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The structure of an excess electron in water at room temperature is investigated using the
Feynman path integral technique. The interaction potential between the electron and water is
modeled by an effective potential, made up of three terms: a static potential, a repulsive
potential, and a polarization potential. The polarization part is treated in two different ways:
approximated as pairwise additive, and exactly with the many body polarization effects treated
self-consistently. It is shown that the excess electron forms a cavity with the radius of the
electron being 2.24 A for pairwise additive polarization and 2.11 A for the self-consistent
treatment of the polarization. There is no sharp geometrical coordination number of water
molecules around the electron. The water molecules within a distance of about 3.5 A from the
center of the electronic change distribution point their OH bonds towards the electron, and
form only three hydrogen bonds. It is also found that the pair correlation function of the
solvent molecules close to the electron are considerably different from the corresponding
quantities calculated in the bulk. The electron, therefore, is shown to modify the local density
to a large extent. There are important structural differences between the many body
polarization model and the two body polarization model. It is concluded that for a quantitative
description of the structure of the hydrated electron, the self-consistent treatment of the long

range (many body) polarization effects are important.

I. INTRODUCTION

The properties of the solvated electron have been exten-
sively studied.'™ Despite this there are several facets of the
general problem of an excess electron in polar solvents that
are not well understood. For example, there is no satisfac-
tory theoretical model that explains either the kinetics of
localization of an e~ in polar solvents* or the optical absorp-
tion spectra.’ The difficulty in constructing a suitable theory
stems from the very rich and varied behavior of excess elec-
trons in polar (as well as nonpolar) fluids.® Depending upon
the thermodynamic state and the nature of the solvent, the
excess electron exhibits varying degrees of localization. One
of the major difficulties in investigating the states of an elec-
tron in polar solvents is that they depend critically on the
electron—solvent interaction and this is not known. Simple
model potentials have therefore been constructed to account
for the experimental measurements.>* Besides being empiri-
cal, such an approach does not provide a complete under-
standing of electron solvation, because the role of the solvent
is not explicitly included. Such treatments cannot deal with
the response of the solvent to the presence of the excess elec-
tron.” In order to overcome some of the difficulties of these
earlier approaches we present an alternative, and hopefully,
a more general treatment of electron solvation in polar me-
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dia. The approach essentially involves devising a local pseu-
dopotential to characterize the interaction between the elec-
tron and the polar molecule. Assuming that the interaction
potential between solvent molecules is known, we use the
path integral Monte Carlo technique to investigate the phys-
ical properties of the solvated electron.® Needless to say the
results will depend on the details of the electron-molecule
pseudopotential. Since the pseudopotential has been ob-
tained by a more systematic approach than that used in sim-
ple model calculations,>* the simulations here should pro-
vide a better understanding of the equilibrium properties of
the solvated electron.

