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The path integral Monte Carlo (PIMC) method is used to simulate liquid neon at 7= 40 K. It is
shown that quantum effects are not negligible and that when the quantum effective pair potential
is used in a classical molecular dynamics simulation the results obtained for the radial distribution
function agrees with that predicted by a full path integral Monte Carlo simulation. The validity of
this procedure is further shown by comparing the results obtained by this method to experimental

measurements of liquid neon at 7= 35 K.

INTRODUCTION

Argon, krypton, and xenon all obey the law of corre-
sponding states, whereas helium and neon do not."* The
reason is that helium and neon display quantum effects at
liquid state temperatures, whereas the other inert gases are
essentially classical at their liquid state temperatures. In-
deed, the quantum properties of helium give rise to superflui-
dity, while neon does not display such dramatic effects,
quantum effects cannot be ignored. In this paper we present
a computer simulation of quantum neon using several differ-
ent approaches.

The problem of simulating quantum systems is receiv-
ing increasing attention. Early work focused on determining
the ground state properties of Fermi and Bose liquids. A
variational Monte Carlo method using Jastrow trial func-
tions was developed by Kalos et a/.,>* and applied with con-
siderable success to the study of the ground state of helium.
Kalos® developed a Green’s function Monte Carlo technique
that is easily applied to Bose liquids, but has not yet been as
successfully applied to Fermi systems.® These methods are
restricted to zero temperature problems. At finite tempera-
tures other methods are required. One method that is worth
exploring is path integral Monte Carlo (PIMC).” This meth-
od was introduced several years ago, and offers several im-
mediate advantages over other methods. The discretized
path integral formulation of quantum statistical mechanics
allows a quantum particle to be replaced by a polymer chain
of classical particles with harmonic forces between nearest
neighbors.? If exchange is ignored, then the quantum liquid
is represented by a classical liquid containing polymer
chains where each particle on any chain interacts with one
and only one particle on each of the other polymer chains.
Since this is a classical liquid, it can be simulated by simple
Monte Carlo techniques. The problem can also be cast in a
form which allows classical molecular dynamics techniques
to be used,” but as we show elsewhere, '® when applied to the
neon dimer, molecular dynamics can be nonergodic. There
are several problems connected with the PIMC. First the
simulation is slowly convergent,'"!? second, the estimator
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used to determine the average energy has very large fluctu-
ations,’® and, third it is very difficult to treat particle ex-
change. Another method that has been proposed recently is
based on the propagation of Gaussian wave packets.!**
This method appears to be very promising; nevertheless, no
trustworthy simulation of simple quantum fluids has yet
been done using wave packet dynamics.

Recently, we have developed a very rapidly convergent
method for evaluating path integrals in systems of a few
quantum degrees of freedom. This method is based on direct
numerical matrix multiplication (NMM),'® and does not
have any inherent numerical fluctuations. We have applied
this method to tunneling problems!” and to the determina-
tion of an effective potential between two interacting quan-
tum particles. In a recent publication’® we conjectured that a
simulation of a classical liquid with pair potential given by
the above quantum effective potential might provide a rea-
sonable approximation to the full quantum liquid. In this
paper we implement this suggestion and compare it to a full
Monte Carlo evaluation of the path integral. In addition,
these results are compared with various semiclassical ap-
proximations. It is found that the quantum effective poten-
tial (QEP) gives good agreement for neon. Given this, WCA
theory'® was applied to the quantum effective potential. Al-
though the effective potential is much softer than the Len-
nard-Jones potential, it appears that the repulsive part of the
WCA potential can be well represented by an effective hard
sphere potential and it is not surprising then that the WCA
theory is quite successful when applied to this problem.

