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Solvent effects on vibrational states are treated in the Born-Oppenheimer approximation. A Monte Carlo
procedure is devised for simulating a system in which the vibrations are treated as quantum degrees of
freedom and all other degrees of freedom are treated classically. The key to this method is the use of a
restructured perturbation theory for solving the vibrational Schrodinger equation at each of the solvent
configurations sampled. This method also is used to compute Franck—Condon factors. The methods

developed are applied to two different problems. First, solvent effects on vibrational transitions in the ground
electronic state are considered. It is found that the frequency shift from the gas phase frequency is to the red
at low solvent densities, but to blue at high solvent densities. Secondly, the heterogeneous electronic

absorption and emission line shapes are simulated in a variety of model solute-solvent systems and the results

are discussed in terms of a simple theoretical model.

. INTRODUCTION

Monte Carlo! and molecular dynamics? techniques are
valuable tools for the calculation of equilibrium and non-
equilibrium statistical mechanical and thermodynamic
quantities for classical systems. Currently, Monte
Carlo procedures are being developed for semiclas-
sical®* and quantum mechanical systems®™® as well.
However, there are many systems of chemical interest
for which classical mechanics provides an accurate
description of the motion of nearly all the degrees of
freedom, except for a small number (possibly only one)
of coordinates that require a quantum mechanical de-
scription. ’ Application of a fully quantum method to
these problems would be an inefficient route to take.

In this paper, we consider a simple system of this
type: a diatomic molecule in a monatomic solvent.
The vibrational motion is not classical at ordinary tem-
peratures. On the other hand, classical mechanics is
certainly adequate for the analysis of the translational
degrees of freedom, Furthermore, it is assumed
throughout that the moment of inertia of the diatomic
is sufficiently large so that the classical description
of the rotational motion is valid. This classical rota-
tion approximation will break down at low and moderate
temperatures for diatomics which contain H, and pos-
sibly D, due to their low moments of inertia. Thus,
these diatomics are excluded from consideration in this
work, although the possible extension to include quan-
tum rotations is discussed briefly in Sec. IV.

Because little is known about the true intermolecular
potential energy, we adopt the following model here.
The intramolecular potential of the solute is taken
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to be the RKR potential'® for the isolated molecule cor-
responding to the electronic state of interest. The dia-
tomic is assumed to consist of two sites, and the solvent
molecules are each assumed to consist of several sites
(one if they are monatomic). Each site on the diatomic
interacts through a central potential with each site on
every solvent molecule. Thus, we invoke a site~site
model. In addition, the sites on different solvent mole-
cules interact with each other. To model electrostatic
interaction, charges (and polarizabilities, ete.) can be
ascribed to sites and the Coulomb terms can be sum-
med. In general, the potential parameters for the
solute site—-solvent site interactions and the charges on
the diatomic sites will be different for different elec~
tronic states of the solute. These parameters are also
expected to depend on the instantaneous bond length of
the diatomic molecule. The choice of electronic state
dependent parameters allows us to study solvent effects
on electronic absorption and emission spectra.

Starting with the Schrddinger equation for all the de-
grees of freedom, the Born-Oppenheimer approxima-
tion!! is made, effectively separating the “fast” vibra-
tional motion from the “slow” rotations and translations.
The classical limit®!? is applied to the quantum mechan-
ical canonical density matrix in such a way that the vi-
brational factor remain quantum mechanical while the
rotational and translational parts go over to their re-
gpective classical forms, thus yielding a mixed quantum-
classical density matrix. The distribution function is a
product of a classical exp(~ V) factor and a quantum-
vibrational distribution function, which depends para-
metrically on the value of the coordinates for the slow
motions, as would be expected intuitively. This mixed
quantum-classical distribution function can be employed
as a sampling function for the ordinary Metropolis Monte
Carlo procedure. !*

This formulation requires the determination of the
vibrational energies and corresponding eigenfunctions
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for every sampled solvent configuration. This is the
time consuming part of the simulation. We show how
this can be done efficiently by using a reorganized per-
turbation theory that is shown to be rapidly convergent
for the determination of the states, energies, and
Franck-~Condon factors for the low lying vibrational
states. In a subsequent paper we extend this approach
using wave packet dynamics,

The adiabatic approximation is considered in Sec.
IIA and the procedure for application of the mixed
quantum-classical Monte Carlo and molecular dynamics
simulation is presented. The perturbative method for
the solution of the vibrational Schrddinger equation with
the solvent-dependent potential is presented in detail in
Sec. IIB. A method for simulating electronic absorp-
tion and emission spectra is outlined in Sec. IIC.

The results of Monte Carlo simulations for a model of
Br; dissolved in Ar are discussed in Sec, LI A for var-
ious densities. The observed density dependent shifts
in the average vibrational frequency and the nonsym-
metric shapes of the frequency distributions are par-
ticularly interesting. The average frequency de-
creases at moderate densities (relative to the gas
phase frequency), while at higher densities it increases.
This behavior is very reminiscent of the density depen~
dence of the frequency shift that is experimentally ob-
served in many systems.!* The interaction potential
employed includes a specific model for the bond length
dependence of the Ar-Br, interaction.® It has been
suggested!®'!® that this bond length dependence has
important effects on the equilibrium properties of
the oscillator, and we find that the red shift in the
average frequency at moderate densities is essentially
absent if this aspect of the potential is not included in
the model. The density dependence of the peak position
and shape of the frequency distributions are analyzed
in terms of a simplified model in Sec. BIA. In Sec.
III B methods developed in Sec. II are used to simulate
the electronic absorption and emission spectra of a
model diatomic for several different solvent-solute
potentials. The observed solvent induced shifts are
readily understood on the basis of simple arguments.
Finally, in Sec. IV the major results of this work are
summarized and possible extensions of these approaches
are discussed.

Il. THEORY
A. Adiabatic approximation for an oscillator in a solvent

In this section, we treat systems consisting of one
diatomic molecule in a dense monatomic fluid. The time
scale for vibrational motion is, in most cases, orders
of magnitude faster than the other motions present.
These other slow motions include rotation and transla-
tion of the diatomic, and translation of the solvent par-
ticles. This separation of time scales suggests a Born-
Oppenheimer approximation.

Let 7 be the vibrational coordinate (bond length) and
let the set {X} represent all the slow coordinates. The
Hamiltonian for our systems is
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H=Ts+ Ty + W7,{X})

=Ts+H, 2.1)

where T and Ty are kinetic energy operators for the
slow and fast variables, respectively. The wave func-
tion for the entire system can be approximated as

V(7| X) = ¥(7| X) $(X) , (2.2)

where ¥(71X) is an eigenfunction of H;, the Hamiltonian
for the fast degree of freedom at fixed {X}, i.e.,

Hy(r |X)=E (X ¥(r|X) . (2.3)

The adiabatic approximation consists of substitution of
Egs. (2.2) and (2. 3) into Eq. (2.1) and ignoring the
terms involving derivatives of {(r|X) with respect to the
slow variables. This approximation yields the follow-
ing equation for the slow variables:

{Ts + E{X)} (X) = Er0(X) , (2.4)

where Er is the total energy of the full system. The
vibrational energy levels, EfX), calculated for fixed
{X}, act as the potential energy surfaces which governs
the evolution of the slow variables.