The most direct probe of the interaction between the
electron and the polar solvent is through the use of spectro-
scopic techniques.” Numerous studies of the optical absorp-
tion spectrum of the hydrated electron at room temperatures
have been reported. All of these studies show that the ab-
sorption spectrum is structureless and is asymmetric about
the band maximum at 1.73 eV with a high frequency wing.'°
The pressure dependence’! of the optical absorption spec-
trum indicates that the band maximum increases from 1.73
to 2.00 eV as the pressure is varied from 1 bar to 6.3 kbar
while the full width at half-maximum increases from 0.8 to
about 1 eV. Subsequent studies by Hentz et al.'? of the vol-
ume of excitation for the reaction of the hydrated electron in
water suggested that the cavity size decreases with increas-
ing pressure. This could account for the pressure depen-
dence of the spectroscopic measurements and stands in con-
trast to the model of Copeland, Kestner, and Jortner’ who
have assumed that the cavity radius is independent of pres-
sure.
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It is clear that an important aim of our theory of an
excess electron in polar solvents is to account for the ob-
served optical absorption spectrum. This involves being able
to obtain real time information. Although it has been shown
recently that one can in principle simulate electronic absorp-
tion spectra using path integral techniques,'® this has not
been applied to complex systems. The situation involving the
hydrated electron is even more delicate because of the lack of
knowledge of the Hamiltonian describing the excited state.
Thus the validity of simulation results can only be inferred
by comparing them to the experimentally determined struc-
ture of the hydrated electron. Unfortunately, there has been
no experiment at room temperature that directly determines
the structural properties of the hydrated electron. However,
Kevan and co-workers'*!” have used electron spin reso-
nance (ESR) line shape studies of trapped electrons in y-
irradiated alkaline glass to infer the geometrical structure of
the localized electron. The earlier experiments were done in
10 M, 'O enriched alkaline ice glass. By performing a second
moment analysis of the ESR line shape and using several
approximations these authors inferred the geometry of the
trapped electron. According to them, the electron is sur-
rounded by six water molecules arranged with their oxygens
and nearest hydrogens forming an octahedron. The nearest
hydrogens were determined to be 2.1 A away from the elec-
tron, implying that the next nearest neighbor protons are 3.5
A away. They also argued that the OH bond of the six water
molecules is oriented toward the electron. This was in sharp
contrast to all previous models in which it was assumed that
in the hydrated electron, the molecular dipole is oriented
toward the trapped electron. In order to assess the role of the
presence of large amounts of NaOH, Lin and Kevan'’ per-
formed another ESR study of the trapped electron. In this
experiment, they co-deposited sodium and water vapor at 77
K. This technique enabled them to keep the concentration of
sodium to less than 0.01 M. Although the experimental un-
certainty under these conditions was quite a bit larger than in
the earlier study they argued that this did not invalidate the
earlier picture of the trapped electron. It was also suggested
that because the concentration of Na does not seem to affect
the geometry of the trapped electron, the inferred geometry
could be a realistic representation of an electron solvated in
liquid water at room temperature. Given the experimental
conditions and the delicate analysis required to infer the ge-
ometry of the trapped electron, it is not clear that the struc-
ture of the electron localized in alkaline ice glass at 77 K
should be the same as that found in liquid water at 298 K. It
is for these reasons that the simulations reported in this arti-
cle and elsewhere'3?® are important. Qur simulations, for
the chosen model potential, provide a detailed look at the
structure of the hydrated electron and describe in detail the
response of the water to the presence of the electron.

On the theoretical side, there have been numerous mod-
els that have been proposed to account for the wealth of
experimental data.’> However, there have been relatively
few which have explicitly taken the molecular structure of
the solvent into account. The most notable attempt is due to
Newton?! who used a semicontinuum approach within ab
initio molecular quantum mechanics to study many facets of
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electron solvation in polar solvents. In this pioneering work,
Newton was able to calculate the equilibrium solvent shell
geometry, solvation energy as well as spin densities (which
are relevant for ESR experiments) for an excess electron in
both water and ammonia. In essence, Newton performed a
self-consistent field calculation using the unrestricted Har-
tree-Fock formalism (UHF) for a discrete cluster of four
water molecules containing the excess electron all embedded
in a dielectric continuum. Such an approach becomes more
accurate as the number of molecules in the cluster is in-
creased. In his study Newton considered both the dipole ori-
ented as well as OH-bond oriented clusters containing four
water molecules. These calculations showed that the dipole
oriented tetramer embedded in the continuum is more stable
by 0.27 eV compared to the corresponding bond oriented
tetramer. The cavity radius was calculated to be about 2.6 A.
Newton’s calculations are not definitive because the number
of water molecules was taken to be four. In addition it is not
clear whether the treatment of the many electron problems
at the UHF level is adequate to answer some of the subtle
questions pertaining to the hydrated electron. It would be
interesting to carry out these calculations for larger clusters
buried in the continuum using Newton’s methods.

This paper is organized as follows. In Sec. II the theory
underlying the simulations is presented, an electron—water
pseudopotential is described, and a scheme is described in
detail to treat the long range polarization contribution of the
medium self-consistently. The simulation details are pre-
sented in Sec. II1. The results are presented in Sec. IV. Our
results are then compared with the results of other path inte-
gral simulations of similar systems.'®° The paper con-
cludes in Sec. V with a discussion of remaining problems.

