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The escape rate constant out of a metastable well for an impulsive collisional (BGK)
model and the Fokker—Planck frictional (Kramers) model is evaluated analytically
for arbitrary potentials and any number of degrees of freedom in the low collision or
low friction limit. Completely statistical behavior of the collisionless dynamical
system is assumed. The rate constants increase dramatically with the number of
degrees of freedom. The result of the weak collision Kramers model allows us to
evaluate the collision efficiency B8, without adjustable parameters. It is argued that
some reactions could be described by a non-Markovian Kramers model with an

appropriate number of degrees of freedom.

INTRODUCTION

Since Kramers landmark paper' the escape rate of a
Brownian particle from a metastable well has been the
subject of numerous studies.? Consideration of this prob-
lem for multidimensional systems was initiated by Lan-
dauer® and Langer® and only recently Matkowski and
Schuss®>® developed powerful general techniques to
attack such problems.””® The original one dimensional
Kramers model has been extended to non-Markovian
situations.!®!3 Such modifications have been applied to
explain the viscosity dependence of isomerisation reaction
rate constants with varying success.!3-!”

On the other hand, over the past several decades
there have been many studies of unimolecular reactions
in the gas phase.'®-?° In the past, theoretical approaches
in this field have been formulated in the strong collision
approximation where each collision is assumed to com-
pletely randomize the energy of the decomposing molecule.
Experiments'® showed that for certain bath molecules the
rate constant can be much smaller than the “strong
collision” model would predict. Models that incorporate
such “weak collision” behavior were developed but these
models involve adjustable parameters like the average
energy transfered per collision (AE’) which is determined
from experiment.

That the Kramers model in the low friction limit is
a special case of the weak collision limit in unimolecular
rate theory has been appreciated.2'~} In this paper this is
explored in more detail. In the main part of the paper
explicit expressions are derived for the dissociation rate
constants in the BGK model?'~?* and the Kramers model
for any potential and for an arbitrary number of degrees
of freedom in the low collision or low friction limit—
using techniques borrowed from unimolecular rate theory.

® This work was supported by a grant from the National Science
Foundation.
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These results are a natural extension of the results for
one degree of freedom."?* The rate constants are found
to increase strongly with increasing number of degrees of
freedom. Lastly solution of the Kramers problem allows
us to obtain explicit relations for the collision efficiency
B. in the weak collision limit.

GENERAL BACKGROUND

Consider a polyatomic molecule with fixed center of
mass and orientation. Suppose that the remaining n
degrees of freedom can be described by a classical Ham-
iltonian

& pi

H(T) E . + V(x), (1)
which exhibits completely chaotic motion. Then its total
energy E is the only constant of motion. The potential
energy V(x) is chosen to have a single metastable well
whose minimum and its single saddle point are separated
by an energy barrier Q. We divide the phase space T into
a reactant and a product region according to the position
vector X with a suitably chosen boundary which includes
the saddle point. The metastable well lies completely in
the reactant region. If this molecule suffers infrequent
collisions, its total energy E will be the only slowly
relaxing variable. Let us denote the probability of the
system having an energy between E and F + dE and
being in the reactant region by P(E, 1)dE. Because of the
random nature of the collisions the evolution of the
probability density P(E, f) can be described by a Marko-
vian Master equation'®

a ® 1| r 1
5P 1) = fo dE'[K(E, E\P(E', 1)

~ K(E', E)P(E, 1)] — krrxm(E)P(E, 1). (2)

The collision kernel K(E', E) which satisfies detailed
balance is the transition probability for a change in energy
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from E to E' per unit time. In the low pressure limit
K(E', E) is the product of the collision frequency a and
the conditional transition probability density of the energy
after the collision E’ given the energy E prior to the
collision. The dissociation into products is determined by
the RRKM-rate constant kprxm(E). The over all disso-
ciation rate constant k can be obtained by solving Eq. (2)
for the normalized steady state distribution P (E) which
gives the total flux into the product region'®

k= f * dE kanion(E)Ps(E). 3)
Q

Given K(E', E) and kgrrxm(E) this method provides a
general framework for evaluation of dissociation rate
constants at low enough pressures.