As is usually the case, we assume that the spacings
of energy levels corresponding to the slow degrees of
freedom is much smaller than k&, 7. If this is the case,
then classical mechanics provides an accurate descrip-
tion for these motions. Thus, the rotational and trans-
lational motions evolve classically according to Hamil-
ton’s equation of motion, }*

x.s =3Hs/aps 5

. 2,
Ps=—8Hs/BXS > ( 5)

where the Hamiltonian for the slow degrees of freedom
is

HS = Ts+E_¢(X) (2.6)

and {Pg} is the set of generalized momenta conjugate
to the positions X},

Ps; =0Ts/0%; . (2.7

Note that the potential surface E((X) also depends on the
quantum state of the oscillator, and the trajectory of the
slow variables will differ for different vibrational
levels.

This stiuvation is, of course, exactly analogous to the
usual Born-Oppenheimer separation of the electronic
and nuclear motions. Adiabatic electronic energy sur-
faces are obtained for fixed nuclear configurations. The
nuclear motions take place on these surfaces. The clas-
sical limit corresponds to running classical trajectories
for the nuclear degrees of freedom on a given electronic
surface.

For many purposes, only thermally averaged quanti-
ties are desired, as opposed to dynamical information
about the evolution of the system subject to specific
initial conditions. In this case, the quantity of interest
is the canonical density matrix. In an earlier publica-
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tion, ® we have shown that, after the classical limit has
been taken for the slow variables, the density matrix
in the position representation is,

plr, 75 B|X) = A(B) D (7| X)a(r’ | X) eEn™® . (2.8)

In Eq. (2.8), ¥, and E, are the wave function and energy
for the nth vibrational state at the fixed values of the
rotational and translational coordinates, {X}, 8= (k,T)?,
kg is the Boltzmann constant, 7 is the temperature, and
A(B) is a temperature dependent constant arising from
the integrations over the momenta {Pg}, conjugate to
the slow variables. For the particular case of a di-
atomic in a monatomic fluid,

A(B) =(2nMky T/H2V¥ '2(2nmby T/h) /321 Ik, T/R?),
(2.9)

where N is the number of solvent particles and % is
Planck’s constant. M, m, and I are, respectively, the
mass of a solvent particle, the reduced mass of the di-
atomic, and the moment of inertia of the diatomic, re-
spectively. In order to facilitate the integrations over
the momenta conjugate to the diatomic rotational angles

8 and ¢, the term L%/2mr? in Ts has been replaced with
L?/21, where I=m7% and 7, is the equilibrium bond length
for the isolated diatomic.

A number of ensemble averaged quantities are of
interest. For example, the average bond length is
given by

=71 f X drvp(r, 7;8|X) . (2.10)

The average total energy of the system is given by

(E>={3N;5}kﬂ+z" [ axaria o v}
) rar’

(2.11)
The term {(3N+5)/2} k3 T is the average kinetic energy
Ts, in the classical limit. It contains contributions of
3NEkT/2, and 3kzT/2 and kT, from the translations of
the solvent particles, the translations of the diatomic
center of mass and the rotations of the diatomic, re-
spectively. The second term on the right in Eq. (2.11)
can obviously be rewritten as Z™! [ dX 3, E,(X)
X exp[_ ﬁEn(x)]'

For some purposes, it may be desirable to average
over an ensemble which corresponds to a diatomic in one
particular vibrational state, while the translations and
rotations are distributed according to an equilibrium
canonical distribution. In this case, the appropriate
constrained density matrix to be averaged over is

(7, 775 B| X) = ABYWo (7| X) dn(7” | X) P50 | (2.12)

It is possible to study ensemble average properties in
systems such as those we have been discussing by using
the standard Metropolis Monte Carlo sampling proce-
dure'® to generate a set of points which are distributed,
in the limit of a large sample, according to Z"p(r, ”;
BIX) or z'p,(7, 7;81X), [where Z, =[dX drp,(, r;
BIX)]. It is also possible to determine the distribution
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function of the solvent atoms around a solute molecule

in a given vibrational state, irrespective of its bond

length by sampling from
P,(X) = f dvpu(7, r; B |X) (2.13)

for from P(X), obtained by replacing p, by p in Eq.
(2.13)].

Since the details of the particular sampling procedure
that we employ are straightforward and have been
presented elsewhere, ® we do not restate them here.

The point that is worth emphasizing again, however,

is that this method required solving the adiabatic (fixed
configuration) vibrational Schrédinger equation (2. 3)

a large number of times. Thus, it is imperative that the
method of solution of this differential equation be or-
ganized so that it is as efficient as possible for the
problem at hand. The method that we employ is de-
scribed in detail in Sec. II B. Given that such a fast

and accurate procedure is available, the method that has
been discussed in the present section allows for the
realistic, detailed study of the effects of a classical
solvent on the quantum vibrational motion of the di-
atomic.

The procedure outlined in Sec. IIB for solving the
vibrational Schrddinger equation can also yield the
derivatives of the vibrational state energies with re-
spect to the slow variables. These are needed to cal-
culate the forces required to run trajectories in the
phase space of the translation and rotations, according
to Eq. (2.6). Therefore, molecular dynamics calcula-~
tions for the mixed quantum-classical systems are also
feasible. Since the vibrational degree of freedom is
treated quantum mechanically, the time step chosen for
the classical trajectory need reflect only the time
scales of the motions of the slow variables, and not the
(possibly much shorter) time scale appropriate for the
vibrational motion.

B. Solution of the vibrational Schrodinger equation

In this section we examine the perturbative solution
procedure of the Morse oscillator where
Vu(7) = D41 - expl- a(r - 7,)] ¥ (2.13)
is a prototype for the general vibrational potential.
The reference Hamiltonian is the harmonic oscillator

Hamiltonian where the harmonic frequency w is chosen
to be

w=[2D, &?/m}*'?, (2.14)

m is the reduced mass of the oscillator. With this
choice for w, the second derivatives of V,(7) and the
harmonic oscillator potential Vyo(7) = mwi(r ~ »,)2/2
agree at 7,.

Expanding the perturbation in a power series we have

V9 = Vao(#) =liw 3 dy o,

n=3

(2.15)

where the dimensionless length is defined as y = (mw/
BY%(r~-r,), and d, is given by
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71w \ me (2.16)

n/2 n
4= 1 ( /] ) (dd:/n,()
re

The derivatives are evaluated at 7,. Noting that the nth
derivative of V, is proportional to D, ¢!, it is a simple
task to show that d, is of order A% where A =(fw/D,)/2.
For typical chemical bonds, A is a small quantity and
Eq. (2.16) provides us with a small expansion parameter
for developing a perturbation theory. This expansion in
A is easily obtained by rearranging the familiar Ray-
leigh Schrédinger perturbation theory (RSPT) expan-
sion.

Computationally useful expressions are aobtained by
dividing the reference Hamiltonian and the perturbation
by 7w. The state energies are simply calculated by
multiplying the scaled perturbation expansion by #w.
The scaled reference Hamiltonian is simply

Hp=—3(d®/dy?)+3 9% . (2.17)

The zeroth order energies of the Morse oscillator are
given by (n+1/2)%w. The first order (in A) contributions
to the energies are

EY =dy (n| 5*| m) Fw

which vanish due to symmetry.

