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In two recent papers, we examined the role of intramo-
lecular vibrational relaxation (IVR) in determining the rate
for energy activation in polyatomic molecules for both
strong' and weak collision> models. In each study, we com-
pared theoretical predictions with the result of numerical
calculations for a quartic bistable coordinate coupled non-
linearly to a Morse oscillator' and linearly to a harmonic
oscillator.> We found that in each case the rate constant was
sensitive to the degree of coupling between the reaction coor-
dinate and the nonreactive degree of freedom. For weakly
coupled systems, the numerical results agree with the predic-
tions of one-dimensional theories which assume that the rate
for energy transfer between modes is slow compared to the
rate for energy activation in the reaction coordinate. For
strongly coupled systems, multidimensional theories which
assume that the rate for energy transfer between modes is fast
compared to the rate for energy activation in the reaction
coordinate must be used. In this Note, we present numerical
simulation data for the rate of barrier crossing in a two de-
gree of freedom Markovian system.

Rate constants were calculated using the absorbing
boundary version of the reactive flux.> The dynamics is de-
scribed by the Langevin equation where the friction tensor is
taken to be isotropic. We use the potential studied by De-
Leon and Berne*:

Vixp) =4*(y* — De 4+ 10(1 —e~*)2+1, (1)

where y, a quartic bistable coordinate, is nonlinearly coupled
to x, a Morse oscillator, for nonzero z. All calculations use a
temperature f ~! = 0.1, and the units of mass and barrier
frequency defined by Eq. (1). The equations of motion were
integrated using the velocity version of the Verlet algorithm®
on an FPS-164 attached processor.

Our simulation data are displayed in Fig. 1. The various
theoretical predictions are described below for energy acti-
vation in a single well.®

(1) The one-dimensional theory approximates the fric-
tion on the bistable reaction coordinate as y, the diagonal
element of the mass weighted isotropic friction tensor. The
rate constant is given approximately by

kip = BQye %, (2)
where BQ is the barrier height along the reaction coordinate,
i.e., the difference in energy between the saddle point and the
well minima.

(2) The first order two-dimensional theory consists of
the asymptotic result accurate to first order in the friction®

klow = (BQ)Z},e—BQ_ (3)

(3) The corrected two-dimensional theory with first or-
der corrections to Eq. (3) in the friction®
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Keore/brsy =2z(1 +ay2'?) 7", 4)

where z = k,,, /kyst, a3 = 1.372, and kigy is the transition
state theory rate constant.®

The total rate constant & for all friction is approximate-
11

ly
k 'k ' + kol (5)
where k., is the energy activation rate constant given by Eq.
(2), (3), or (4), respectively, and kg, is the Kramers rate
constant for saddle crossing.”
Figure 1(a) displays the results for the uncoupled sys-
tem. As expected, the one-dimensional theory of Eq. (2)

FIG. 1. A log-log plot of the rate constant as a function of friction. The dots
are simulation results with error bars indicating 95% confidence intervals
(Ref. 14). The dash-dotted line is the one-dimensional theory [Eqs. (2)
and (5)], the dashed line is the first order two-dimensional theory [Eqgs.
(3) and (5)], and the solid line is the two-dimensional theory with first
order corrections [Egs. (4) and (5)]. (a) No coupling between modes
(A =1.0and z = 0.0). (b) Intermediate coupling between modes (4 = 2.8
and z = 1.0). (c) Strong coupling between modes (4 = 1.95 and z = 2.3).
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accurately predicts the numerical data.

Figure 1(c) shows the results for the strongly coupled
system. The two-dimensional theory of Eq. (4) shows excel-
lent agreement. There is rapid IVR and the assumption of
fast equipartitioning between modes implicit in Egs. (3) and
(4) is met. In particular, Eq. (4) shows good agreement
with the exact RRKM solution.” Note that even for small
frictions (y/wz <1072), Eq. (3), which does not include
y*/3 corrections, shows large deviations and higher order
terms in the friction are important.'? For a greater number of
degrees of freedom differences are even larger.

The coupling for the system corresponding to Fig. 1(b)
is intermediate to that of Figs. 1(a) and 1(c). As expected,
the simulation results fall between those of the weakly cou-
pled and strongly coupled systems.

Two comments should be made in relation to our pre-
vious study.? First, our data are consistent with the eigenval-
ue analysis which places the transition from two-dimension-
al energy activation to overdamped behavior at higher
friction.'® Second, the Appendix of Ref. 2 contains a discus-
sion of possible mechanisms acting in the weak collision
model, absent in the strong collision model, which may in-
crease diffusion in irregular regions of phase space or in-
crease the measure of phase space accessible to reactive tra-
jectories. Comparison of Fig. 1 with the corresponding
results in Fig. 1 of Ref. 1 for the BGK model provides no
evidence of increased diffusion. Further studies at higher
temperatures would allow more definitive comments on the
differences in dimensionality dependence of weak and strong
collision models.
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We correct an error in our work which does not affect
the conclusions. A factor of { is missing from the second and
third terms of Eq. (C3) and the error is propagated through
several following equations.' The corrected equations read

G(eye,) =10(4,4)et + 1e,0(4,B)e,

+ 1e,0(B,A)e, + 1Q(B.B)e3, (C3)

G(ey,e,) = €,,0(4,B) + %(e% +€3)0(4,4), (C4)

AG(el’ez) EG[%(% + 32):%(61 +e,)] — G(eye,)
= (e, — €,)’[Q(4,B) — Q(4,4)1/4, (C5)
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AG,, = AG(e,e,)* — AG(e ;)
= (e, — €,)*[Q(4,B)* — Q(4,B)*

— Q(4,4)% + Q(4,4)']/4. (C6)

In effect the error changed the definition of Q(4,B) by a
factor of { in such a way that the earlier Eq. (C8) doeslead to
the correct expression for AG,, within the assumed simple
model, but it is better to conserve the relation
Q(r,r')->Q(r,r) asr—r. AG,, is the medium reorganization
contribution to the activation energy for electron exchange;
it is one quarter of the “reorganization energy” associated
with the vertical excitation from the initial to the final state.?
The formulation of AG,, as AG(e;,e,)** — AG (ey,e,)°" will
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