If the collisions are frequent enough, the steady state
distribution is well approximated by the equilibrium
distribution

1

PulE) = 5 UE), @
where
a(E) = [ dr 5E - Hy 5)

is the density of states,
Z(p) = f dE e PP(E) (6)
(4]

is the partition function and 8 = 1/kzT. Note that all
integrations over the phase space are restricted to the
reactant region only. In this case of frequent collisions
Eq. (3) is just the definition of the transition state rate
constant.

On the other hand, in the low collision limit the
dissociation is so effective in removing particles above
threshold that it acts as a perfect sink. So we have the
boundary condition

PJE)=0 for E> Q. (7

In the low collision limit two limiting cases are of interest.
The first case is the strong collision limit where the
transition kernel allows large energy changes. The second
one is the weak collision limit in which only small
displacements are allowed. We treat these two cases in
the next two sections separately.

STRONG COLLISION LIMIT

In this limit one collision allows large energy transfer.
Then the steady state distribution is well approximated
by the equilibrium distribution below the threshold energy.
To satisfy the boundary condition Eq. (7) we need to
introduce a proper normalization factor. Then substituting
Eq. (2) in the steady state (3P/dt = 0) into Eq. (3) we
obtain the rate constant'®?!

k= I: J; ¢ dE P(E ):l_l J: dE’ J;Q dE K(E', EYP(E).
(8)

The simplest collisional model is the strong collision
approximation'® where

K(E', E) = aP(E) ®

and a is the collision frequency. The rate constant Eq.
(8) becomes

k=a f: dE P.(E) (10)

as shown in many standard texts.'>?® The ratio of the
rate constant of a given collisional model to the strong
collision rate constant Eq. (10) is called the collision
efficiency 8.. For n — 1 harmonic oscillators and one
deep (BQ > 1) piecewise harmonic well the strong collision
rate constant can be shown to be?®

- B 4
k a——(n_ l)!e .

Of course this holds only if the motion near threshold is
completely irregular—an assumption which is not satisfied
for a collection of truely harmonic modes. Nevertheless
it indicates the general trends of the result. The same
restriction applies to later examples where we evaluate
rate constants for harmonic oscillators.

Often collision kernels are defined in phase space T
and the energy collision kernel is obtained from?'-??

(11)

K(E' FE) = <J- dar’ 8(E' — H(T')K(T", F)> , (12)
E

where we have introduced the microcanonical average

1
(--->E=ﬁfdP6(E—H(I‘))--- . (13)

The other more realistic strong collision kernel is the
BGK-model*'-%

K(I', T) = ad(x' — x)Pey(P), (14)

where only the momenta p are randomized according to
a Maxwell-Bolzmann distribution after a collision. Using
Eq. (12) the rate constant Eq. (8) can be evaluated as

= o SOQ ~ VDA — h(x0))
Q- Voohoy

where 6(x) is the Heaviside step function and the canonical
configurational average (- - - ) is restricted to the reactant
region. We have introduced the abbreviation

_x(n/2, BQ — BV (x))
T'(n/2)

using the notation from Abramowitz and Stegun?’ for the
T function and the incomplete vy function. One can see
that Eq. (15) agrees with the result by Skinner and
Wolynes for one degree of freedom?* up to a negligible
term of order ¢ 7?2, Analysis of this expression for n
harmonic oscillators with one truncated at energy Q gives
for deep wells (8Q > 1) the same asymptotic result as the
strong collision approximation [namely Eq. (11)]. For a
realistic potential Eq. (14) can be evaluated most easily
by a Monte Carlo procedure. Usually we can expect that

(15)

h(x)

(16)
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the collision efficiency 8, ~ | and is independent of
temperature for the BGK model.