(2.18)

The second order corrections are

2
E® = [@ |3ty +d2 D M]m . (2.19)
B (n-k)

The first term in the brackets in Eq. (2.19) comes from
first order RSPT, while the other term comes from
second order RSPT. The matrix elements (x| y"| k) are
evaluated using the states of the reference Hamiltonian
Hp. The denominator (z - %) is merely the difference of
zeroth order energies of Hy.

If the expressions for d;, d,, and the matrix elements
(nly*In) and {n| 3*| k) are inserted into Eq. (2.19) (re-
call (niy®|m)+ 0 only if n=mz1, +3) we find (after a
little work)

EO L E® =(n+1/2) Bw - (n+1/2)%(Fw/4D,) hiw

(2.20)
which is the exact result for the Morse oscillator en-
ergies.“3 Therefore, all higher order terms in A must
be identically zero. For instance, the fourth order
term in A has many contributions which are individually
nonzero but which can be shown to exactly cancel. One
of these terms arises in first order in ordinary RSPT,
another in second order, another in third, and the remain-
ing terms in fourth order. By arranging the perturbation
expansion in orders of A we take advantage of this can-
cellation. For the general anharmonic oscillator, there
is not an exact cancellation. Nevertheless, the cancella-
tion should be considerable if in Eqs. (2.15) and (2. 16)
d, is evaluated by replacing V, with the real potential
Vv and the derivatives are evaluated at the potential
minimum.

Sprandel and Kern'® have numerically studied the con-
vergence of various perturbation expansions for an-
harmonic oscillator systems, Their work provides
evidence of the superior convergence of a perturbation
expansion which treats the cubic term in the Taylor
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series of the perturbation potential {Eq. (2.15}] as or-
der one, the quartic term as order two, etc. We feel
that the analysis of the Morse oscillator presented here
provides added insight into this problem.

Every term in the energy expansion can be separated
into two factors, one which depends on the solvent con-
figuration and one which does not. The configuration
dependent factors are products of 7w and a number of
d,’s. These depend on the derivatives of the total poten-
tial evaluated at the equilibrium bond length. The re-
maining factors consist of products of matrix elements
of the scaled reference Hamiltonian (n|y™|k) divided by
scaled energy differences (n—%). These may involve
summations of the states of Hy. Since these factors
only depend on Hp, they remain constant as the solvent
configuration changes. Therefore, they need to be
evaluated once in the course of a simulation. The com-
putational advantage arises from the fact that these
configuration independent factors contain the time con-
suming portion of the perturbation calculation, the
matrix elements and sums over states. A similaranaly-
sis applies to the expansion for the wave functions.

Fourth order perturbation theory (in A) is employed
in the Monte Carlo simulations discussed in the next
section. At each step in the calculation the minimum
of the total potential must be located with respect to
bond length. Defining #,(X) to be this configuration
dependent equilibrium bond length, W7,,X) and the
first six derivatives of V with respect to » must be
evaluated at 7,(X) in order to obtain the needed 4,. The
perturbation expansion for the state energies measured
relative to the potential minimum W#,,X) are then
evaluated as just described. In molecular dynamics
simulations or in force biased Monte Carlo simulations
the forces are needed. This involves differentiation
with respect to solvent coordinates of W7,,X) and the
perturbation expansion for the vibrational energy levels.

Care must be taken to correctly account for the fact
that 7,, also changes as X varies. Thus the total rate
of change of some quantity A with respect to X; is given
by

() (M) (2
X,  \dXi /., (ar x\8X; /]’

where X; and 7 are treated as independent variables
on the right-hand side of Eq. (2.21). 8%,/8X; is ob-
tained from the condition that [a V{7, X)/ ia'r],,"l =0 which
follows from the definition of 7,. Thus, the total rate
of change of 8V/8 with respect to variations in X;
must vanigsh, When inserted into Eq. (2.21) this gives
the condition

(2.21)

2 2
8V 8V o7, (2.22)

where the derivatives of V are evaluated at 7,. Eq.
(2.22) can be solved for 97,,/9X;.

C. Electronic spectra

Consider two electronic states of a diatomic molecule
labeled A and B, where state A is the ground state and
state B is some excited state. In the isolated molecule,
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the nuclear potentials for these states are given by

RKR potential curves. Given the potential models de-
scribed in the introduction, each configuration of the
solvent produces two new potential curves. Because the
solvent is being treated classically, the modulation of
these curves is adiabatic and no transitions are induced
by solvent fluctuations, only the curves and the associated
vibrational states and energies are changed. For

each solvent configuration, we can use the methods de-
veloped in Sec. II B to compute the low-lying vibra-
tional states and energies for the two potentials and
thereby the transition energies. To compute the strength
of the transition, we must be able to compute the ac-
companying Franck—Condon factors—a problem we re-
turn to shortly. For each solvent configuration, we thus
obtain the transition energies and Franck—Condon fac-
tors. If we sample the initial solvent configuration
using our Monte Carlo algorithm (Sec. II A) with the
molecule being in the ground electronic state, we have
all the information required to compute the electronic
absorption spectrum within the scope of the model. On
the other hand, if the solvent configurations are sampled
with the molecule initially in the excited electronic state,
the resulting spectrum is the fluorescence spectrum,

In time resolved fluorescence, the molecule is ex-

cited by a pulse of light on a time scale short compared
to the relaxation times of the fluid, but because emis-
sion takes place on a nanosecond time scale, the fluo-
resence spectrum taken at intervals of time after ex-
citation will show an evolution from a spectrum consis-
tent with solvent configurations in equilibrium with the
ground electronic state of the molecule to a spectrum
consistent with the fluid being in equilibrium with the
excited electronic state of the molecule. The present
study gives both the initial and final fluorescence spec-
tra, but not the time evolution of the spectra. The time
evolution can, nevertheless, be simulated. This is ac-
complished by sampling initial solvent configurations
with the molecule in its ground state. Each of these
configurations provides an initial state for a molecular
dynamics simulation where the forces are computed
using the excited state potential surface. The time
evolution of the solvent then generates the new con-
figurations for the computations of energies and Franck-
Condon factors, and thus for the computation of the

time evolution of the fluorescence spectra.

There is yet another possibility which will be fol-
lowed up in a subsequent study. Instead of solving the
vibrational problem, we can adopt the methods de-
veloped by Heller® for studying wave packet dynamics,
Given an inital fluid configuration—sampled by Monte
Carlo—the molecular dynamics of the wave packet and
fluid can be solved. This requires three classical tra-
jectories for each initial configuration (including packet
state), The beauty of this technique is that it enables
us to study transitions involving highly excited states—
states that are otherwise not obtainable by the perturba-
tion techniques described above.

The procedure used to compute the Franck—Condon
factors is as follows. The vibrational wave functions
(for a given configuration) on surface A are
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|M>=;C,f.l¢t> , (2.23)

where | ¢}) are harmonic oscillator states on surface
A. The Franck-Condon factors are then

<¢:|wﬁ>=§ CA,CB, (pk| 0% . (2.24)

The coefficients are computed perturbatively as outlined
in Sec. IIB. The harmonic overlaps,

FAP = (| 0% (2.25)

depend on the harmonic frequencies w,, wp of the two
electronic surfaces, and also on the difference in the
equilibrium bond lengths, A=7, 5 ~%,4. w,, wg, and
A and, concomittantly, the harmonic overlap, vary with
fluid configuration. To avoid evaluating the overlap for
every configuration, it was convenient to adopt the fol-
lowing procedure. First, we note that the overlaps are
functions of w, and wg through the parameters ¥4, ¥p:

F&P=Fu(va, 783 8) , (2.26)

where ¥, =(mw,/m''?, and v =(mwy/k)!’? define har-
monic length scales in the two surfaces. By simple
change of scale of the integral defining F,;‘,B, it can be
shown that

Fkl (YA, ¥B ; A) = (I/YA)FM(ly 73/7‘1 YAA) .

