillator in these
units and A is the range parameter of the Morse poten-
tial. The quartic has two minima (stable points) at y
=11/v2 and a maximum (metastable point) at y =0,
These extremal points, and therefore the saddle point
(x=0, y=0) do not depend on x. In what follows, we fix
A3 =10, This is consistent with our expectation that in
any real molecule, the dissociation energy will be much
larger than the barrier to internal rotation. Thus we
will study the Hamiltonian flow as a function of the cou-
pling parameter z and the Morse parameter .

The potential energy surface for a representative
choice of the parameters (z, 1) is shown in Fig. 1. Our
aim is to study isomerization (A%B). Towards this
end we define the isomeric state A and B such that if y
<0, the system is in state A and if 0<y, the system is
in state B. As we shall see, for certain choices of the
parameters, the system can get trapped in either well
A or B for very long times compared with the period
of vibration in these walls. Thus very long and accurate
trajectories will be required to study the infrequent
crossing of the barrier. How then can these rate pro-
cesses be studied efficiently? Fortunately, there al-
ready exists a method of analysis based on the fluctua-
tion dissipation theorem. %" A simple extension of this
to the microcanonical ensemble allows us to define the
reactive flux at energy E as

E(t;E)=(y(0)8[y(0)] 6[y )]y . (1)

Here the brackets (--- )y indicate a microcanonical
average at energy E; v(0)58{y(0)] is the initial flux over
the barrier (y,=0), and 6] v(t)], the step function, is
unity at time { the system is in isomeric state B and
zero if it is not,

As discussed elsewhere, %7 if at very long times

(compared to the vibrational periods) k(¢;E) decays as a
single exponential, then a unimolecular rate law will

be valid, rate constants (k;, k,) will exist, and the decay
rate of this exponential (7;21;:") will be equal to (& +k,) as
in Eq. (1). Furthermore, in general, the limit of the _
reactive flux £(t ~0 +; E) can rigorously be shown to be
the equivalent of the RRKM rate constant [cf. Eq. (2)].

To compute the reactive flux, one simply (micro-
canonically) samples initial phase points such that in all
of them, the system is at y(0)=0. The trajectories cor-
responding to these initial states can then be used to de-
termine the reactive flux. (See Appendix B for details.)
In addition, since each of these trajectories originates
at y =0, it is possible to determine the first time at
which they recross y =0. The distribution of first pass-
age time p(7) can then be determined, and from this dis-
tribution, the fraction W(7) of trajectories which have not
made a first passage between 0 and 7 can be determined.
These distributions give further insight into the reaction
dynamics. For example, from the unimolecular rate
law, it is possible to show that a molecule will remain
trapped in a well for time 7 with probability e™*", where
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k™! is the mean lifetime in the well. The rate law there-
fore implies that the trapping times are “randomly” dis-
tributed. Any deviation from a random distribution in-
dicates a breakdown of RRKM theory and possibly uni-
molecular phenomenology.

In this paper we provide a full dynamical study of the
simple two-dimensional system described by the Hamil-
tonian given by Eq. (6). It is remarkable that when the
coupling between the reactive coordinate and the Morse
oscillator is sufficiently large that the whole energy
hypersurface is irregular, RRKM theory accurately de-
scribes the dynamics, However, when the coupling is
such that a measurable set of trapped tori survive, the
exact rate constants deviate considerably from the pre-
diction of Eq. (2), thus indicating that there are still
strong dynamical correlations even in the irregular tra-
jectories.

11. DYNAMICAL STRUCTURE

The potential energy surface for a representation set
of parameters [cf. Eq. (1)}, is shown in Fig. 1. The
closer the total energy E is to the barrier ¢,, the nar-
rower will be the width of the transition zone, and the
tighter will be the bottleneck. Thus the trajectories
should be more readily trapped as E~¢,. This is indeed
the case in stochastic dynamics, but in Hamiltonian sys-
tems, if the transition to chaos takes place at a finite en-
ergy above ¢;, there will not be trapping, no matter how
close E gets to ;. In this case one will then observe
more effective trapping at higher energies.

The dynamical behavior of the system is first studied
as a function of the two parameters A and z [defined in
Eq. (6)] for a fixed total energy E=1.02 €,, slightly
above the barrier €;. Representative trajectories in
configuration space are given in Fig. 2 for different
choices of X and z. Systems Al to B3 all display trajec~
tories that cross the transition zone. We call these
crossing trajectories (or reactive trajectories). Tra-
jectory Al is periodic. It is interesting to note that
none of the crossing trajectories of the set Al to B2 are
capable of visiting all of the available configurational
space. The set Cl to C3 corresponds to trajectories for
the same system. C1 and C2 are periodic and do not
cross the transition zone. These are examples of purely
trapped trajectories. C3 is a crossing trajectory that
looks quite stochastic. Figure 2 shows that the system
is capable of exhibiting very rich dynamical behavior
ranging from periodic crossing trajectories (Al) and
periodic trapped trajectories (C1 and C2) to stochastic
(nonperiodic or unstable) crossing trajectories (B3).
Some of the crossing trajectories (B2) look quite co-
herent.

Representative microcanonical reactive fluxes [2(¢;

E)] [cf. Eq. (7)] are given in Fig. 3 corresponding to
some of the systems in Fig. 2. The sampling procedure
used to determine these fluxes is given in Appendix B.
It is clear from Fig. 3 that k(¢;E) is sensitive to the pa-
rameters X and z. One should note the long time expo-
nential behavior exhibited by the fluxes B2, C1, and C2.
In these systems, a linear rate law is valid. We shall
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FIG. 2. In this figure, representative trajectories are mapped
onto configuration space. Al to B3 represent distinct systems.
Note that the trajectory in system B3 is the only one in the set
that tends to fill the entire available configuration space (given
enough time). C1 to C3 show that in a given system there may
be periodic trapped trajectories as well as irregular crossing
trajectories. The abscissa and the ordinate correspond to the
X and Y axis, respectively. One tic mark along the ordinate
corresponds to 0.4 dimensionless units. In rows A and C, one
tic mark along the abscissa corresponds to 0.2 dimensionless
units. In B1, B2, and B3, one tic mark along the abscissa cor-
responds to 0.15, 0.08, and 0. 14 dimensionless units, respec-
tively.

discuss the detailed behavior of these fluxes later. Suf-
fice it to say here that phenomenological rate laws can
be observed in veactive systems with as few as two de-
grees of freedom.