Il. THEORY
A. Path integral Monte Carlo

Consider an excess electron interacting with N water
molecules. Assuming that all the particles interact via pair-
wise potentials the Hamiltonian for such a system can be
written as

Pl?(a) 24
+3 V(R,R)) + ¥ UKR,),

p2 N
H="+
2m ig 12Ma i<j i=1
(1)

1

Mo

where R, denotes the collection of the coordinates of the ith
water molecule, r is the position of the excess electron, p is
the momentum conjugate tor, m is the electron mass, P, ,, is
the momentum of the ath species of the ith water
molecule, and M, is the corresponding mass where
M, =M. and M, ; = My 4,... The potential of inter-
action, V(R;, R;), between two water molecules with co-
ordinates R, and R, is taken to be a central force potential,
i.e., it is taken to be the sum of the potentials between oxygen
and hydrogen atoms.?* The internal vibrations of the water
molecule are modeled by a set of appropriate Morse poten-
tials.2* The pseudopotential, U(r, R; ), describing the inter-
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action between the electron and the water molecule is de-
scribed in detail in the next subsection. In the simulations the
translational motion of the water molecules is treated classi-
cally. This is justified because the thermal de Broglie wave-
length of even the proton at the temperature of interest here,
namely T = 298 K, is much smaller than that of the electron.
The internal vibrations of the water molecule have to be
treated quantum mechanically. However, it is expected that
the precise treatment of these quantum mechanical degrees
of freedom will have negligible effect on the structural prop-
erties of the hydrated electron. The quantity of interest is the
canonical partition function for the mixed quantum-—classi-
cal system which may be written as

Q=Tr(e-—BH/P)P' (2)

If Pis very large Q can be approximated by @~ Qp, where

_ mP 3P72 j‘loxygen'P)e,N/2
0r = (27rﬁ2[5') ( 2r#8

% (MhydrogenP)SNJe—-BSca II'VI ﬁ dR‘ dl'(j),
i=1=1

208
(3)
where the Euclidian action is
S = Ve——w + Vw_w (4a)
and
P - .
—_ ; [ ﬁZBZ l.(J) __r(1+l))2
+1 3 varr)) (4)
l—l
and
Vaw_w =E V(R;, RJ) (4¢)

i<j

The set {r'”} denotes the electron coordinates for different
Euclidian timepoints. The explicit derivation of the action
for the problem is presented in detail elsewhere.>* Thus in
the discretized path integral formulation the system consist-
ing of an electron interacting with ¥V classical water mole-
cules is isomorphic to ¥ -+ P classical particles moving in an
effective potential field given by Eq. (4). This formulation
becomes exact only in the limit of P becoming infinite. In
practice a sufficiently large value of Pis chosen such that the
partition function (and other properties) change negligibly
on a further increase of P.

B. Electron-water pseudopotential

To proceed, the explicit form of the potential of interac-
tion between the electron and the water molecule is required.
Unfortunately there has been no complete calculation of the
potential energy surface, U(r, R;), even at the Hartree-
Fock level.? In view of this difficulty, and because the na-
ture of localization of the excess electron depends critically
on its interaction with the solvent, a fairly reliable pseudopo-
tential is required. Jonah ef al.'® have used a potential based
on a point charge model. Such an approach is certainly rea-
sonable and indeed sheds light on the need (or lack of it) of a
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more sophisticated pseudopotential. However, this model is
overly simple. It leaves out the long range polarization po-
tential which may well be important in polarizable solvents.
Jonah et al. have used path integral molecular dynamics in
their work. The e~ -water potential, modeled as a point
charge-interaction with suitable cutoff to eliminate the Cou-
lomb catastrophe, has also been used by Sprik et al.'® In
constructing the potential U(r, R;) we have used an effec-
tive potential approach which has enjoyed considerable suc-
cess in predicting electron—atom as well as electron-mole-
cule scattering over a wide range of impact energies.”®?’ A
closely related approach has been employed by Schnitker
and Rossky.?° Although similar, the details of the potential
models do differ. In addition we treat many body polariza-
tion interactions which are ignored in all other studies.

It is worth remembering that the interaction of the elec-
tron with the water molecule is complex and is in general
solvable only with many-body ab initio techniques. Further-
more, the potential energy surface is nonlocal in space and is
also in general dynamic (energy dependent). For the pur-
pose of path integral Monte Carlo simulations it is most con-
venient to adopt a pseudopotential that is not only local in
the coordinate representation but is also independent of en-
ergy. In the spirit of the effective potential approach?? it is
convenient as well as accurate to represent the many-body
interaction of the electron with the target by an equivalent
one-body interaction for a fixed value of R;. This involves an
explicit integration over the coordinates of the target elec-
tron coordinates for a fixed value of the nuclear coordinates
of the target. The effective potential, often referred to as the
optical potential,”’ can be written as the sum of four parts.
The static potential ¥ ° represents the electrostatic interac-
tion between the incident electron and the unperturbed
ground electronic state of molecule charge distribution. The
exchange potential ¥* takes into account the indistinguisha-
bility of the excess electron and the bound electrons of the
target. The effect of the charge polarization of the water
molecule is represented by the polarization of the target,
V £ . The final term is a repulsive term ¥ ® which takes into
account the constraint that the one-electron wave function
of the excess electron be orthogonal to the target wave func-
tion. It is clear that the potential is energy dependent but is
usually evaluated in the limit of zero energy, and can be
expressed as