The approach employed in the simulations was to expand
F,;(1, x,) in a Taylor series up to quadratic order
around some average value for xg, y,. The matrices
Fu(l, %o, o); (8F /891, %, ¥o); (8*Fre/822)(1, g, 30);
(82 Fri /99%)(1, %0, 3o); and (8% Fy, /8x8y) (1, xo, 3) are then
evaluated before the simulation is initiated. Then Fy,
can be evaluated at each step of the simulation, from the
quadratic expansion for each new x,y. The average
values of x, v, are found from small trial runs., The
fluctuation of x and y around x; and ¥y, is monitored. In
all cases reported, the fluctuations are sufficiently
small that this Taylor series approximation should be
accurate. If in other cases the fluctuations become

too large, more than one such expansion point can be
chosen. Then as the run proceeds for each new sol-
vent configuration, the closest expansion point (x;, ;)
could be seen.

(2.27)

Hi. RESULTS
A. Solvent effects on vibrational spectrum

In this section, we report the results of a number of
Monte Carlo simulations of a model system consisting
of Br, dissolved in Ar. Br, in Ar is a somewhat unusual
system in that the vibrational period for Br, is about
108 g, which is quite slow as vibrational motions go.

At 300 K, the temperature at which our Monte Carlo
simulations are run, a free Ar atom travels about 0.3

A per vibrational period on the average. Thus, we
would expect the adiabatic approximation to break down,
with the consequence that solvent induced vibrational
relaxation may be rapid. The present work makes no
attempt to calculate this nonadiabatic vibrational relaxa-
tion. Furthermore, it assumes that the mixed quantum-
classical density matrix based upon the separation of
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vibrational and rotational-translation motions provides
a reasonable description for the calculation of static
properties of this system. The question of solvent
induced, nonresonant vibrational relaxation and the ef-
fect it has on the statistical properties of a system is a
very interesting subject which we hope to address in
future work. '

The intramolecular Br;, interaction is modeled by a
Morse potential with D, =23100 K, a=1.94 A and 7,
=2.28 A. The solvent (Ar) atoms interact with each
other via a Lennard-Jones (LJ) potential with €,,
=120K and 0,,=3.42 A. The Ar atoms interact pair-
wise additively with each Br atomic center through an
LJ potential. In one model, designated the fixed epsilon
{FE) model, the Ar-—Br LJ parameters are those of
Freaser ef al. ,?' €5, =143 K, 0p,=3.51 A. Since the
electron density in Bry certainly depends on bond length,
it is more realistic to use parameters in the Ar—-Br po-
tential which are dependent on . Pratt and Chandler®
and Oxtoby'® have suggested that the variation of the
strength of V,._p, with changing Br, bond length is an
important feature that must be taken into account in or-
der to correctly reproduce the solvent effects on the
oscillator. Since the molecular static polarizability
is generally an increasing function of bond length, Pratt
and Chandler'® suggest replacing the constant €5, in
By.pe With an €5, which is a linear function of ». (Be-
cause it is the attractive part of the LJ potential that
should depend on the Br, polarizability, Pratt and
Chandler opt for including the bond length dependence
in V{5, only. Here V.5, is the attractive part of the
total potential Vy,p, = V%%, + Vs, as defined by Weeks,
Andersen, and Chandler theory.22 However, this leads
to changes in this parameter, and give the same re-
length. Furthermore, there is no reason to believe
that the repulsive potential Vi, is independent of bond
length. Therefore, we employ a modified bondlength
dependent €5, for the total potential V,,.z..) We adopt
an €p.(7) which is nearly linear near 7,, but which goes
to constant values at large and small ». This avoids
the possibility of spurious effects due to having a po-
tential well which increases in depth without bound as »
increases. The functional form employed is®

€pr=€1 — €3 exp{- o/(r -0} . 38.1)

The parameters €;, €,, a’, and b are fit so that €p,
=143 K, (dlney,/dr)=1 A™ (this is the same slope as
that used by Pratt and Chandler'®), and dZ%ey,/dv?=0 at
7,. This last condition ensures that €5, is approximate-
ly linear near #,. Given these parameters, there is
one free parameter in our functional form for €g.(7),
namely, 7,-b. By choosing a sufficiently large value
for this parameter, the region of approximately linear
behavior of €5.(7) near 7, can be adjusted to be suitably
large. In all variable epsilon (VE) studies reported be-
low, 7,—b=0.5 A. 7,-b=1.0 A has also been tested
and the results of the simulations found to be insensitive
to changes in this parameter, and give the same re-
sults as r—=5=0.5 A.

The Ar-Ar and the Ar-Br potentials are spherically
truncated and shifted at pair distances R _ar and
R ._pr, respectively. At these cutoffs, both potentials

TABLE I, Average quantities for Br, in Ar model system
evaluated from mixed quantum-classical Monte Carlo simula-
tions,

(r)y (&) (w) (ps™)
1. X=0,3, €,.pr is constant 2, 2842 60, 54
IOI. x=0.3, €4,p, is a function of » 2, 2953 58.90
ImI. x=0.6, €4,p, is a function of » 2,2728 64,47
Isolated Br, Morse potential 2,2861 60.152

are 1 K—with the proviso that Br, is at its equilibrium
bond length. The introduction of the cutoffs leads to dis-
continuities in the derivatives of the potentials at the
cutoff distances, but the cutoffs are at sufficiently large
distances that these discontinuities cause no problems

in practice.

Following Freaser ef al.,?! we report the density of
the various simulations in terms of an effective excluded
volume fraction, defined as

X =7(par O e +Pr 05:)/6 3.2)

where p,. and pg, are the number densities of Ar and Br
atoms in the simulation, respectively.

The details of the Monte Carlc simulation procedure
are the same as presented in an earlier publication“
and are not discussed here. Runs have been performed
for x=0.3, 0.4, 0.5, and 0.6, using the variable
epsilon model for the Br—Ar interaction. For compari-
son, a fixed epsilon run has also been performed at
x=0.3. All runs are performed at 300 K. The initial
configuration for each run is taken to be the final con-
figuration of some previous simulation, and the system
is allowed to relax further for least 5.4x10° moves.
Each run consists of 5.4 x10* moves, in addition to the
moves which are discarded at the beginning of the sim-
ulation. Some tests of the accuracy of the statistics for
the simulations have been made. These are discussed
below and they indicate that these simulations are suf-
ficiently long to provide accurate results.

