A rapid method for determining rate constants by molecular dynamics?®
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A simple method is presented for determining rate constants in activated barrier crossing in a
computer simulation. Instead of calculating the reactive flux, this method focuses on dynamics in
the system with an absorbing barrier placed at the transition state. This method leads to a large
reduction in CPU time for the low and high friction regimes.

INTRODUCTION

Inactivated barrier crossing, oneisinterested incalculat-
ing the rate of transition between stable species separated by
an energy barrier. In systems with large energies of activa-
tion, barrier crossing is an infrequent event. Straightforward
molecular dynamics simulations would then be impractical.
Since the crossings are infrequent, most of the computation
time required is spent following trajectories in their wells as
they await energy activation.

To simulate this process, and to thereby determine rate
constants, we have found it useful (and necessary) to deter-
mine the reactive flux'®-
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where x is the reaction coordinate, x = 0 is the position of
the barrier maximum (or transition state), X =dx/dt,
05 [x(t )] is the step function which is unity if the particle is to
the right of the maximum at time 7 and zero otherwise, d I is
an element of volume in phase space, Py ()
= @ ! exp — BH (I'), and k 1y is the transition state theory
(TST) value of the kinetic rate constant (k; + k), where k,
and k, are the forward and backward rate constants. In sim-
ulations using Eq. (1), one samples initial states with the par-
ticle placed on the transition state. This permits one to calcu-
late only initially “activated” trajectories and thus to avoid
calculating trajectories which take a long time before being
activated.
Iftheenergybarrier E * /kT» 1, the reactive flux will de-
cay on two widely different time scales. There will be a fast
initial decay followed by a very slow decay,
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where A p; 51 is the “plateau value” of the reactive flux
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Thus to determine the kinetic rate constant (k, + k), two
simulations are required. In the first simulation, A4 p; 1 15
determined by sampling all trajectories that start at x =0,

and calculating (¢ ). This function will decay rapidly to the
plateau A p; ,+.>~* Of course, one must convince oneself that
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this is the true plateau by continuing to a longer time. A
second simulation must then be done to determine
kst = {(x0(%))S (x =0)/x,x5, where S(x) is the equi-
librium configuration distribution function for the particle.
kst can be determined by Monte Carlo techniques.>”’

An alternative to this is to determine % (¢ ) for long times
so that exp — {k; + k, )t can be observed. (k; + k, ) can then
be determined from this decay.

In this paper we present an alternative method for deter-
mining the transition state theory normalized rate constant
A prat, Which requires much less computation time.

A RAPID COMPUTATIONAL METHOD

Equation (1) can also be expressed as

k() =de‘[P‘+’(I‘) — PI)) 65 [x(e)] 4)

or
k(t) = (5 [x(t)1) 4 — (Bs [x()]) _, (3)
where (05 [x(t)]) . arethefractionsoftrajectories whichare

in the product well at time ¢ given that at time =0, x =0,
the velocity is either x > 0 or x <0, respectively, and where
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are well defined probabilities that can be sampled by Monte
Carlo techniques.

For simplicity consider a symmetric double well poten-
tial with wells 4 and B and transition state TS. Consider all
trajectories originating at TS. These can be divided into a set
with x > 0 and X < 0. Consider first the set with X > 0. Let us
assume a certain fraction of trajectories T, will not quickly
leave B, whereas(1 — T,) will quickly recross the barrier.
Then if we follow the motion of these x >0 trajectories, a
fraction T, will immediately get trapped in B, a fraction
(1 — T,)*T, will get trapped after first visiting 4, a fraction
(1 — To)*T, will get trapped after twice visiting 4, and so on.
Thus,

(03 [x(t)]>+ = 2 (1 = To)" Ty, o

n,even
where we have assumed that the fraction of trajectories
quickly trapped in well 4 is also T, because the wells are
symmetric. Now consider the set of trajectories x < 0. These
move initially towards well 4 so that the fraction trapped in
B on first visit is (1 — T,,) T, the fraction trapped on second
visit is (1 — T, T, etc. Thus,
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Oplx(t)])_= 3 (1= To|'T,. (8)

From Egs. (2), (3), (5), (7), and (8) we then find that for
tL(ky + ky)~!, (Op(t)) . — (O5(t)) - = ApLar is given by

Foar= 3 (= U= ToPTo = 2 o)
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T, can be found by taking a single well with an absorbing
barrier at the transition state. The trajectories are sampled as
if in the calculation of k (¢ ) [cf. Eq. (2)]; however when a tra-
jectory recrosses the transition state we remove it. After a
short time all the trajectories that “leave quickly” will have
been absorbed and the fraction that remains is 7. Thus the
number of trajectories required for the determination of T is
smaller than for the determination of & (¢) in Eq. (2). This
leads to a large saving of computer time.