METHODOLOGY

We consider a system of N particles interacting with
pair potential u(r). In addition, we ignore the statistics due to
the indistinguishability of the particles. (An estimate of the
importance of exchange is given in the Appendix.) The Ha-
miltonian of the system is

H=3 2l su

=S —+Nur,—r
‘Z,l - ,Z, i —5l)
=T+V, (1)
where u(r) is the LY (12-6) potential with o = 2.754 and ¢/k,
= 35.8 K. The central quantity of interest in the calculation
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of equilibrium properties is the partition function
Q=Tre P ="Tr [e-¥/PH]P, (2)

where 8 = (k; T}~ !, and Tr stands for the trace, P is an in-
teger, and the last equality follows because H commutes with
itself. With the aid of the Trotter formula,'® Eq. (2) can be
written as

Q= lim @, 3)

P>

where
0, =Tr [[exp (— %V)exp( — %T)exp( — E%V)]P]. (4)

If Pis chosen so that 8 /Pis small then it can be shown that (in
the coordinate representation) @, becomes

QP - (mP/27Tﬁzﬂ )3NP/2fdr(l)“_ dr(P)e —gorh,.., .-(P))’ (5)

where r'*) denotes the collection of the coordinates of the N
particles at the “time” ¢ i.e., r') = (¢{",r§ ) r'¥)), and

P N
P, ) = (mP/2BH) Y Y () — TP

t=1j=1

P
+(/P) 3 Sulr —x,(6)
t=1i>J

where r'!) = r'f + 1, Although Eq. (6) becomes “exact” in the
limit as P— 0, in practice one is forced to deal with finite P.
When Pis finite, Qp looks like the classical partition function
for a system of N X P classical particles. In this approxima-
tion the N-particle quantum system resembles a classical sys-
tem where each quantum particle is represented by a “flexi-
ble” ring polymer consisting of P “beads.” Each bead in a
ring polymer interacts with the neighboring bead through a
harmonic potential with the force constant (mP /8 *#). It is
also important to note that the ¢ th bead in one ring polymer
interacts with only the 7 th bead in any other ring polymer.
Perhaps it is worth remarking that the above form of Eq. (6)
which follows from Eqgs. (4) and (5) is called the primitive
algorithm. It has been recognized (through an assortment of
examples) that for quantum mechanical systems at low tem-
peratures the number of beads P required to account for the
quantum dispersion can become extremely large.'!!>!617
Therefore there have been efforts to devise techniques to im-
prove upon the primitive algorithm, including both the vari-
ational treatment'> and a renormalization group ap-
proach.”® In some circumstances, umbrella sampling
techniques can be used to reduce P.' In addition, efforts
have been made to include higher order terms in the Trotter
formula to obtain a more accurate *“short time” approxima-
tion.?2 It will perhaps be necessary to resort to some of these
techniques to simulate quantum many body systems. How-
ever, in this paper we do not address these important ques-
tions further.

EFFECTIVE POTENTIAL APPROACH

In a previous paper,'® we conjectured that the quantum
effective potential W (r; £ )(QEP) (to be described below) used
in a classical computer simulation might adequately de-

scribe the quantum effects in many-body quantum systems.
Let us consider two identical (Ne} atoms enclosed in a large
but finite box. Since the Ne atoms are assumed to interact via
the Lennard-Jones potential, the Hamiltonian can be sepa-
rated into a center of mass and relative coordinates. As
shown in Ref. 16, the Bloch equation for the Hamiltonian
describing the relative motion can be solved using the nu-
merical matrix multiplication method (NMM), giving the
exact path integral in the primitive algorithm. It is then a
simple matter to obtain the effective potential W (r; 8) de-
fined by

WirB)=—(1/8)ng(r), (7)
where g(r} is the pair correlation function. For details of this
procedure the reader is referred to Ref. 16.

Before considering the liquid it is useful to access the
accuracy of path integral Monte Carlo (PIMC) for the calcu-
lation of g{r). In particular we consider two Ne atoms inter-
acting via a Lennard-Jones potential enclosed in a box of side
40 at the temperature of 40 K. The exact pair correlation
function g(r) was calculated by evaluating p(r,’; 8 ) (the den-
sity matrix corresponding to the relative motion) by
NMM.'¢ The PIMC was performed for the Hamiltonian of
the relative motion and g(r} was evaluated using the method
described in the text. The number of beads, P, used in the
PIMC was 40, whereas P was taken to be 64 in the NMM
method. After the system had equilibriated to the desired
temperature, g(r) was computed using 500 000 additional
passes. In Fig. 1 the effective potential determined from
PIMC is compared with that from NMM. This figure shows
that PIMC deviates from QEP at r/o < 0.95 where the num-
ber of counts is small and the error is therefore large. In Fig.
2 it can be seen that PIMC gives a reliable estimate of g{7).