A number of quantities have been determined. Among
these are the bond length distribution, the distribution
of energies {e,,(X)} in individual oscillator strates, and
the distribution of harmonic frequencies of the vibra-
tional potential defined as w(x) =[(1/m)(8? V7, x)/ 87 ]1:,,2
The solvent effect on the bond length is fairly small in
all cases, as demonstrated by the results in Table I.
Run I (x =0.3, constant €g,) shows essentially no ef-
fect on the average bond length as compared with the
isolated molecule. (r) increases somewhat, 0.009 A,
when the bond length dependence is added to €4.(7) at
this density, in agreement with the prediction of Pratt
and Chandler.'* At high density (x =0. 6) with »-depen-
dent €5, there is a 0.013 A reduction in the bond length
conpared with the » for the Morse potential alone. As a
check of the accuracy of these results, a second simula-
tion {x =0. 3, variable €g.(7)} has been performed. The
average bond length differed by only 0. 0002 A between
these two runs, indicating that good statistics have been
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FIG. 1. Distribution of harmonic fre-
quencies calculated from mixed quantum-
classical Monte Carlo simulations. (O)

X =0.3, €,,p,15 constant; (O) x=0.3, €,,p,
is afunctionof , and (A} X =0.8, G, I8
a function of v. The arrow marks the lo-
cation of the frequency for the Morse os-
cillator in the absence of solvent.
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achieved, (The statistics for the highest density x =0.6

simulation appear to be poorer. For instance, if sepa-
rate subaverages of the bond length are taken at this
density for the first 2, 7xX10* moves and for the last
2.7x10* moves, these averages differ by nearly 0,01 A,
Presumably, these poor statistics are the result of de-
creased efficiency of sampling at the higher density

due to smaller step sizes and to increased difficulty of
reaching all other configurations from a given configura-
tion because of the tight packing. Even with the poorer
statistics, the qualitative trends discussed are certainly
still significant.)

In contrast to the bond length, properties that are
related to the internal vibrational state energies of the
diatomic €,(X) are indeed sensitive to density, and also
to the inclusion of the bond length dependence in €g. (7).
The same trends are apparent whether one views the
average values and distribution functions for the har-
monic frequency w(X), or for internal oscillator state
energies, or for differences in state energies. This is
not surprising, since the internal state energies are
just (n+1/2)#w in lowest order. Only the data for w(X)
is discussed here in detail. The distribution functions
of the harmonic frequencies are presented for three
simulations in Fig. 1. Two of these are at x =0.3. They
differ in that in one, €y, is held constant, while in the
other €y.(r) depends on bond length [Eq. (3.1)]. The
third simulation also includes the variable €.(#), but
is at the higher density, x=0.6. For runlI (y=0.3,
fixed €5,), {w)=60.54 ps™, lies very close to the fre-
quency for the isolated Morse potential, 60.15 ps-,

Addition of the bond length dependence in €g.(7) gives
{(w)=58,90 ps!, and in fact induces a red shift in agree-
ment with the qualitative prediction of Pratt and
Chandler!® and the quantitative studies of various sys-
tems by Schweitzer and Chandler.!® The frequency dis-
tributions rise sharply on the low frequency side and tail
off more slowly at high frequencies. The distribution
function for the x = 0.6 simulation is much broader, blue
shifted, and it does not rise as fast on the low frequency
side as the x =0.3 case. The skewing of these distribu-
tions is interesting since Gaussian approximations are
sometimes employed for g{w) [and glw, ¢ wy, £,) the two
time distribution function] on the basis of a central limit
argument.®® A similar skewing has been noted by
Dijkman and ver der Maas? in their model calcula-
tions of inhomogeneous broadening of infrared line
shapes by inert solvents.

Figure 2 is a plot of the shift in the average frequency
(relative to the value for the isolated Morse potential)
versus density. All points correspond to simulations
with bond length dependent €g(#). The red shift at
low frequencies which turns into a blue shift at higher
frequencies is very reminiscent of similar trends seen
in experimental studies on the density dependence of
infrared frequencies.!* For x =0.3 (pc®~ 6) and fixed
€g. (cf. Fig. 1), there is no shift suggesting that the red
shift would be lost if the €5.(r) were not treated as a
function of bond length as it has been in these simula-
tions. Comparison of the results of two identical simu-
lations at y = 0.3 suggests that the statistics of these
runs are rather good. The difference in the average
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FIG. 2. (w) —w, plotted vs density. w, is the frequency of
Morse potential in the absence of solvent. w is measured in
em™ and density in units of po® where p and o are the number
density and van der Waals diameter of Ar.

frequencies of the two runs is only 0,082 ps™,

Ag a test of the convergence of the perturbation ex-
pansion for the vibrational state energies, Table II
presents results of the zeroth, second, and fourth order
calculations of the internal vibrational state energies
€,(X) for n=0 through 7 for a particular solvent con-
figuration (taken from y =0. 3) for a variable €5, simula-
tion. This indicates that the fourth order perturbation
calculations should provide highly accurate results.

It has been suggested that the frequency distribution
should be Gaussian since the instantaneous frequency is
the superposition of numerous more or less random
perturbations due to the interactions of the solute with
the solvent particles. To understand why this central
limit argument does not predict the correct result, first
consider the case of one solvent particle interacting with
the diatomic. For simplicity we assume a collinear
geometry. As the particles are brought closer from an
infinite separation, the long range attractive solvent
solute interaction causes a slight decrease of the ef-
fective harmonic frequency of the diatomic. At some
separation of the diatomic and perturber the frequency
goes through a minimum and for shorter separations
shifts to higher frequencies as the repulsive portion of
the solvent—solute interaction squeezes the vibrational
coordinate, Near the minimum frequency w, the fre-
quency can be expanded as a function of the solvent~
solute separation variable x:

W = wy+Alx - 2P, (3.3)

where x, is the value of x which corresponds to wy.
The distribution of frequencies g(w’) is defined as the
integral over all x of 6(w’ — w) weighted by the Boltz-

M. F. Herman and B. J. Berne: Solvent effects on spectra

mann factor
glw)=@1 f dxexp{-B[3 fw(x) + Vy(x)]}

xb[w’ ~ w(x)], (3.4)

where Vy(x)= V[7y(x), x|, 74(x) is the bond length for
which V(7, x) is a minimum for constant x. In Eq. (3.4)
it has been assumed only that the ground vibrational
state is significantly populated and that the harmonic
approximation for the state energy is reasonable.
Clearly for ' <w,, g(w’)=0. Close to wy Eq. (3.3) pro-
vides the relationship between x and w. Since

dx dw
d :d — ) .
¥=dw (dw) * (@ = wn) /AT (3.5)
the integral over x in Eq. (3.4) can be converted into two
integrals over w [one for each branch of + (w — wy)!’?]
which are easily performed yielding

E) = Ty AT el-BlE  + Vix()]}

(3.6)
for ' slightly greater than w,, and x{w’) is found
by inverting Eq. (3.3). Therefore, the dominant be-
havior near wy is a jump from zero to = at @, and then
a subsequent decay as [w - w,]™!/2. Thus, the case of
one perturber yields a skewed distribution.

When many solvent molecules are present, the integral
over x in Eq. (3.4) is replaced by a multidimensional in-
tegral over the entire solvent configuration space. The
harmonic frequency still has an absolute minimum as
function of all solvent coordinates. Below this value
wy, &w)=0. The 5 function in the integrand of the in-
tegral over solvent configurations picks out the volume
of configuration space corresponding to a given w.

Since wy corresponds to a single point in configuration
space (actually a number of equivalent points related by
interchange of solvent particles), it has zero volume
and the singular behavior of the one-dimensional ex-
ample does not appear. However, if the most probable
frequency lies near wy, the low frequency wing must
necessarily be truncated. This is the case at low and
moderate densities since the nearest solvent particles
tend to be located at distances from the diatomic at
which the solvent-solute interaction is attractive.