The Hamiltonian of the system [Eq. (6)] can be ex-
pressed as

H=Hy(x)+ Hy(y)+ V(x,y), (8)
where
Hy(x)= 432 + g1 —exp(-x)?, N=Dy/¢, , (9a)
Hy(y)=9%*+4*(*-1)+ 1, (9b)
V(x,y)=4%y* - 1)[exp(- 22x) -1] . (9c)

The classical motion of the unperturbed nonlinear
oscillators Hy(x) and Hy(y) can be solved analytically.
It is important to note that only H,(y) is independent of
the parameters X and z. Thus as A and z are varied,
most of the structural deformation of the potential sur-

Intramolecular rate process

face will occur along the nonreactive degree of free-
dom x.

It is interesting to note that the ratio of the frequency
of the uncoupled Morse oscillator to that of the uncoupled
bistable oscillator is

1-v{E=I)x
B
Taking A3 =10, E=1.02, and w} just below the barrier,
gives

R,=3.5\. (11)

This gives us a “ballpark” estimate of the number of os-
cillations of the Morse oscillator, corresponding to one
oscillation of the reactive degree of freedom. As we
shall see, the qualitative behavior of our system can be
correlated with R,.

In discussing Hamiltonian flows in nonlinear dynamics
it has proved useful to map the trajectories onto particu-
lar two-dimensiona! surfaces. These Poincare surfaces
of section (PSS) reveal the underlying dynamical struc-
ture of the system. In this paper we define a surface of
section not previously introduced in the literature. It is

O flux

o "480 © - " 480
time time
- hy
z2=2.30
A=1.95
o T T T . T L] O LT L 1 L] T L
0 480 0 240
time time
FIG. 3. Representative reactive fluxes: each flux corresponds

to a distinct system as labeled. Typical trajectories contribut-
ing to each flux are shown in Fig. 2. The behavior of the vari-
ous fluxes and their corresponding crossing (reactive) trajec-
tories should be compared. In Fig. Al one tic mark along the
flux axis corresponds to 0,4 dimensionless units and 0. 2 units
in the rest.
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simply a mapping of the trajectories onto a configuration
plane rather than onto the usual coordinate-conjugate
mbmentum plane, It is constructed as follows: when the
Morse oscillator is at a turning point x =0, the position
of the system (x, y) is recorded by a point in configuration
space. The advantage of this “configurational surface

of section” (CSS) is that it readily gives a physical pic-
ture of what parts of configuration space a trajectory
may visit.

Consider the CSS of Fig. 4 corresponding to the total-
1y uncoupled system (z=0). The outer contour in this
figure corresponds to the equipotential V= E=1. 02¢,.
The energies in the x and y degrees are separately con-
served. Each trajectory has a mapping which is a pair
of approximately parallel lines (dots if the trajectory
is followed for finite times). The x component of these
two lines gives the turning points of the Morse oscilla~
tor. Such a pair of lines corresponds to a two-dimen-
sional invariant torus in phase space (defined by two
isolating integrals of motion). Motion on these tori is
periodic or quasiperiodic. We note that these tori can
be subdivided into two classes: crossing tori (CT) and
trapped tori (TT). On the former, y(f) periodically
moves back and forth across the barrier, whereas on the
latter y(¢) is trapped forever in either well. The trapped
tori each consist of a pair of parallel lines that are
separated by a distance Ax greater than the x width of
the saddle point region, as indicated on Fig. 4.

We are now ready to study what happens to the struc-

equipotential { E = 1.02 )
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FIG. 4. Configuration surface of section (CSS): this example
of a configurational surface of section corresponds to the un-
coupled system (Z=0) at an energy E=1,02¢; and A=1.0. TT
and TT’ correspond to trapped tori, and CT corresponds to a
crossing torus.
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Z=0.10

FIG. 5. A series of configurational surfaces of section are
displayed. The various systems are at a total energy of 1.02¢,
with the same Morse parameter A (=1.0), and varying perturba-
tion strength Z. Hatched regions correspond to regions of con-
figuration space accessible to unstable reactive trajectories.
The region outside the hatched zone is filled with trapped tori,
and is thereby inaccessible to crossing trajectories. One tic
mark along the ¥ axis corresponds to 0.4 dimensionless units.

ture of these invariant manifolds in CSS as the coupling
2 is turned on. The questions one might ask are:

(i) At a given energy (E=1.02¢,), how does the
structure of CSS change (a) with perturbation strength )
z at fixed A.or (b) with A at fixed perturbation strength
z2?

(ii) Which tori break up first, CT or TT, and why?

(iii) For fixed z and A, how does the CSS change with
total energy E?

(iv) What role is played by these manifolds in deter-
mining the dynamical structure of the reactive flux
k(t; E) and therefore in the reaction dynamics?

These questions are now addressed seriatum.

A series of CSS corresponding to E=1,02¢y, =1,
and z varying between z=0 and z=3 (z cannot be in-
creased beyond z23.3. Otherwise, the potential will
become dissociative at energies close to the barrier)
are shown in Fig. 5. At small z, all the tori persist,
but are slightly deformed, as expected from the KAM
theorem. ' The tori that first deform are those crossing
tori (CT) that come close to the saddle point (y =0,
x¥=0). These trajectories also come close to the mini-
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ma (y=% 1/vV2, x=0). Crossing tori (CT) further
away from the saddle point and all the trapping tori are
relatively unaffected. Because the TT encompass only
the well minima, they are much more stable to the per-
turbation. Thus for small z, only CT in a small strip
going through the transition zone are perturbed. When
the coupling is made large enough (z~0. 40), the “rela-
tively unstable CT” are destroyed and the motion in this
region of phase space ceases to be quasiperiodic

and becomes irregular or stochastic. The regions
corresponding to destroyed tori are indicated by a
hatched strip in Fig, 5. As z is increased further, the
hatched area gets wider until at about z2=0. 6 it be-
comes wider than the transition zone. It is at this point
that trapping tori start getting destroyed. Thus for z

> 0.6, one finds a significant number of reactive trajec-
tories that can get trapped. Recall that because of the
delta function in k(¢;E) [cf. Eq. (7)), all trajectories
contributing to the reactive flux must start at the transi-
tion state. It then follows that if the zone of stochasticity
is wider than the transition zone, then all trajectories
contributing to k(¢;E) are in the hatched region. In this
case the motion contributing to k(¢; E) is no longer quasi-
periodic. Further increase in z does not seem to widen
the unstable zone, but it does significantly distort the
equipotential and associated KAM surfaces (tori).

The above dynamical structure of CSS allows us to
draw several conclusions:

(1) The phase space of an isolated, weakly coupled
system exhibiting isomerization is decomposable into
crossing tori (CT) and trapping tori (TT).