For the sake of comparison we study two other pair
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FIG. 1. Plot of the effective potential in units of € as a function /o at T = 40
K. The solid line classical LJ potential; the dash line is the potential given by
the Wigner-Kirkwood expansion [cf. Eq. (9)]; the dash—dot line represents
the quantum effective potential given by Eq. (7); and the dotted line is the
potential obtained by PIMC for two neon atoms enclosed in a box.
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FIG. 2. The radial distribution function g{7) as a function of r/c for liquid
neon at T = 40 K and po” = 0.68. The dashed line is the result of the PIMC
simulation; the dotted line represents g{r) obtained from a classical molecu-
lar dynamics simulation using the quantum effective potential; the dash—
dot line is the result of the MDLJ simulation; the solid line is the prediction
of the WCA theory using the QEP.

potentials which include quantum corrections to the classi-
cal LJ potential, namely,

Wenlr B) = V(r) + ##B /24m)[V "(r) + (2/7)V'()]1(8)
and
Wax(rB)=V(r)—B ~'In{1 — {#B?/12m)
X[Vl + @y —B/2V' (N1 9)

The potential Wy, results from keeping only quadratic fluc-
tuations around the classical path in the path integral and is
called the Feynman-Hibbs potential.>* The potential Wy
(r; B) results from the leading terms in the Wigner-Kirk-
wood expansion of the partition function.?*?*

In Fig. 1 we plot the classical (LJ) potential ¥ (r), the
quantum effective potential W (r; B ) found using NMM and
PIMC, and the Wigner—Kirkwood potential Wy, (; 8) as a
function of r/o for T = 40 K. It can be seen that for such low
temperatures W (r; 8) and Wy (r; B) are significantly softer
than ¥ (r) [and Wy (r; B) although not shown in Fig. 1], indi-
cating the importance of tunneling into the classically for-
bidden region. The minimum of W (r; B} is at a higher value
than the classical minimum. For r/0 < 1 Wey(r; B) is more
repulsive than the classical potential. The potentials Wy,
(r; 8)and W (r: B) are remarkably similar for /o > 0.93. For
r/o <0.93, Wy (r; B )isslightly more repulsive than W (r; 8)
and for 7> 1.170 both Wy (r; B) and W (r; B) are virtually
identical. This suggests that the leading # correction to the
classical potential ¥ (r) as given by the Wigner~Kirkwood
expansion of the partition function is adequate at this tem-
perature. It will be necessary to calculate W (r; 8) using
NMM (which includes corrections to ¥ (r) to essentially all
orders of #], only when the Wigner—Kirkwood approxima-
tion indicates strong quantum corrections. However, the
Wigner-Kirkwood potential [Eq. (9)] is an asymptotic ex-

pansion in powers of #i and, thus, care should be exercised in
inverting the partition function to obtain the effective poten-
tial. In particular one might think that the partition function
can be expressed as

Q ~Jdr exp —fB [ Vn+ Tﬁ;%[ | (5]

2 ' B ’ 2
+ 2y £ )], (10

Unfortunately, one cannot be so cavalier with asymptotic
expansions. In fact this gives very poor agreement with the
effective potential. Instead one should use the Wigner—Kirk-
wood potential given by Eq. (9).

WCA ANALYSIS USING THE QUANTUM EFFECTIVE
POTENTIAL

In this section we examine the efficacy of the modern
van der Waals theory of liquids (WCA theory)'® to calculate
the radial distribution of Ne using the quantum effective pair
potential W (r; B) defined in Eq. (7) and displayed in Fig. 1.
For completeness a brief sketch of WCA theory is given.
According to WCA theory,'® the interparticle potential is
written as the sum of a purely repulsive part W®(r; 8)and a
purely attractive part W(r; B), i.e.,