At higher densities, the repulsive.portions of the inter-

TABLE II. Vibrational state energies of Br, in Ar from zeroth,
second, and fourth order perturbation calculations for a typical
configuration with x =0,3 and €, 4. given by Eq. (3.1) with 7,
-5=0,54,

Zeroth order Second order Fourth order

n energy (K) energy (K) energy (K)
0 229,17 229, 2 229,2
1 689.1 684.6 684,6
2 1148.5 1136.0 1136.0
3 1607.9 1583.5 1583.5
4 2067.3 2026,9 2026.6
5 2526,7 2466,3 2465.9
6 2986.1 2901.7 2901,0
7 3445.5 3333.2 3332.1
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TABLE III. Morse parameters for two electronic states.

A B

D, 23100 K (1,99 eV) 18000 K (1.55 eV)
o 1.94 A 1,86 At
7, 2,28 3 2.40 A
Vylr) 0 10000 K (0. 862 V) (6950.3 cm™)
Wyo 6.016x 101 g1 5,0912x10% g

319 cm™ 270 cm™!
Yio 9,57x10" Hz 8,103 x10'2 Hz

action dominate. The most probable frequency lies far
above wy and the low frequency cutoff is obscured since
it is far out in the wings of the distribution. Therefore,
g(w) for high densities appears less skewed.

B. Solvent effects on electronic spectra

The methods outlined in Sec. II can be used to study
how the solvent perturbs the electronic absorption and
fluorescence spectra of diatomic molecules. In this
section, we consider a fictitious diatomic molecule X,
dissolved in various simple solvents. In its ground elec-
tronic state, labeled A, X; is identical to the Brp mole-
cule studied in Sec. I A; however, in the excited state
studied here (labeled the B state), X, bears no relation-
ship to any of the excited states of Br,. The B state
intramolecular potential is also taken to be a Morse
potential, The parameters used in the Morse poten-
tials for the A and B states are given in Table III. The
minimum of the B state potential is 6950.3 cm™ above
the minimum of the A state potential so that in the ab-
sence of solvent, and in the harmonic approximation,
the AO-BO transition is at 6925.9 em™,

In Fig. 3(a) we show the exact absorption and emis-
sion spectrum for isolated X,. This was computed
using the exact states of the Morse oscillator. In Fig,
3(b) we show the spectrum determined by the perturba-
tion treatment outlined in Sec. II B together with the
numerically determined Franck—Condon factors. Com-
parison of Figs, 3(a) and 3(b) shows that the numerical
techniques introduced here are quite good.

How does solvent perturb the electronic spectrum?
This depends sensitively on the intermolecular potential
between solvent and solute. It is expected that the mole-
cule X, in the B state interacts differently with solvent
molecules than X, in the A state. Because little is known
about the interaction potential, we will study several
simple models.

In all of the systems studied, the temperature is
85 K, and the density is y =0.4 with one X, molecule and
107 solvent atoms. The potentials are spherically
truncated and shifted, and periodic boundary conditions
are used. Each run consists of 250 passes after initial
aging. For each system separate simulations were per-
formed with configurations sampled from the A state and
from the B state. The transition energies and Franck
Condon weighting factors are evaluated for the transi-
tions from the ground vibrational state of the initial
electronic state (A or B) to the first eight vibrational
states of the final surface (B or A). Hot bands are thus
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ignored. The weighted transition energies are binned.
For the case where A is the initial surface, the weighted
distribution of transition energies gives the absorption
spectrum, whereas when B is the initial state, a similar
procedure gives the emission spectrum. In the latter
case, the agssumption is made that the lifetime of the B
state is sufficiently long that the vibrations in that

state have relaxed to the ground vibrational state, and
furthermore, the solvent has fully relaxed around the

B state. In two cases (the first and last below)

the emission spectrum has also been computed, as-
suming that the solvent does not have time to relax
at all.

In all of the systems studied, each X center in X,
interacts with each solvent atom through a Lennard-
Jones potential with parameters €,, o, which depend on
whether X, is in the A or B state. Thus for each system
we must choose [€,(A), 0,(A)] and [€.(B), o,(B)] where
the A and B define the state. The solvent atoms Ar in-
teract with each other through a LJ potential with €,,
=120 K and 0,,=3.42 A as before. In one of the simula-
tions, X, is treated like a heteronuclear molecule in
that it is given a bond length dependent dipole molecule
and the solvent atoms are given point dipole moments of
magnitude 0.5 D, The dipole moment of the diatomie is
modeled as a point dipole located at the center of the
bond. These latter cases will be discussed shortly.

The potential parameters are defined in Table IV.

In system IV, the B state has a bond length dependent
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FIG. 3. Normalized intensities for vibronic absorption and
emission spectra for a hypothetical diatomic in the absence of
solvent, Figure 3a is evaluated by numerical integration of the
exact wave functions. Figure 3b is calculated by fourth order
perturbation theory, The bond length dependences of the upper
and lower electronic state potential surfaces are modeled by
Morse potentials. The potential parameters are given in
Table III,
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TABLE IV. A summary of the potential parameters used in the systems studied in this section,

System €yx (4) Oy—x (A) €x-x (B) -x (B) H—x (%) uE—x (rg) Solvent i
(K) (A) (K) (A) (D) (D) (D)
I 143 3.51 143 3.51 0 0 0
I 143 3.51 71.5 3.51 0 0 0
oI 143 3.51 143 3.69 0 0 0
v 143 3.51 143 3.51 0 0.5 0.5
dipole moment bor solvent atoms contribute, and that there are z of
w(#) =0. 5{1 + tanh(» - 2. 40)} (8. 7) these atoms, we estimate a decrease of 2z{ex_x(A)

such that at 7,(B), the dipole is 0.5 D. This dipole has
a linear dependence on 7 in the neighborhood of 7,(B).

The absorption and emission spectra for these four
systems are presented in Figs. 4-7. The high frequency
side gives the absorption spectrum and the low frequency
side gives emissions, Several comments are in order:

(i) System I has a spectrum that is very similar to
the isolated molecule spectrum, except that the indivi-
dual lines are inhomogeneously broadened because of
solute solvent potential. The lines are slightly shifted;
the shifts are smaller than the inhomogeneous line
widths.

(ii) In system II [ex_x(B) =1/2 €x_x(4}], the peak posi-
tions shift ~ 1000 cm™ to the blue compared with system
I [ex_x(A) =€x_x(B)], and the peaks are much broader.
This is entirely expected from the fact that in the B
state, the solute solvent energy is 50% smaller than in
the A state. If we assume that only the nearest neigh-

- €x.x(B)} = zex_x(A) in the cohesive energy of the Bstate
relative to the A state. To account for the observed
blue shift of 1440 K, all we require is on the order of
ten “nearest neighbor” solvent atoms. We have some-
what more than this number, but they do not all sit at
the potential minimum. In the case where €x_x(B)
=2€y_x(A), we expect a substantial red shift in the
spectrum.