(2) CT are less stable (this may stem from the fact
that CT encompasses a hyperbolic point resulting in a
region of negative Riemannian curvature) than TT. Thus
for intermediate coupling only a subset of the CT are
destroyed. The TT are preserved, and the motion over
the barrier, although irregular, never exhibits trapping.

(3) For strongly coupled systems, a measurable set
of TT get destroyed, and crossing trajectories can get
trapped. In this case, it is important to recognize that
these irregular trajectories can visit only those regions
of phase space not occupied by tori. This “excluded
volume” effect may introduce strong correlations in the
system,

(4) Increasing z at fixed X has a limited effect on the
system. In Fig. 4, varying z over its full range for
A =1 does not destroy all the TT.

Let us now turn to question [i(b)]. How does the sys-
tem behave with A at fixed E(=1. 02¢;) and z(=1.0)?
The coupling z =1 is strong enough that in all of these
sections there is a stochastic region (indicated by a
cross-hatched region). A quick view of Fig. 6 shows
that as A is varied from 0.1 to 4. 7 the region of sto-
chasticity grows, shrinks, grows, and then shrinks
again. From Eq. (11) it is seen that when X is very
small, y varies very rapidly compared to x; thus y can
adiabatically follow x. When A, and correspondingly
R,, is very large, the converse is irue, and x can
adiabatically follow y. In both these extremes an adia-
batic invariant will exist and the energy hypersurface

N. De Leon and B. J. Berne: Intramolecular rate process

A=0.10

FIG. 6. A series of configurational surfaces of section are
displayed. The various systems are at a total energy of 1.02¢,,
with the same value of the perturbation strength Z (=1.0), but

varying A. The hatched regions are explained in Fig., 5. One
tic mark along the Y axis corresponds to 0,4 dimensionless
units.

should be filled with tori. This is precisely what is
found, although it is not indicated in the figure. As one
moves from the adiabatic region corresponding to low
R,, the tori near the barrier are first deformed and a
thin ribbon of stochasticity sets in. This region grows
as R, is increased further, becoming a substantial frac-
tion of the section around A= 2,00, We expect that as
R, is further increased, the region of stochasticity will
decrease until finally for very high R, when adiabadicity
Sets in, the plane is filled with tori. Actually, there is a
region around 0. 6<x<1, 0 when the stochasticity di-
minishes and then increases. This behavior is rather
unexpected and merits further study.

The results of Fig. 6 can be summarized by the [ollow-
ing:

(5) Frequency variations (\ variations) have a much
more pronounced effect on the dynamical structure than
do increases in the perturbation strength 2.

(6) If in the uncoupled system one mode is much
faster than the other mode, then in the coupled system
the two modes will be adiabatically decoupled.

(7) We can expect to see linear rate laws in systems
in which there is a high degree of stochasticity; that is,
in systems where the natural periods in the decoupled
system do not differ too much. -

Let us now address question (iii), by studying the CSS
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FIG. 7. A sequence of configurational surfaces of section are
shown for a system with varying total energy E, but for fixed
A=2.5and Z=1.0, A very complicated structure is apparent
at energies below the barrier. The critical energy for this
system is about 0.83€¢,. The arrows in Fig, Al point to a
series of islands signifying that unstable motion should soon
be expected. One tic mark along the Y axis corresponds to
0.4 dimensionless units.

for fixed z(=1.0) and A =(2. 5) as a function of total en-
ergy. The critical energy for this system is found to

be approximately E,=0. 83¢, in this paper, we have only
examined limited range of (A, z, E) space. The results
presented are qualitatively representative. The criti-
cal energy was found by investigating the usual (y, )
Poincare surface of section. In Fig. 7 we present

CSS for E slightly below E,, up to E=1.30¢,. For E
=0. 80¢,, well below the barrier, the system is inte-
grable, tori exist, but the structure is quite complicated,
consisting of island chains (indicated by arrows in Fig.
7(Al). Thus we expect that unstable motion will occur
for energies nearby. Increasing E above 0. 83¢, leads

to small unstable regions (not shown here). A large
fraction of CSS becomes irregular only at energies
slightly below E=¢,. Further increase in E does little
to alter the extent of chaotic motion. What is more
important is to notice how the width of the transition
zone changes with energy. It is simple to show that

the width of the transition zone is given by

[a%(E, M]ps= - 2" 1n [i%ﬁ%%v%]

From this we find that the width at E=1. 30¢, the width

(12)

3501

is nearly four times the width at E=1. 02¢,. The ratio

"of [Ax] g to the width of the well (y =+1/v'2), is denoted

by

Y(E, \)=[8x(E, M1 s/ [A%(E, N]gen1 - (13)

This can be computed analytically (for z =90, 1, and 2).

It is a very strong function of E. In Fig. 8 we see the
effects of y on the reactive flux. Clearly, » will become
smaller the closer E is to €j, and the tighter will be the
bottleneck. The converse is true. In a purely stochastic
theory, one would expect trapping times to be longer as
¥ becomes smaller (and for very small g one would ex-
pect RRKM rate constants). Note how, with increasing
E, the reactive flux becomes oscillatory.

It is now reasonable to ask if we can correlate the ex-
tent of stochasticity of the system at E=1. 02¢; with the
critical energy (energy at which measurable stochastic-
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FIG. 8. A sequence of configurational surfaces of section and
the corresponding reactive fluxes are shown as a function of
total energy E. The series corresponds to the system dis-
cussed in Fig. 7. Arrows indicate the width of the transition
zone. The reactive flux changes dramatically as the transition
state zone widens {[cf. Eq. (13)] with increasing energy. Note
that the measure of irregularity is approximately constant
throughout the energy range of interest. In column 1, one tic
mark along the ¥ axis corresponds to 0.4 dimensionless units.
One tic mark along the flux axis is 0.2 units in A2, B2, and C2,
and 0.4 units in D2,
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FIG. 9. The Poincare surface of section: Y versus Y for X

=0 and X >0. These sections are all at a total energy of 1. 02¢,.

The various systems all have Z2=1,0, but different values of A,
In A1, A=1.3; in A2, A=1.5; in B1, A=2.0; in B2, A=2.5; in
C1l, A=2,828432; in C2, A=3.0. The critical energy for each
system is given in each figure. The lower the critical energy,
the more chaos one can expect just above the barrier. For the
most highly stochastic system we found (system B3 of Fig. 2),
the critical energy was less than 0.1€¢,, The corresponding
surface of section at 1.02€¢, appears to be a shotgun pattern.
One tic mark along the ordinate corresponds to 0.2 dimension-
less units.

ity is first observed) of the system. To this end, in
Fig. 9, we present the usual (y versus y) Poincare
surface of section for several systems, This figure
suggest a “rule of thumb” observation: the lower the
critical energy, the larger the extent of stochasticity
one can expect to find just above the barrier. In view
of previous literature, this result is not unexpected, but
it is important to correlate it with isomerization dy-
namics. This leads us to the following conclusion:

(8) Roughly, the lower E, for the system, the larger
the measure of “stochasticity” just above the barrier.
This leads to a correlation between the motion well
below the barrier with that just above it. The theoreti-
cal prediction of E, can be of substantial value in deter-
mining whether or not a system will be highly stochastic
above the barrier and, concommitantly, whether or
not linear rate laws are valid.