This procedure can be extended to asymmetric wells,
where the trapping fractions will differ for each well. If 7,
and T designate the trapping fractions in wells 4 and B,
respectively, then

T,T,
ApLar = 42 : (10)
T,+Ty—T,Ty

Two simulations are then required to determine 7', and 7.

NUMERICAL RESULTS

The reactive flux [cf. Eq. (1)] has proven very useful in
simulations of reactions in condensed matter. These studies
involve the solution of the equations of motion of a large
number of molecules and require considerable CPU time.
Even when the solvent is represented as a stochastic bath the
simulations require long times especially when the friction
coefficient is very large or very small. The above method
leads to a considerable saving of computer time in these sim-
ulations. We illustrate this by applying the method to a sim-
ple stochastic simulation. We are currently applying this
method to determine rate constants in liquids using full mo-
lecular dynamic simulations.

The dynamical system consists of a reaction coordinate
x, moving in a quartic symmetric double well potential with
energy barrier Q, and a nonreaction coordinate y moving
stochastically with friction £, in a harmonic potential with
frequency w. The coupling between x and y is exy. The poten-
tial is therefore

6.2
Vixy)=x*— (2— sz)x +—2——y +exy+ 1. (11)
The Langevin equations for the system are
. avix, . . dV(x,
¥ “%, y=—0— "‘ V&I 4 pie) (12)

where f,(¢) is a Gaussian random force with covariance
(£,00)f,(t)) =2kT(6(t — 7.)/7., where 7, is the correla-
tion time of the force. These Langevin equations were inte-
grated using a fourth-order Adams Moulton predictor—cor-
rector algorithm for Q /kT = 10,{ = 2, 7. = 10™*, and the
two values of € = 0.3, 1.2. The coupling of x to y gives rise to
an effective friction on x which increases as €. Thus € = 0.3
and €= 1.2 correspond, respectively, to the “low” and
“high” effective friction regimes.

The rate constant for barrier crossing is calculated using
1000 sampled trajectories by the two methods outlined

TABLE 1. Comparison of rate constants determined by the reactive flux
and the absorbing barrier methods.

e ¢ T, T2 — Ty rab.)/r(r.f)
073+ 004 0.58+ 005 0.60+ 0.08 0.74

02040.03 0.111+0.02 0.134004 0.25
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above, i.e., (a) by directly computingfc (t)[cf.Eq. (4)] and from
this determining A p; 41 [cf. Eq. (2)] and (b) by determining
A prat using Eq. (9), i.e., by following nonabsorbed trajector-
ies, and computing 7y, The results are summarized in Table
L

Let 7{r.f.) and 7(a.b.) denote the integration time re-
quired to determine A p; 51 using the reactive flux (r.f.) meth-
od and the absorbing barrier (a.b.) method, respectively. To
determine 7(r.f.), N trajectories are followed for a time 7,
necessary to determine A p; o - Then 7{r.f.) = N7,. To deter-
mine 7{a.b.) each of the N trajectories are followed until ab-
sorbed. Since (1 — To)N trajectories are absorbed rapidly
and NT, are followed for 7, r{a.b.)>~NT,r, . Thus, 7(a.b.)/
7{r.f.)~T,. This shows that when T;<1; that is when only a
very small fraction of trajectories get trapped rapidly,
r(a.b.)€r(r.f.); that is the reactive flux method takes much
more computer time than the absorbing barrier method.
Thus in both the very low friction and very high friction
regimes, where the reactive flux method takes very long
times, the absorbing barrier method should be used. The last
column in Table I confirms r{a.b.)/7{r.f.)~T,.

We have shown how the rate constants k. + &, and
k st may be found using the parameters for trapping and
escape from a single well with an absorbing barrier at the
transition state. The main assumption in our model is that
the dynamics of trajectories before and after crossing the
transition state are uncorrelated, i.e., upon recrossing the
transition state the trajectory may be placed with another
trajectory randomly chosen from the distributions P'*) of
Eq. (6). [The randomness is mathematically expressed by the
simple product in Eqgs. (7)~(9).] This is a probabilistic argu-
ment which should be accurate in the limit when there is a
high degree of chaos in the dynamical system. It is worth
noting that this method gives accurate results for one-dimen-
sional barrier crossing in both the high and low friction re-
gimes (in agreement with Kramer’s theory).
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