WEAK COLLISION—KRAMERS LIMIT

In this case the transition kernel allows only small
energy changes compared to kzT and is therefore sharply
peaked at E = E'. This limit includes the Fokker-Planck
operator of the original Kramers treatment. In this case
we can perform a Kramers-Moyal expansion of the
integral operators in Eq. (2) taking detailed balance into
account. The standard steps presented by Carrier and
Keck?® for example lead to the energy diffusion equation

dJje

—P(E f) = — — — krrem(E)P(E, 1),

oE {17

where the energy flux is

dlog P, (E):I. (18)

je = —D(E)[ M, ) - P(E, 9 LB

The energy diffusion coefficient turns out to be the second
moment of the transition kernel?®

IDE) = %de’K(E', EXE'— E). (19)

The escape rate constant is found by solving Eq. (17) for
the steady state distribution. The two integration constants
are determined from Eq. (7) and the normalization con-
dition. Using Eq. (17) in the steady state the rate constant
Eq. (3) becomes the inverse of the familiar mean first
passage time formula?

[f dEmf dE' P, eq(E')]

To solve the Kramers problem for any number of degrees
of freedom in the low friction limit we only have to
evaluate the energy diffusion coefficient D(E). Before
specializing to Fokker-Planck collision dynamics let us
analyze the impulsive collision kernel

K(I", T) = &(x' — x)K(p’; x, p)-
Using Eqs. (12) and (21), Eq. (19) becomes

D(E) = %( f dp'K(v’; x, pIH®P, x) — ET >

which can be simplified by substituting
H(p', X) —
= H(p, x) —

(20

@1

(22)

E

H(p, x)
n l ,
=2 ;1—; pi(pi — pi)

i=1

+ E 5 (17. o)y (23)

t-l

resulting in

D(E) =

(24)

ij
i

where we introduced the second moment of the collision
kernel

K@) = 4 [ ool - oo - pIK@ 6 D) 29)

and O(K®) symbolizes contributions from higher mo-
ments. By performing Kramers—-Moyal expansion of the
kernel Eq. (21) as indicated by Skinner and Wolynes?'
one can readily identify the second moments Eq. (25)
from the multidimensional version of the Fokker-Planck
equation? to be kT'{;;(x) and that O(K®) — 0. Because
of hydrodynamic interaction the friction tensor {; (x) can
depend on the mutual configuration of the particles. At
this point the energy diffusion coefficient becomes

ksT
E)y=3 —"—{(&; A 26
D( ) E mimj <§- }(x)ptpj>E ( )
If the friction tensor is independent of the configuration,
this expression can be further simplified by evaluating the
average {p;p;)e. In the canonical ensemble this average
is

1 © _ _
Z0) J; dE e *EUEX pipj)e = (27)

Since Z(B) is the Laplace transform of Q(E) [cf. Eq. (6)]
inverting Eq. (27) gives®

T f : dE'UE"), 28)
0

<Pin>E = 0;; AE)

which together with Eq. (26) yields the final expression
for the energy diffusion coefficient in the Kramers problem

kT f TE) f dE"QUE"),

where Q(E) is the density of states defined in Eq. (5) and

fu 2“’

D) = 29)

(30)

is the trace of the mass weighted friction tensor.

Kramers' solved this problem for one degree of
freedom in action space which leads to an energy diffusion
coefficient

D(E) = é keTW(E)(E), (31)
where »(E) is the frequency and J(E) the action. Using
the fact that the density of states for one degree of freedom
is the inverse frequency and that dE/dJ = v we readily
verify that our result Eq. (29) reduces to Eq. (31) for one
degree of freedom.

The expression for the energy diffusion coefficient
Eq. (29) allows us to evaluate the rate constant for any
particular potential using Eq. (20). Consider » harmonic
oscillators with one truncated at energy Q for example.
In this case Q(E) oc E*! for E < Q and the rate constant
becomes for deep wells (8Q > 1)
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e~ s e

If this is specialized to isotropic friction, the result derived
by Matkowsky and Schuss’ is recovered. If we consider
arbitrary potential whose minimum has nonvanishing
normal mode frequencies it can be shown that for deep
wells (BQ > 1) Eq. (32) still holds up to some multiplicative
factor of order of unity. To evaluate the rate constants
exactly it is necessary to determine the density of states
Q(E) for the potential energy in question and integrate
Eq. (20) numerically.