In this section we have shown that the degree of sto-
chasticity, and the critical energy E, are sensitive

N. De Leon and B. J. Berne: Intramolecular rate process

functions of the parameters. Clearly when a measurable
set of trapped tori exist, the amplitude of the Morse os-
cillator on any crossing trajectory is constrained to be
within a well-defined strip, and the energy that can be
transferred to this oscillator has an upper bound consid-
erably smaller than the total energy E. Clearly, the
magnitude of the energy that can be transferred from the
reactive to the unreactive mode is limited. Intuitively,
we expect that the rate constant for isomerization is in-
versely proportional to the mean time that the crossing
trajectories remain trapped. If after crossing the bar-
rier, the trajectary can only lose a small amount of en-
ergy to the nonreactive degree of freedom {(the x oscil-
lator), then it should be able to regain this energy
{through a fluctuation) rather quickly, and the trapping
time will be short. The smaller the measure of trapped
tori, the larger the amount of energy transfer, and

the longer it should take to regain the energy. Thus the
vate constant should decrease as the measuve of trapped
tovi decreases. This intuitive argument contains many
hidden assumptions. In point of fact, it is quite simi-
lar to our modification of the RRKM theory embodied in
Eq. (2), where the integrals are over the irregular
region of phase space-—the region in which the energy
transfer is limited. (In the canonical transition state
theory, the rate constant which is usually proportional

to e %0 wouldbe proportional toe 2%0m) wheree,, is the
lowerbound on the energy that canbe found in reactive degree
of freedom.) Thistheory alsoleads toa predictionthat the
rate constant should decrease as the measure of trapped tori
decreases. These arguments incorporate the metric
decomposability of phase space, i.e., the breakdown

of ergodicity, into a statistical theory of rate constants.
What we have learned in this section is how the cou-
pling affects the structure of phase space and the mea-
sure of tori, and we are thus better able to compute gen-
eralized RRKM rate constants. Implicit in all the statis-
tical theories of the rate constant is an assumption that
motion within the irregular part of phase space is ergodic.
In fact, there are varying degrees of stochasticity,
ranging from nonergodic, ergodic, weak mixing, mixing,
K system, C system, etc. ® Thus the trajectories may
have a high degree of correlation so that a simple statis-
tical ansatz may be totally unjustified. Thus, it will come
as not great surprise that the above prediction that the
rate constant should decrease as the measure of trapped
tori decreases is totally at odds with the results of this
study, We address the reaction dynamics in the next
section.

11l. REACTION DYNAMICS

It has been shown that the simple Hamiltonian system
[Eq. (8)] has a very rich dynamical structure. It is of
considerable interest to relate the isomerization dynam-
ics in this system to the structure in phase space as in-
dicated in the CSS. The reaction dynamics in a repre-
sentative set of systems are summarized in Fig. 10.
Column 1 gives a set of CSS at E=1.02¢,, corresponding
to different parameter choices (1, z). Column 2 gives a
set of representative crossing trajectories. Column 3
gives a set of microcanonical reactive fluxes and column
4 gives a set of first passage time distributions as dis-
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FIG. 10. Overview of representative
system; a comparison of the configura-
tional surface of section, the time evolu-
tion of the reactive coordinate Y (£), the
flux, and the distribution of first passage
times W(t) are given. Along the ordinate,
one tic mark corresponds to 1.2 units in

columns 1 and 2, 0.4 units in A3 and B3,
and 0, 2 units in C3, D3, and E3. In

column 4 the units along the ordinate are
7 arbitrary. The upper left-hand corner
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and A for each system.
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cussed earlier. Each row corresponds to a given sys- motion. Finally in system E, all the tori are destroyed.

tem (A, z) in the CSS. As one goes from row A to row E,
the systems become more stochastic, i.e., the coupling
strength increases. System A is weakly coupled; all the
trajectories are regular, and the phase space (or CSS in
Al) is entirely decomposable into crossing tori (CT) and
trapping tori (I'T). The representative trajectories are
quasiperiodic, and a typical crossing trajectory has the
reactive coordinate periodically crossing the barrier
as shown in Fig, 10(A2). In system B, the coupling is
strong enough to destroy “all” of the crossing tori; thus
the crossing trajectories must be irregular; neverthe-
less, the reaction coordinate looks rather periodic | Fig.
10(B2)]. In neither system A nor B do we observe trap-
ping. In system C the coupling is strong enough to de-
stroy some TT. This should be obvious from the fact
that the stochastic strip is now wider than the transition
zone. Now the representative trajectory moves across
the barrier and gets trapped for many librational peri-
ods before recrossing the barrier: The librational mo-
tion looks coherent. In system D, a very large measure
of the TT are destroyed, the representative trajectory
gets trapped for long periods of time, but there still
seems to be a great deal of coherence in the trapped

Now the crossing trajectory gets trapped for a very
long period of time and, moreover, the librational mo-
tion looks very chaotic.

It is clear from column 2 that in systems C and D the
crossing trajectories are irregular; but, nevertheless,
portions of the trapped motion look quite coherent. These
trajectories show a very high degree of correlation,

e. g., when the system crosses the barrier, it seems to
recross it several times, but when it gets trapped, it seems
tolibrate quite coherently. Couldthis arise because these
trajectories evolve on some remnants—sgo to speak—of
a crossing torus and then switch over to a remannt of a
trapping torus? It is almost as if the irregular trajec-
tory is captured for a time by the surviving tori and
moves under their influence, i.e., moves, so to speak,
on a “vague torus. ”® Should this be the case, then as
more and more trapped tori are destroyed, the coher-
ence and concomittant long correlation times should
disappear. In Fig. 10 (E2), we see that the reactive
trajectory looks very random —very much like it would

if it was strongly coupled to a heat bath. Here no tori
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FIG. 11. The surface of section in A2,
B1, and B2 correspond to only the reac-
tant “A” side of the potential energy sur-
face. In Bl, A and B correspond to
distinct trapped tori [A is the inner torus
(oval) and B corresponds to the outer two
ovalgs]. These A and B tori correspond
respectively to trajectories of the type
C1l and C2 in Fig. 2. The trajectories
B11 and B22 were used to obtain the
‘“vague” tori A and B Bl, respectively.
The arrows in B11 indicate where the
trajectory was “cut” in order to obtain
the section. Note the regularity of the
amplitudinal motion in both cases—

even though they are “supposed” to be

0 -1.2

irregular. One tic mark along the
Y 0] ordinate in Figs. B11 and B22 cor-
respond to 0.4 units, All other tic
marks along the ordinate are 0.2
dimensionless units.

survive, so the irregular crossing tori never fall under
the influence of tori and the motion is very chaotic.