(iii) In system III, oyx_x(B)=1.050x_x(A), the emis-~
sion peaks shift 150 ecm™ to the red and the absorption
peaks shift to the blue compared to system I where
Ox_x(B) =0x_x(A). The spectral lines are much broader.
The broadening clearly follows from the fact that in the
B state, the molecule experiences stronger repulsions
with the solvent with concommitant broadening of the
individual vibrational states., Interestingly, the 00 lines
for the absorptions and emissions are shifted to the blue
and red, respectively. They no longer overlap. The
blue shift of the absorption band can be explained by
the observation that in absorption the solvent configura-

FIG, 4. Normalized vibronic absorption
and emission Franck—Condon intensities
for a model diatomic in a monatomic
solvent system corresponding to system
I of Table IV. The solvent is not allowed
to relax in the evaluation of the emission
spectra.
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FIG. 5. Same as Fig. 4 but correspond-
ing to system II of Table IV and the sol-

vent is allowed to relax in the evaluation
of the emission intensities,
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| FIG. 6. Same as Fig. 4 but correspond-
ing to system III of Table IV and the sol-
vent is allowed to relax in the evaluation
of the emission intensities.
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INTENSITY (x1072)
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FIG. 7. Same as Fig., 4 but correspond-
ing to system IV of Table IV. The solid
line corresponds to the relaxed emission
spectrum and the dotted line indicates how
this changes for the unrelaxed emission
spectrum.

20.80 40.80 68.00 80.00

tion is in equilibrium with the A state, For the solvent
atoms near the solute, the transition to the B state is
accompanied by an increase in oy_x and with a con-
comittant increase in potential energy. Hence, the B
surface shifts up from the A surface and rises more
steeply on the respulsive side. This gives a blue shift,
The red shift of the emission lines can be understood
as follows. The solvent is allowed to relax around the
B state. Because ox.x is larger, there will now be
more solvent atoms in the coordination shell with a
concomittant increase in attractive energy with the B
state. This lowers the energy of the A state relative
to the B state.

(iv) In all cases, the absorption lines are somewhat
broader than the emission lines. This is presumably
because the electronically excited diatomic is slightly
larger than the ground state molecule (#,=2.4 A in the
excited state versus 2.28 A for the ground electronic
state). Therefore, similar arguments to those invoked
in (iii) apply. In case (ITI) the diatomic-solvent inter-
action radius ox_x is larger for the upper electronic
surface than for the lower surface, causing the ob-
served effects. However, even when oy_yx(B) =0x_x(A4)
there is still a slight effect due to the increased equi-
librium bond length for the isolated diatomic for state
B compared with state A.

(v) In system IV, a dipolar interaction is included;
nevertheless we see very little change in the spectrum
from what it was without the dipole. The spectral shifts
are very small and there is only a very slight broaden-
ing. At first, this may appear surprising, but further
reflection shows that at contact the dipolar interaction
with one solvent is ~40 K. The solvent dipoles in the

100 . 00
INVERSE CM (x10?)

129.00

nearest neighbor solvent shell at 85 K will thus not be
terribly ordered. Small increases in dipole moment
may have profound effects on the spectra.

To better understand how the solvent perturbs the
electronic absorption and emission spectra, we adopt
the following simple model in which the potential curves
for the A and B states are merely shifted by the solvent
but are otherwise unchanged. Moreover, we assume
that the potentials are harmonic. For the average fre-
quencies of absorption we have

hi2n =1/2 Hwy — wy) +ng Fiwg

o [ @R [ doguR (v -Vik, @.8)

where V, and V; are, respectively, the solute-solvent
interaction potential in the A and B state, and pg,(R, Q)
is the pair correlation function giving the density of
solvent molecules at a distance R from the COM of the
Br, molecule which is oriented in space with angles Q.
The subscript A denotes the fact that the solvent is in
equilibrium with the electronic state A. Similarly, g3
describes the distribution of solvent around Br; in equi-
librium with the B state.

Likewise, the average emission frequencies are

U —1/2 Hwp ~ wy) — 1y A

+p fd3RfngB(R, v -v). (3.9
For simplicity, let us assume that the solute is a spheri-
cal molecule. From these expressions, we see that if
€, o are the same in the A and B state V3~ V, =0 and
there are no solvent shifts in this model. Taking Vg(R)
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=€z ¢(R/0), V4(R)=€,9(R/0) and V5(R) -~ V,(R) =(e€p
—¢€,)0(R/0). The integrand in Eq. (3.8) thus has the
form (e; - €,)9(R/0)gs(R). If €5 ~€, >0, this integrand
has a negative well. Thus both the absorption and emis-
sion lines are red shifted from their gas phase values.
Because gz(R) is more strongly peaked at the minimum
than g,(R), the emission lines should be red shifted
more than the absorption lines. If €5 —€, <0, the inte-
grand is positive and both the emission and absorption
bands are blue shifted. Now g, is more peaked than

£gp and the absorption is blue shifted more than the
emission band.

Now consider the case where €4 =€5 but 05 >0,. Then
the minimum in Vz(R) - V,(R) occurs at larger distances
than that for V,. g,(R) is peaked in a region where Vg
- V, is relatively positive so that the absorption band
will be shifted to the blue. g5(R) on the other hand is
peaked further out in a region where V5 — V, may be
negative so that the emission band is red shifted. In
all cases w, >wy so that solvent-solute interactions
destroy the resolution of the absorption line more than
the emission lines. The observations are summarized

below:

€ o Emission Absorption
€p €, 04 =0g red shift red shift
€p <€, 04 =0pg blue shift blue shift
€4 =€g 04 =0g no shift no shift
€4 =€ Op >0y red shift blue shift

The simulation results are completely in agreement
with this, Similar considerations lead us to believe
that the dipolar system should show a significant red
shift in the emission line and a much smaller red shift
in the absorption lines. The dipolar energy in the solute
interaction with the nearest neighbor solvent atom is
~40°K. The solvent dipoles are randomly oriented so
that there is a large cancellation of dipoles and thereby
a reduction in the energy. Consequently, in the case
studied, the effect of a polar solvent is rather small.
We suspect that doubling of the dipole moments will
lead to enormous effects. Preliminary studies using
large dipole moments support this conjecture.

1V. DISCUSSION AND SUMMARY

The discussion in this manuscript has been primarily
limited to systems with a single diatomic molecule in a
monatomic fluid. However, many generalizations are
possible. In the case of a diatomic fluid, it should be
reasonable to calculate the potential of each diatomic
in the field of all the other molecules fixed at their equi-
librium internuclear separations. In this approximation,
the vibrational problem becomes separable into individual
molecular vibrations. If small polyatomics are con-
sidered, it may be feasible to solve for the normal modes
of the polyatomic in the field of the solvent and use the
resulting normal mode product wave function as a low-
est order approximation from which perturbation cor-
rections can be calculated. In order to study particular
local features of larger solvated molecules, it might be
appropriate to treat all bonds as rigid except for the
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few bonds in the region of interest. The torsional and
possibly the bending modes could be treated classically.
A better approximation for these latter types of nearly
classical modes in a Monte Carlo calculation can be
obtained from a discretized path integral formulation of
the canonical density with a “short time” or high tem-
perature approximation employed for the propagators in-
volved in this formulation. #2%°3 When these low fre-
quency modes are nearly classical at the temperatures

of interest, only a few steps would be needed in the dis-
cretized path integral for an accurate description of the
quantum canonical density. Earlier we noted that the ro-
tational motion of diatomics containing hydrogen or deu-
terium are known to exhibit quantum behavior in solution,
This nearly classical mode could likewise be treated
more accurately through a discretized path integral
method,