Wir,B)=W"rB)+ W'rB), (11)
where
e L
0 r>r,,
and
-4  r<r,,
A Py

In Eq. (11), r,, is the distance at which the repulsive force
becomes zeroand 4 = Wir,,; B). ‘
In the WCA approximation g(r) is approximated by

glr) ~ g%r), (12)
where g*%(r) is the radial distribution function for a fluid with
the repulsive pair potential Wr; 8). g°)(r) is then approxi-
mated by

8r) = yys(rid)e—#78), (13)

where yy (7,d ) is the cavity distribution function of an “equi-
valent hard sphere fluid” with diameter d; where d is deter-
mined from

f dr Pyys(rd) = f i dr Pyus(rd)[1 — e =#7°=0)], (14)
(¢] 0

the requirement that the compressibility of the equivalent
hard sphere fluid is the same as that of the repulsive system

(W% B)}.

COMPUTATIONAL DETAILS

Corbin and Singer"* used an extension of the semiclassi-
cal wave packet method to simulate the properties of quan-
tum neon at 40 K and a density po® = 0.68. They neglected
exchange effects. We performed four calculations for this
same system: (1) A classical molecular dynamics using the

J. Chem. Phys., Vol. 81, No. 6, 15 September 1984

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2526 Thirumalai, Hall, and Berne: Monte Carlo study of liquid neon

Lennard-Jones potential ¥ (r) (MDLJ); (2) classical MD sim-
ulation using the Feynman-Hibbs potential, Wgy(r; 8)
(MDFH) [cf. Eq. (8)]; (3) a classical MD simulation using the
effective quantum potential W (r; 8) (QEP) [cf. Eq. (7)]; and,
finally, (4) a full path integral Monte Carlo simulation
(PIMC). In all these calculations we used 108 particles, with
Lennard-Jones parameters o = 2.75 Aande=358K.In
the path integral Monte Carlo (PIMC) simulation, 40 parti-
cle chains (P = 40) were found to be adequate at this tem-
perature. In terms of the usual reduced units,?® the time in-
crement was taken to be 0.016 in the classical MD
simulations. The potential was spherically truncated and
shifted at half the box length. In the case of the MD simula-
tion using the LJ potential the equations of motion were
integrated up to 2000 time steps with averages being per-
formed over the last 1800 time steps. For the other two MD
simulations, i.e., using Wgy (r; 8) and the W (r; ) the trajec-
tories were followed for 15 000 and 19 000 steps, respective-
ly, and averages were performed after discarding the first
1000 steps. We note that for these long runs the computed
g(r)’s are quite accurate. In the PIMC two parameters were
used: the step size of the center-of-mass of each polymer
chain (composed of P = 40 particles) was taken to be 0.18¢0
and the step size for the moves of the particles of each chain
was taken to be 0.01860. Averages were performed over
5000 passes after the potential energy had equilibriated. The
radial distribution function g{r),
P
g = (1/P) 3 &) — ), (15)
t=1

was calculated using MDLJ, QEP, and PIMC and by apply-
ing WCA to W (r; B). The results are shown in Fig. 1. The
PIMC calculation is regarded as the exact result. The figure
shows that at this temperature (40 K) quantum effects seem
to be significant. The notable feature is the appearance of
tunneling into the classically forbidden region. In addition,
the height of the first peak of the PIMC result is a few per-
cent lower than the corresponding (MDLJ) classical RDF. It
should also be noted that for 7> 1.5¢0 the PIMC result and
the (MDLJ) RDF are in very good agreement. The observa-
tion that the quantum effects for g(7) become insignificant at
large r has also been made recently by Powles and Abascal.?’
Within the numerical uncertainties of the simulations the
RDF obtained by using QEP seems to be in quantitative
agreement with the PIMC simulation. In particular, it cor-
rectly predicts the tunneling effects and the mild suppression
of the height of the first peak. We also found that the RDF
predicted from MDFH is more in agreement with the classi-
cal result MDLJ than with the PIMC calculations. This is
not surprising since, from Eq. (8), the potential Wy (r; B)is
more repulsive than the Lennard-Jones potential and the
correction due to the zero point quantum motion is not of the
same magnitude as the effective potential.