To test these ideas, we show in Fig. 11 the usual Poin-
care surface of section (PSS). Here the trajectories are
mapped onto the (y,¥) plane whenever x=0, x>0. In
Fig. 11(A1) we show the mapping of the irregular cross-
ing trajectory [cf. Fig. 10(B)] onto the PSS. The irreg-
ular behavior ocurrs mainly near the saddle point. The
motion is nevertheless quite coherent, and the mapping
looks, in fact, very similar to a pure crossing torus
in the uncoupled system. In Fig. 11(A2) the solid curve
indicates the outer trapped torus. The dots are the
mapping onto the PSS of the irregular crossing (reactive)
trajectory given in Fig. 10(C). It should be noted that
during this period of time, the irregular trajectory fol-

lows the trapped torus very closely. The motion is quite
coherent. In Fig. 11(B1), the regions [described as
Egs. (A) and (B} in the figure caption] define two topo-
logically distinct tori. The dots about region A and B
are formed by the two independent trajectories 11(B11)
and 11(B22), respectively. Only the very regular part
of trajectory 11{(B11) (the part between the arrows) was
used to obtain the dots on the PSS. The fact that these
two irregular trajectories seem to move for very long
periods of time, in a very localized region of phase
space, is surprising. This short time structure so
closely resembles motion on a surviving torus that this
can be called a vague torus. Though not shown here,
other trajectories seem to “jump” periodically from the
A torus to the B torus. Trajectories influenced by tori
in A or B execute many periods before wandering away
and visiting the hatched regions in Fig. 11(B1). In the
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visiting the hatched regions in Fig. 11(Bl). In the
hatched region, the motion becomes more chaotic. The
amplitude y(#) then becomes more irregular. Could it
be that the hatched areas contain regions of negative
Riemanian curvature?!® This decomposition is approxi-
mate in that eventually a trajectory starting in one such
region does indeed visit the other region. Nevertheless,
the long correlation times associated with this motion
arises from the “inhomogeneity” of the irregular part of
the energy hypersurface. Lastly, in Fig. 11(B2) the
mapping of the very “stochastic” trajectory of Fig. 10(E)
is shown. This is the typical “shotgun” pattern usually
associated with the stochastic instability.!! Here no
evidence of dynamical structure is observed. These
observations appear t{o suggest the existence of vague
tori and lead us to the following conjecture:

(9) Systems in which not all the invariant tori are
destroyed have a measurable set of irregular trajector-
ies, that spend finite, and relatively long, periods of
time executing almost regular motion. This quasiregu-
lar motion occurs when the trajectories visit irregular
regions of phase space neighboring existing tori. Ap-
proximate invariants may exist in these regions —hence
they have been called vague tori. Trajectories in these
regions are quite stable and lead to long correlation
times and trapping times.

The reactive flux k(¢; E) [cf. Eq. (7)], corresponding
to Fig. 10 were each computed by averaging over micro-
canonically sampled trajectories. These are presented
in Figs. 10(A3)-10(E3). The trajectories were computed
using the De integrator based on the Adams~Moulton
algorithm., ' Integration accuracy was monitored by con-
servation of total energy with percent error =0. 01, and
by time reversal. The computations were carried out
in double precision on a VAX 11/780 computer. The
sampling techniques and other details of the calculation
will be discussed in Appendix B.

Since each of the trajectories originates at y =0, it
is possible to determine the first time at which they re-
cross y =0, and thereby the distribution of first passage
times p(7), and the corresponding fraction W(#)
=1~ [} dtp(1), of trajectories which do not make their
first passage before time {. These are given in Figs.
10(A4)-10(E4).

This histograms [p(7)] show that there is a minimum
time for first passage. This corresponds to the shortest
time for traversal of a well at the fixed energy E. More-
over, they show that there are fairly well-defined narrow
short time peaks. These represent the trajectories that
do not get trapped but instead recross the transition state
quickly, and with a very small dispersion in first cross-
ing times. This is expected in systems with weak cou-
pling, where the system is not stochastic, but it should
be noted that there is a remnant of this rapid recrossing
even in the systems in which all reactive trajectories
are stochastic. The fraction of trajectories that rapidly
recross decreases as the coupling increases; neverthe -
less, even in very stochastic systems, there is a high
degree of coherence typified by the narrow peak. In
addition, we see that the distribution of “long first pass-
age times” is quite broad. The probability of not making

Intramolecular rate process 3505

TABLE 1. Comparison of the decay rate 1/7,,, to the
RRKM prediction 1/7gpgy, and the short time inverse
first passage time 1/7,,. If the short time 1/7y, is to
reveal the phenomenological rate constant, then 1/ Trn
=2/7y,. Agreement is attained only in the last two
systems. Both are highly stochastic. The RRKM pre-~
diction is only correct for the last system. System 8,
though highly stochastic, was found to have a vestige
of trapped tori—which would indicate the reason for its
deviation from the RRKM prediction.

z A 7, Y THrcM
1.000 1.300 v e 0.0073
1.000 1.500 $.004+ 0,001 0.0050 0.0073
1.000 2,000 0.004+0,0005 0. 0057 0.0073
1.000 2.500 0.005+0.001 LX) 0.0073
1.000 2.828 0.005+0.0015 ces 0.0073
1.000 3.350 0.006+ 0,002 oo 0.0073
1.125 2.31¢ 0.0059+ 0, 0005 (XN 0.0073
2,500 2.020 0.0057+0, 0005 0.0028 0.0070
2.300 1.850 04,0075+ 0, 0005 0.0040 0. 0070

a first passage in time ¢ is also given in Figs. 10(A4)-
10(E4). In the fully stochastic system, the long time
behavior of this distribution looks quite exponential—a
result consistent with a “random” or Poisson distribu-
tion of first passage times —a signature of a unimolecu-
lar rate law. In the less stochastic systems, the long
time behavior is consistent with a sum of two or more
exponentials, so that only at times much longer than
given in Figs, 10(B4)-10(D4) will it be possible to deter-
mine the rate constant. The reason for this long time
behavior appears to be that the trajectories seem to get
coherently trapped for very long times on “vague trap-
ping tori.” Thus an accurate determination of the long
time decay might give smaller values of 1/7,,, than are
reported here.