Evaluating the ratio of the rate constants Eq. (32)
and Eq. (11) we obtain the collision efficiency for the
Kramers model for deep harmonic wells

(32)

6.~ L 0. (33)
an

Evaluating the same expressions for arbitrary deep wells
(8Q » 1) one similarly finds that 8. oc T~'. To obtain
this relation a result from Enskog theory of hard sphere
gases has been used, namely that the collision frequency
a and the friction constant f have the same temperature
dependence at low densities.

CONCLUSION

In this paper we have evaluated the rate constants
for the BGK model [cf. Eq. (15)] and the Kramers model
[cf. Eq. (20) and (29)] all in the low collision limit for
any number of degrees of freedom and arbitrary potentials.
In accord with unimolecular rate theory our models
predict rate constants which increase dramatically with
increasing number of degrees of freedom. The BGK
model is a strong collision model and has a collision
efficiency 8. ~ 1 independent of temperature. The strong
collision models differ substantially from the weak collision
models like the Kramers model which allow only small
energy transfer per collision. This behavior can be de-
scribed as diffusion in energy space provided that S2D(E)
< a for all E < Q which means that 8. <€ 1 for any weak
collision model.'®*? Therefore, the rate constant in the
Kramers model is much smaller than in a strong collision
model at equal collision frequency. The choice of the
Kramers model as a particular weak collisional model
allows us to derive an explicit expression for the collision
efficiency 8, [cf. Eq. (33) for a harmonic well] and we
find that 8, oc T"!. Previous discussions of 8. which have
been based on assumed behavior of adjustable parameters
as (AE) also suggest the same temperature dependence.'®

We should clarify a possibly puzzling fact that the
collision efficiency for the Kramers model Eq. (33) is
indeed small despite the large SQ factor. Let us take n
= 1 for simplicity. The weak collision limit is achieved
only if £ BQ < a is satisfied, otherwise the Kramers model
is not valid. From the Enskog theory of hard sphere gases
we can estimate a and f (the latter from the diffusion
coefficient). We find that we must choose a sufficiently

small solvent to solute mass ratio (which is essentially f/
a) to satisfy 80 < a for a given 8Q. Note that although
the asymptotic Eq. (33) is exact for Q > 1, it is also an
excellent approximation to the exact result [Egs. (10),
(20), and (29)] for most temperatures of interest. Only
for unusually high temperatures (in practice 3Q < 5) Eq.
(33) is no longer appropriate: With increasing temperature
the exact result goes through a minimum and shows a
final increase in accord with a related study.®!

In our treatment we focus on the strong collision
and weak collision limits only. Extensive studies®? of the
transition between these two limits based on model
collision kernels in energy space showed that the behaviour
of the collision efficiency is quite insensitive to the details
of the particular collision kernel. We believe that a simple
Pade approximant as used by Skinner and Wolynes?! can
interpolate between these two limits very well and in this
way one might be able to avoid the cumbersome exact
analysis.

The assumptions in deriving our results are identical
with those of statistical rate theories, i.e., the system is
completely irregular and the total energy is the only
conserved variable in the absence of coupling. However
in real molecules the question of non-RRKM behavior
must be considered.?®263* Such effects could be described
by replacement of the RRKM-rate constant by the true
rate constant®> and if the system is non-ergodic the
collision kernel can be replaced by an appropriate set of
collision kernels acting in the irregular and regular regions
of the phase space. Extreme non-RRKM behavior could
probably also be treated by a model in which the strongly
coupled degrees of freedom only feel an effective friction
(or collision kernel) renormalized by the weakly coupled
degrees of freedom.>* Such non-RRKM behavior was
implicitly assumed by Carmeli and Nitzan in their study
of two coupled degrees of freedom.>* In real systems there
are further conserved quantities beside the total energy
and we must incorporate them into the theory. The
center of mass momentum can be eliminated by the
procedure used by Bak and Lebowitz? for example. The
problem of angular momentum was discussed in the
strong collision approximation!®?° and for more general
collision kernels.>?> The most important extension would
be the treatment of realistic soft collisions and non-
Markovian friction kernels. Similarly, double well prob-
lems could be treated within an analogous formalism.
However, judging from studies in one dimension'3?! the
rate constants of the double well problem will usually
differ by a factor of order unity from the corresponding
single well problem. Furthermore one can also address
the average energies transferred per collision (AE) in this
framework. In agreement with recent experiments® both
models considered here predict temperature independent
(AE) at high energies. We hope to discuss such questions
in the future and compare the results with experimental
data.