In Fig. 2 we also compare g(r) as a function of r by
applying the WCA theory to the quantum effective potential
and the RDF calculated from the PIMC simulation. Al-
though not shown in Fig. 2, when WCA theory is applied to
Wew (r; B) it yields g{r} which is in very good agreement with
MDFH. The equivalent hard sphere diameter was calculat-
ed in all cases using the simple algorithm given by Verlet and
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FIG. 3. The radial distribution function g{r) as a function of #/o for liquid
neon at T = 35.05 K and po® = 0.66 where r = 2.75 A. The solid line is the
MD result using pure classical QEP; the dash~dot curve is obtained using
MDLJ; the dash curve represents the experimental results of deGraaf and
Moser as analyzed by Raveche and Mountain.

Weis.?® All the required integrals were evaluated numerical-
ly. The parameters r,, and 4 for the effective potentials are
1.140 and 0.93e, respectively, whereas for the FH potential
r,, is 1.130 and 4 is 0.90¢. The hard sphere diameter calcu-
lated using the Verlet—Weis algorithm for the effective po-
tential is 1.00840 and for the FH potential the calculated
value of d is 1.0120. The application of WCA to QEP does
compare well with the results of the PIMC simulation.

It has been shown that a classical system of neon atoms
interacting through the effective pair potential W (r; £ ) gives
good agreement with the full path integral Monte Carlo sim-
ulation of neon atoms at 7=40 K and po® =0.68. To
further test the accuracy of classical simulations with the
effective pair potential (QEP), we compare such simulations
to the experimental g(r)?°° of liquid neon at T = 35.05 K
and po® = 0.66. The parameters used to determine W (r; B)
from NMM were the same as before except for temperature,
T = 35.05 K. Figure 3 shows a comparison between simula-
tion and experiment for g(r). The agreement is very good.
Also included is the g(r) from a simulation of neon interact-
ing with a LJ (12-6) potential, under the same conditions.
The purely classical (MDLJ) simulation does not account for
tunneling and predicts a larger first peak. For > 1.60 quan-
tum effects cease to be important.

CONCLUSION

In this paper we report results of a simulation of liquid
neon using the path integral Monte Carlo (PIMC) technique.
Neon is assumed to interact with an LJ(12-6) potential. Our
motivation for making this study was to test a previously
made conjecture that the quantum effective pair potential
could be used in a classical simulation. In this paper we have
shown that this conjecture agrees with the full PIMC result.
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It is also shown that the Wigner-Kirkwood asymptotic ex-
pansion also provides good agreement with W (r; ), so that it
can be used with some success in classical simulations. It is
tempting to speculate that the quantum effective pair poten-
tial can be used to calculate dynamic correlation functions in
quantum many body systems.

In the course of this study we found that PIMC for two
interacting neon atoms agrees reasonably well with the re-
sults obtained with NMM, leading us to believe that PIMC
gives accurate results for quantum liquids.
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APPENDIX

In this appendix we assess the importance of the ex-
change contribution due to the interchange of two particles.
Consider two indistinguishable free particles of mass m en-
closed in a box of volume V. The density matrix for the rela-
tive coordinate is

3
P(rr';ﬂ)=(2#’;zﬁ>7[exp ~ 55l
+ exp —Eg—%(r—}—r’)z], (A1)

where r denotes the relative coordinates of the two particles
and p is the reduced mass. The first term in Eq. (A1) is the
direct contribution to p(r,”'; 8 ) and the second term is due to
exchange. When the particles are free, the exchange contri-
bution to p(r,”’; #) becomes important only at low tempera-
tures (large £ ) and small values of ». For two free neon atoms
at T=40 K the exchange term decreases as e ~*” where
a = 4.2110'. In particular, for 7 equal to the mean separ-
ation of atoms at po” = 0.68 the exchange contribution to
plr,r; B) is 1.6% that of the direct contribution. When the
particles interact via the Lennard-Jones potential the harsh
repulsion at small distance will prevent any two particles
from being close enough to each other for exchange to be
important. Thus the presence of the potential would tend to
decrease the exchange contribution relative to that of free
particles, unless the temperature is much lower. This has

been numerically verified for two neon atoms in a box.>!
However, at higher densities the exchange contribution to
glr) may become dominant. We believe that the exchange
contribution to the interchange of three or more particles is
less important than the two particle exchange.
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