The reactive flux given in Figs. 10(A3)-10(E3) are
completely consistent with the above discussion. When
there is weak coupling, k(¢;E) exhibits a decay due to de-
phasing. Each reactive trajectory is essentially period-
ic in (), but there is a distribution of periods {given
by the sharp peaks of p(1)]. As the coupling gets strong-
er, the first peak in p(7) decreases and the fraction of
trajectories giving rise to random recrossing times
grows. Since the former gives heterogeneous oscilla-
tory decay, and the latter “exponential” decay, the flux
behaves something like the superposition of these two
kinds of.decays. The behavior is of course more com-
plicated than this description would imply. Thus in the
case of strong couplings the long time decay is exponen-
tial and a rate constant can be extracted. In Table I
we give the values of the kinetic rate constant T;xm de-
termined from the reactive flux, along with the corre-
sponding RRKM values T}%RKM, and values of the inverse
mean first passage times ‘r;.ip calculated from the long-
time behavior of p(7). Because the trajectories used to
determine %(¢; E) were much longer than those used to
determine p(7), the values of 7., determined from the
reactive flux were judged to be more accurate than
those determined by fitting W(t) to exp(-£/27g,,). Only
for the most stochastic systems do we get agreement
between these methods, i.e., 7o i,

Rxn=
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FIG, 12. A schematic diagram of the dependence of the reac-
tion rate 1/ Ty OD the coupling strength (or energy exchange
rate). The curve labeled 1/7,,, refers to the long time exponen-
tial decay rate determined from the reactive flux. 1/Tgpku
refers to the rate predicted from RRKM theory. It is not sen-
sitive to coupling strength (see Table I), The term “‘coupling
strength” should not be confused with perturbation strength.®
1/7gp is the rate predicted by the statistical theory (RRKM-

like theory) applied only to the irregular part of the energy
hypersurface. See Eq. (A7b) and Appendix B.

The Tipxu Were computed analytically from Eq. (2).
It should be noted that there is agreement between T,
and T;zlnxu only for the most stochastic systems. Clear-
ly, when the measure of trapped tori is nonzero, the
reactive trajectories are restricted to a subregion of the
energy hypersurface and the density of states used in
RRKM overcounts the reactive states, Then RRKM will
be a very poor approximation. As discussed in Sec.
1 and Appendix A, the statistical theory can be modified
by considering the irregular region of phase space; cf.
Eq. (2) and Eq. (A7). The modified rate constants 7jp
satisfies the inequality given by Eq. (5). Thus we ex-
pect that as the coupling (stochastic region) increases,
(TM)'1 decreases until it eventually becomes equal to
T;{RK,,. This happens when the whole energy hypersur-
face is stochastic. Itis (Tp)™! which gives anupper bound
on the actual rate constant -r,}l,,,. From Table Iwe see that
T;;i,, increases with stochasticity. Thus neither the full nor
the modified RRKM (TST) theory accounts for the “experi
mental” results whenthereis not full stochasticity. Thesit-
uation is summarized schematically in Fig. 12. Instead,
the rate constant 7, depends on dynamical properties
(like the energy exchange rate). This bears a close
resemblance to what happens in stochastic theories
where the rate constant depends on dynamic properties
like the collision rate or friction coefficient, and only
becomes equal to the transition state value under rather
restrictive conditions. Another possible explanation is
that in the less stochastic systems, motion on vague tori
give rise to long trapping times.

The above observation can be summarized as follows:

Intramolecular rate process

(10) The measure (in the Lebesgue sense) of the ir-
regular part of the energy hypersurface must be close
to the measure u(E) of the constant energy surface,
i.e., a significant fraction of the TT must be destroyed,
before one can expect to observe linear rate laws.

(11) For very strongly coupled systems, i.e., sys-
tems in which all the tori are destroyed, a unimolecu-
lar rate law pertains, rate constants exist, and these
rate constants are moreover very well approximated by
RRKM (transition state) theory.

(12) In less strongly coupled systems, i.e., systems
in which trapping tori still exist, it appears that a uni-
molecular rate law describes the behavior of the reac-
tive trajectories, but now the rate constants are not
approximated by the full RRKM theory. A modified
RRKM theory taking account of the restricted density
of states corresponding to the stochastic region of phase
space, gives very poor agreement with the dynamics.

In fact, we find that 1/7,, increases with stochasticity,
whereas 1/7;,, decreases with stochasticity.

(13) At intermediate coupling there appears to be a
high degree of correlation in the irregular trajectories.
This correlation seems to be related to the regions of
phase space still occupied by tori. When an irregular
trajectory comes near a region occupied by tori, it be-
haves coherently; when it is in regions free of tori, it
behaves chaotically., Motion on vague tori can lead to
very long trapping times, and highly correlated motion.

In the foregoing, it has been shown how the behavior
of the reactive flux can be correlated with the dynamical
structure in phase space. All of the systems studied
have the same total energy E =1, 02¢,.

In Fig. 7, it was shown how the CSS for a given system
(2=1, and x= 2, 5) varied with total energy E. It should
be noted that systems 7(B3), 7(C1), 7(C2), and 7(C3) are
almost entirely stochastic. In Fig. 8, we show how the
reactive flux decays for each of these systems. As one
goes down the column from system 8(A) to 8(D), the
width of the transition zone increases dramatically. The
corresponding reactive fluxes show a significant change
in behavior, clearly due to the effect of increased ¢ [cf.
Eq. (13)]. For system A the flux decays exponentially
at long times. For systems B and C the flux acquires
much more dynamical structure and oscillatory behavior,
and for system D no discernable long iime decay exists;
there is no separation in time scales and a linear rate
law does not apply, even through the extent of stochasti-
city is more or less constant. Clearly then, even for a
fully stochastic system when the energy is “too high,”

a rate constant will not exist. A detailed analysis of this
energy dependence shows that as the total energy is in-
creased, the trapping time decreases, because the width
of the transition zone increases and the bottleneck effect
becomes less pronounced.