The harmonic oscillator system serves as a very
convenient zeroth order reference system. As we have
shown, all the matrix elements and summations over
intermediate states in the perturbation theory are inde-
pendent of the solvent configuration, This greatly en-
hances the computational efficiency of methods of this
type. We have also considered the Morse oscillator
as a possible reference system., For this potential there
are two energy scales, the harmonic energy scale 7w
associated with the curvature at 7,, and the dissociation
energy D,. In terms of appropriately scaled length and
energy variables, Morse oscillators form a one parame-
ter family of reference systems. This parameter can
be chosen to be the ratio #w/D,. The Monte Carlo cal-
culation can be set up analogously to the procedure with
a harmonic reference system, except that matrix ele-
ments and the summations over states now depend on
7iw/D,. The approach investigated involves the initial
evaluation of these quantities at a number of values of
%w/D,. Interpolated values of these matrix elements
and summations are obtained for the Morse oscillator
that is employed as the reference potential for each
configuration in the simulation. An obvious way of
choosing the reference Morse potential is to pick the
value of %w/D, that reproduces the Taylor series of the
solvent dependent vibrational potential through the cubic
term. Our hope was that by using a better reference
system, we would be able to calculate quantities relating
to higher vibrational states than was possible with the
harmonic potential. However, we found that the solvent
induced fluctuations in the potential at large ¥ are so
great for different solvent configurations that the Morse
reference potential is a poor approximation at large 7.
However, similar ideas may find application to other
systems. For instance, the family of quartic bistable
potentials (a two parameter family) may serve as an
acceptable reference system for the study of a quantum
bistable oscillator.

Throughout this work, model interaction potentials are
chosen for the particle—particle interactions on the basis
of available theoretical and experimental data. Gen-
erally, these interaction potentials are little more than
intuitive models and, therefore, it is of interest to study
the effect that variations in the form of the potentials
have on experimentally observable quantities. The
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shifting of the vibrational frequency distributions in the
ground electronic state that were observed when the
Lennard-Jones potential for the Bry—Ar interaction is
such that €,,_z.(7) depends on the Br, bond length is

an example of this type of investigation. The interaction
between the solvent particles and electronically excited
states of the diatomic is apt to be more complicated than
the ground state interaction, due to the open shell nature
of most excited electronic states. Moreover, less is
generally known about excited molecule—solvent inter-
actions, both theoretically and experimentally, Never-
theless (or maybe because of this), it is of interest to
study the consequences of various model solvent inter-
actions with excited electronic state molecules. We
have undertaken such a study, with the various poten-
tials outlined in Tables HI and IV. This results in the
various absorption and emissions spectra given in Figs.
4-T7 and we easily understand these on the basis of the
potential models used.

We have mentioned previously that this work rests
upon the adiabatic separation of the vibrational motion
from the translational and rotational motions. Non-
adiabatic effects which are neglected result in solvent-
induced relaxation of the vibrational populations. To
test the consequences of this neglect of vibrational re-
laxation, the behavior of the solvent-induced nonadia-
batic coupling must be studied. This coupling has the
form®’ — inP,. 1 V4l¥) where ¥ is the vibrational wave
function for the system, V, is the many dimensional
gradient with respect to all translational and rotational
coordinates, and P; is the multidimensional vector com-
posed of the conjugate momenta to these coordinates.
One approach to this problem would be to run the dy-
namics and calculate the rate at which the first excited
vibrational state is produced according to first order
perturbation theory. The evaluation of the V) factor in
the coupling would proceed very similarly to the evalua-
tion of V E,(R) described in Sec. IIC, where E,(X) is the
nth vibrational state energy.

Recently a number of workers have considered prob-
lems concerning quantum degrees of freedom in the
condensed phase. One notable approach has been to
study approximations to the quantum distribution func-
tion based upon the discretized representation of the
path integral, 8:25:26:28:2%  Appiving the techniques of clas-
sical liquid state statistical mechanics to the path in-
tegral, %% such quantum problems as the hard sphere
model for He above the A transition and solvation effects
on a very simple model of tunneling have been analyzed.
This approach may well be useful for simulating cer-
tain properties, but as matters now stand, it does not
appear to offer a practical alternative to the simulations
of spectra discussed here.

Wilson and co-workers®®®! have analyzed the clas-
sical limit of infrared and Raman spectra calculated
from quantum mechanical linear response theory and
present quantum corrections which can be applied to
rotational and vibrational spectra calculated from clas-
sical molecular dynamics. Calculations are presented
for the IR spectrum of CO in Ar and the Raman spectrum
of N, in Ar. The vibrational quantum corrections are
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more significant than the rotational corrections. The
vibrational corrections arise from the anharmonicity

of the potential and, therefore, are expected to be rela-
tively small for such harmonic bonds N, and CO, as
compared with the vibrations of weaker bonds. It would
be interesting to test these corrections on more an-
harmonic systems.

To summarize, in this work we deseribe how the sol-
vent induced perturbations upon vibrational modes of dif-
ferent electronic excited states can be studied in gases
and liquids. The model is based on an adiabatic sepa-
ration of vibrational and rotational/translational mo-
tions and a classical limit approximation for the latter
types of motions. The key to the simulation methods
discussed is the availability of a highly efficient proce-
dure for the repeated solution of the vibrational Schré-
dinger equation. A perturbative method which has been
found to be accurate for the low lying vibrational states
is presented.

A series of Monte Carlo calculations are presented
which model the Br; in Ar system in a high density fluid
state at 300 K. In the Monte Carlo work, particular at-
tention is paid to the distribution of harmonic frequencies
for the vibrational coordinates. This distribution
function is found to be a senstitive function of density.
The average frequency shows a red shift at moderate
lensities and is blue shifted at high densities. The shift

s also found to be sensitive to the form of the potential
employed. In particular, the red shift is enhanced if
the Ar-Br interaction is taken to be an increasing func-
tion of Br;, bond length, in agreement with the qualitative
prediction of Pratt and Chandler, !® and the detailed
studies of Schweitzer and Chandler.!® The frequency
distributions are skewed, tailing off more slowly on the
high frequency side, This conclusion, which corrobo-
rates the finding of Dijkman and van der Mass, ?* raises
questions about the validity of the Gaussian distribution
function approximation, which is sometimes invoked on
the basis of a central limit theorem argument. The
skewing is less significant at higher densities.

A second electronic state on the diatomic is included
in a number of simulations in order to study the dis-
tribution of vibronic transition frequencies between the
ground and excited electronic levels. The well depth
and interaction radius between the solvent and the elec-
tronically excited solute are varied. We find that de-
creasing the well depth blue shifts both the excitation
(absorption) and deexcitation (emission) vibronic bands.
Increasing the excited state interaction radius results in
higher absorption frequencies and low emission fre-
quencies. In each of these cases the frequency dis-
tributions are much broader than when the same sol-
vent-solute potential is employed for the ground and ex-
cited states of the solute. This broadening is especially
pronounced when the interaction radius is increased.
The addition of 0.5 D dipoles to the solvent and to the
electronically excited solute results in only minor
changes to the vibronic frequency distributions. This
indicates only partial orientational ordering of the di-
poles at the temperature (85 K) considered.
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