Deviations from the low collision regime were exten-
sively studied for model collision kernels in energy space.’’
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For the BGK model we are unaware of any such treatment.
However the results will probably resemble the strong
collision approximation. In the case of energy diffusion
one can also follow the approximate treatment of Lan-
dauer.’®* In higher dimensions however the actual de-
pendence of the rate constant on the friction constant
will be different because one cannot approximate
QU E)krrkm(E) by a constant near threshold as was done
for one degree of freedom.*® However as emphasized by
Troe’” a plot of log k vs log « is quite insensitive to the
details of the collisional models and simple interpolation
formulas can probably provide sufficient accuracy.

Recently a one dimensional non-Markovian Kramers
model (Langevin model) has been used to explain the
viscosity dependence of isomerization reactions in lig-

- uids."*"'7 We believe that such a model is adequate over
a wide range of densities if at least the following two
conditions are satisfied. First the reaction must be in the
weak collision regime for low pressures. This restriction
follows from the fact that the low friction limit of any
Langevin model is a special case of the weak collision
limit of unimolecular rate theory. Second we have to
incorporate the correct number of strongly coupled degrees
of freedom into the model. This observation springs from
the fact that the low pressure rate constant increases
strongly with increasing number of degrees of freedom.
Therefore the low-pressure falloff region shifts rapidly
towards lower pressures as the complexity of the decom-
posing molecule increases and therefore becomes increas-
ingly difficult to observe.'® This is one possible explanation
for Fleming’s inability to observe the low pressure falloff.!”
In liquids as opposed to gases however it is possible that
a portion of the overdamped regime of a multidimensional
Langevin model or a BGK model can be well approxi-
mated by an effective one dimensional Langevin model.
For the case of harmonic saddle points reduction of the
multidimensional problem to one dimension was per-
formed by Hynes and co-workers.*® This rationalizes the
success of such models in some cases.'*!¢ However a one
dimensional model will fail to predict the position of the
maximum and the low pressure falloff.

The experimental tests of such Langevin models of
chemical reactions in the liquid phase have been based
on varying the viscosity by changing the solvent.'>!7, In
our view much more conclusive tests could be obtained
by studying the change of the rate constant at fixed
temperatures in one (preferably simple) solvent by varying
the density (i.e., pressure) from the low density gas phase
to the high density liquid phase. This type of approach
was already suggested by Troe.*' Recently Jonas has made
a very interesting study in high pressure liquids.*? It
would be very useful to augment this work by studying
the low pressure falloff of the rate constant. Subsequent
experiments*> along these lines are difficult to compare
with the original work of Jonas without the availability
of the raw data.

In conclusion we would like to summarize our
results. With the assumption of molecular chaos we derive

analytic results for the decomposition rate constants for
the BGK model and the Kramers model in the low
collision or low friction limit for an arbitrary number of
degrees of freedom. The explicit evaluation of the simple
formulas involves in the BGK model an equilibrium
average and in the Kramers model the density of states.
In accord with unimolecular rate theory and experimental
data the rate constants obtained increase strongly with
increasing number of degrees of freedom. Roughly speak-
ing the BGK model has a collision efficiency 8, ~ 1 and
the Kramers model with a much smaller rate constant
gives 8. oc T7! and B, < 1. The explicit result for the
collision efficiency of the weak collision Kramers model
does not contain any adjustable parameters. We expect
that only unimolecular reactions which lie in the weak
collision limit at low pressures could be described over a
wide range of densities by a non-Markovian version of a
Kramers modél with an appropriate number of degrees
of freedom.

Note added in proof: After we submitted our manu-
script we became aware of analogous studies of the non-
Markovian Langevin model.** Their results reduce to
ours in the Markovian Kramers limit. Naturally this
model is also in the weak collision limit and applies only
if B*D(E) < « for all E < Q. This will be satisfied at
lower temperatures than for the Kramers model since the
friction is reduced by non-Markovian effects.
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