Since the canonical reactive flux is

f dEQU(E)k(t, E)e™E

k(T =
f dESUE) e*E

, (14)
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it follows that the dominant contribution to the rate con-
stant stems from energies close to the barrier height.
This means that one will see a linear rate law, expo-
nentially decaying flux only at low temperatures,

1V. DISCUSSION

Even in systems consisting of only two degrees of
freedom, it has been shown here that nonlinear coupling
can give rise to a unimolecular rate law for isomeriza-
tion and correspondingly to well-defined rate constants.
It has also been shown that calculation of the long time
decay of the reactive flux allows one to determine the
rate constants-—should they exist. This has been clear-
ly shown for the most stochastic system (E) of Fig. 10
and in this case the RRKM rate constant (Tipgy) is in
excellent agreement with the rate constant determined
from the reactive flux. The less stochastic systems B-D
of Fig. 10, however, exhibit features which cannot be
accounted for by a simple statistical theory. When the
coupling is strong enough to destory some trapping tori,
reactive trajectories do indeed get trapped for long peri-
ods of time. These trajectories are irregular but never-
theless display a great deal of coherence, i.e., there
are very long correlation times. The trapping times
appear to be nonrandom, and it would take a very long
integration time to establish whether these systems are
described by a unimolecular rate law with well-defined
rate constants. It is possible that the very long time
decay in these systems is not exponential—although
we suspect it is. There are comparable cases in trans-
port theory —such as Brownian motion in two dimensions-
where phenomenological decay is not observed. !* Never-
theless, we fit the long-time behavior of k(;E) to an
exponential and report the decay constant in Table I
The reason for the long correlation times and long
trapping times in these moderately coupled systems is
rather difficult to pin down. What is clear is that a sub-
stantial fraction of the crossing trajectories in these
systems, although irregular, spend considerable peri-
ods of time executing coherent or “regular” motion.
These trajectories seem to fall under the influence of
the trapping tori that still exist in the system. One con-
sequence of this is that 75,, seems to be a decreasing
function of the coupling. This behavior is counterintui-
tive in that we expect the trapping time to increase as
the stochasticity (measure of the irregular region of phase
space) increases (cf. the discussion in Sec. I and Fig.
12).

That 3%, increases as the coupling increases is
consistent with the following argument. In any coupled
system energy is exchanged between the x and y oscil-
lators. Let 7z denote the correlation time of the energy
fluctuation — should a correlation time exist. 73 plays
a role in this problem somewhat similar to the collision
rate, or friction constant in stochastic dynamic models
of barrier crossing. In the event that 7;> T, where T
is the period of oscillation of a periodic crossing orbit,
then a trajectory starting at the transition state will co-
herently or periodically recross the transition state for
a time on the order of 7z before losing enough energy to
get trapped. It will remain trapped until it gains enough
energy to recross the barrier. The time of trapping

Intramolecular rate process 3507

is thus also Ty and 7g,,* Tg Or -r;},,; -r;;. ‘Thus we expect

the kinetic rate constant T;‘,,, to be an increasing function
of ‘r;;‘. Intuitively we expect T to decrease and 'r;z‘,,, to
increase as the coupling (stochasticity) increases, an ex-
pectation entirely in agreement with the observation. Of
course, no evidence is given for the existence of 7.
These considerations raise more questions than can be
answered here, and further study is required.

It is interesting to note that recently Berry ef al. '®

have conducted experiments to measure the rate con-
stant for the molecule methyl isocyanide. The iso-
merization for this molecule is thought to pass through
an intermediate indicated below:

CH,CN = CH,NC
CH,
P

\ =C=N-CHj.

CHy-C=N= /
c=N

It is of particular interest to us that their results indi-
cated that at a total energy just above the barrier, the
microcanonical rate constant agreed well with RRKM
theory, but at a higher energy the RRKM prediction be
came very poor. One might attempt to explain this be-
havior by the widening of the bottleneck effect discussed
in Secs. II and III, in connection with Figs. T and Eq. (B).
As we have at higher energies, the reactive flux be-
comes oscillatory and the rate constant does not exist.

The simple two-dimensional system presented here
has a rather rich dynamical structure. The focus of
this paper has been to clarify the relationship between
a reaction dynamics and the dynamical structure asso-
ciated with the KAM theorem. In fact we know no other
work that discusses this relationship between the topolo-
gy of phase space and rate constants for barrier cross-
ing in bounded systems. Many of the conclusions out-
lined here form the basis for further investigations,

e g,

(a) What happens when there are more than two degrees
of freedom?

(b) What are the dynamics id a corresponding quantum
system?

With regard to (a), it is important to elucidate the role
of Arnold diffusion, ¥ With regard to (b), it has already
been shown that there is a transition to chaos in wave
packet dynamics. ** Nevertheless, this remains a con-
troversial area. It also enables one to pose an exact
quantum counterpart to the RRKM theory.

To summarize the major conclusions of this paper:

(1) When the coupling between the reaction coordinates
and the oscillatory coordinate is large enough to destroy
all the crossing tori and some trapping tori, crossing
trajectories can get trapped.

(2) The closer the total energy is to the activation en-
ergy, the longer is the time spent by a trajectory librat-
ing in a well. Thus only for energies close to the acti-
vation energy will there be a separation in time scales
between vibrational periods and trapping times. This
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is a necessary but not sufficient condition for the exis-
tence of linear rate laws.

(3) For very strongly coupled systems, i.e., systems
in which all the tori are destroyed [and condition (2) is
obeyed], a unimolecular rate law pertains, rate con-
stants exist, and the rate constants are very well ap-
proximated by RRKM (transition state) theory.

{4) Even in strongly coupled systems, when the ener-
gy is significantly larger than the activation energy, the
reactive flux exhibits an oscillatory decay reminiscent
of heterogeneous relaxation, and the system cannot be
described by a linear rate law. At energies close to the
activation energy, 1/7g,, behaves like 1/Tppky, i. €., it
increases with energy, but at higher energy, it should
deviate from RRKM theory and, moreover, should de-
crease with energy.

(5) In less strongly coupled systems, i.e., systems
in which trapping tori still exist [when condition (2)
above is satisfied], it appears that a unimolecular rate
law describes the behavior of the reactive trajectories, but
now the rate constants are not approximatedby the full
RRKMtheory. A modified RRKM theory takingaccount of
the restricted density of states corresponding to the stochas-
tic region of phase space gives very poor agreement
with the dynamics. In fact, we find that 1/7g,, in-
creases with stochasticity, whereas 1/7y,decreases
with stochasticity.

(6) At intermediate coupling there appears to be a
high degree of correlation in the irregular trajectories.
This correlation seems to be related to the regions of
phase space still occupied by tori., When an irregular
trajectory comes near a region occupied by tori, it be-
haves coherently; when it is in regions free of tori,
it behaves chaotically. Motion on vague tori can lead
to very long trapping times.

It is interesting to note that comment (3) suggests that
we explore the conditions under which all trapping toriare
destroyed. Shouldwe be able to find the dynamical condi-
tions, we will be able to predict when RRKM should be
valid.

APPENDIX A: GENERALIZATION OF RRKM THEORY
TO NONERGODIC SYSTEMS

Phase space is decomposable into regular and irregu-
lar parts. Let us define a quantity I(I') which has the
property that

D)= 1, Tes,,
r£SI ’

o ’
where S, is the measurable set of irregular points in
phase space. Let us define the normalized microcan-

(A1)

onical density in the subspace S; as

p,(r‘,E)_Q "6y SLE - HT)]KT), (A2)
where

2,(8)= [ a0 1)l £ - H(T)] (A3)
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is the density of irregular states at energy E. Let us
now define the normalized auto correlation function of
the fluctuation in product molecules

Ci(t;E)=(6N5(0)5Np(t)) 5,,/{ SN 5 s » (A4)

where subscript E, I indicates an average over p,, i.e.,
over the irregular part of phase space. The correspond-
ing reactive flux is

dC,(t;E)

_(500)8[y(0) ~y )6y ()],
dt - )

(8(y) g, A1 = 6(y)))z.s

This follows from the uniformity of the propagator, and
the stationarity of p,(T', E). The latter follows from the
fact that I is a constant of the motion (a regular trajec-
tory remains regular, and an irregular trajectory re-
mains irregular, and never the twain shall meet). It is
also easy to show that from symmetry { 6(y)) z,; =¥»
=[1-(8(y));,g)=%4. Every trajectory contributing to
k,(t;E) is a crossing trajectory. The initial value of
this reactive flux is

(A5)

B(t;E)= -

—1——11m k(t;E)= -—(y9(y)5(y -y e (A6a)
BD t~0*

. . fdrz(r)a[E-H(F)lye(y )6(y —v.)

1 (A6b)
Tep XaXB

fdrz (T)slE - H(IM)]

If all the crossing trajectories are irregular then the I
can be deleted from the numerator and

1 1

=i () J TOE-DEBEGB( ), (AT)
1 QE 1

Too  ;(E) Trrku (ATo)

A statistical theory of the rate constant is formulated
as follows: each trajectory originating at the transition
state y, gets trapped for a time (long compared to vibra-

" tional periods) in the well towards which it is initially

moving. Then there are no rapid recrossings. A
trapped trajectory can only recross after it regains en-
ergy from the other degrees of freedom (to which the
energy was originally lost). The distribution of trap-
ping times is assumed to be random. Then C,(¢;E)
must decay as a single exponential and since its initial
decay rate is given by Eq. (A8), it follows that

ky(t;E)=(1/Tpp) exp(-1/Tgp) .

Thus the decay rate of &, (#;E) is 1/7pp.
energy hypersurface is irregular, then

(A8)
If the whole
1 1 de‘ﬁ(E HYo(y —9.)0(5) .

TRRKM xAxB Q(E)

Tep
(A9)

Now in an experiment, suppose the initial states are
microcanonically distributed according to p(I') = 6(E - H)/

(E). Since
R L )
QR(E>
TN p(E), (A10)

where Qg(E)=Q(E) -Q,(E) is the density of regular
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states and pp(T, E)= (1 —I)5(E ~ H)/Qx(E).
The full fluctuation correlation function is
Cl(t, E)=(6Nn(0)5NB(t)>E/(6N§ e,

where the average is over the full energy hypersurface.
Upon substitution of Eq. {A10), this can be expressed as

C(t)=[Q,(E)/Q(E)] C,(t; E) + [0 (E)/QUE)) Cx(t;E)} , (A12)

where

(A11)

CR(t;E)_—_x—A% fdl" 5[ E - H(T)]

x[1 =I(I)] 6N5(0)5M (£)/82, (E) . (A13)

+
regular
trajectories

Now if all crossing trajectories are irregular, none of
the trajectories contributing to Cy(¢;E) can cross the
barrier so that Cy(¢;E) is constant in time, i.e.,
Cr(t;E)=Cx(0, E). 1t follows from Eq. (A12) that the
reactive flux will then be

o) _Q(E) ,
@ Q(E)

Substitution of Eq. (A8) into Eq. (Al4) then gives the re-
active in the statistical theory

R(t;E) = — [{E) . (A14)

1

2(E) 1 ~t/TBD -t/T
EEy=-L2 —¢ = BD (A15
(t:5) Q(E) 7pp T RREM ’ )

where the last equality follows from Eq. (ATb).

This shows that the exponential decay observed in a
nonergodic system in which all crossing trajectories are
irregular, is given by decay constant 1/75, defined in
Eq. (A7b), and Eq. (2b). When there are TT,

1/7T5p> 1/ Traxu (A16)
but when the measure of all TT is zero,
1/Tap=1/Tppxy . (A17)

It is important to note that the prefactor of the exponen-
tial in Eq. (A15) is 1/7Tgppky. Thus in general the statis-
tical decay rate cannot be found from the initial time
derivative of the full time correlation function.

APPENDIX B: PROCEDURE USED FOR EVALUATING
REACTIVE FLUX

It is important to outline how the reactive flux is
computed. The identity 6]y (0)]+ 6[-5(0)]=1 is sub-
stituted into Eq. (7) and the resulting terms are rear-
ranged to give

xaxpk(t, E)=(98(5)5(y)) sF" (¢, E)
+(56(=5)8(y))sF*(t, E), (Bla)

where

Intramolecular rate process 3509

FO;E)= [ drps (T De (0], (B1b)

and
P E)= y6(v)8(xy)5(E - H)

(Blc)
f dry5(y)6(£3)5(E - H)

Because p'*(I';E) are normalized probability distribu-
tions, it follows from the observations lim,.¢ 6] v (¢)]
lim FY (¢ E) =1,

t=0*

(B2a)

lim F ¢ E) =0 . (B2b)
t-o*

The coefficients of F**'(¢;E) in Eq. (Bla) are equi-
librium microcanonical averages. Because H is quadra-

tic in ¥, transformation of variables from y - -3 yields

1 o
oy (IO(y ) p=+ r—

(v6(=3 )80 5=

XaXp
(B3)

The last equality follows from Eq. (7). Upon substitu-
tion into Eq. (15a)

kGE) =—L  [F94E) - FO 48]
RRKM

(B4)

The quantities F* (¢, E) are computed as follows. The
initial values of x, %, and y are sampled (for y =0) from
pUI); and trajectories corresponding to each choice

of initial conditions are generated. The normalized reac-
tive flux

k(t;E)

k(t;E)Em

={F*) - F ) (B5)
is evaluated by averaging 6] y(¢)]) over these trajectories.
This gives 6,[y(t)] - 6 [v(t)]. To evaluate the contribu-
tions from the stochastic region, we merely insert

I(T'}6(E - H) in place of 6(E - H) in Eq. (Blc).
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