Urn,R)=VS+VELVFL PR (5)

The electrostatic potential V' * is,

VS=e2Jd{ }p({r 2

r—r|’

whereep ({r, }) is the charge distribution given by the square
of the molecular wave function of the target, and {r,} de-
notes the coordinates of the bound electrons of the target.
However, as shown by ab initio quantum mechanic calcula-
tions, the charge density is concentrated close to the nuclei
and thus we approximate ¥, by
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2Z,e Z,e Z,e

fr—RG| r—Ri| [r—Ry|
(6)
where RG,, Ry, , and Ry, are the location of the oxygen atom
and the two hydrogen atoms of the ith water molecule. The
excess charge Z, in the central force model is 0.329 83e.

The exchange term, which is a nonlocal term, is usually
approximated by a suitable local potential. Various approxi-
mations, most of which originated from Slater’s free electron
gas theory,?® have been used in electron scattering theory.®
This term is important when the electron is close to the water
molecule. However, in this region the static potential domi-
nates and it is found that the exchange term, given by the
Slater theory gives a negligible contribution, can thus be ig-
nored in Eq. (5).

The third term V' * is the polarization potential which
becomes important when the electron is sufficiently far away
from the water molecule. We only keep the electron-induced
dipole interaction which contributes most significantly to
the polarization potential. The charge polarization term is
also energy dependent. But because of the very low energies
(typically thermal energies) encountered here it is appropri-
ate to use the adiabatic approximation in evaluating the po-
larization potential. The potential ¥ © is smoothly cut off at
small electron—molecule separations to avoid divergences by
using a switching function. This is not likely to affect the
potential energy surface because at these distances other
terms, namely ¥ and V %, dominate over ¥ *. Thus the
form of the polarization potential used in our model is

Vs(ry R;) =

aoS(|r —Ro|)
2Ir— R |

where S(7) is taken to be

VP R) = — , (7a)

S(r) = (1 —e~ "), (7b)

In Eq. (7a) a, is the spherical dipole polarizability of the
water molecule taken to be 1.444 A’and S(r) is a switching
function which smoothly cuts off the polarization potential
at small distances. The switching function in Eq. (7) has
often been used in low energy electron atom and electron
molecule scattering with moderate success.*° It is customary
to choose the range of the switching function r, by appealing
to some prominent feature in the energy dependence of the
cross section.?® Alternatively, Burke and Chandra®' and
Truhlar et al.>? have suggested that 7. be taken as the bond
length or the size of the molecule. Accordingly we have tak-
enr, = gy, where rgl, is the equilibrium oxygen-hydrogen
bond length of the water molecule.

The last term in our pseudopotential ¥ ® accounts for
the orthogonality of the wave function of the excess electron
(represented as a plane wave) to the wave function of the
water molecule in the ground electron state. The ground
state of the water molecule is represented by a multicenter
wave function, making the evaluation of an analytical tracta-
ble expression quite difficult. In order to simplify this prob-
lem, we assume that the multicenter wave function can be

expressed as a sum of terms each centered around the three
nuclei. This is similar to the one-center expression which has
been used to calculate static potentials for AH, mole-
cules.’®** The static potentials thus calculated have been
shown to be accurate except close to the nuclei. In this ap-
proximation the repulsive term V® becomes

VR(l', R,) = Vg(l’, R'O) + V]l-i‘(rv Ri-l,)

+VR(r, R, (8)
where RG, Ry; , and Ry, are the coordinates of the oxygen
and the hydrogen atoms of the ith water molecule. For
Vi(r, Ry ) we use the following expression (in atomic
units):

, — Ir— Ry |/
VE(r, Ry ) =0.185e~ "Rl 7, 5—-——1“_"
Ir— Ry, |
9
where a, is the Bohr radius. A similar expression holds for
V& (r, R, ). For the core repulsion centered on the oxygen
atoms we adopt a simple exponential for

VR(r,RG) = Voe ™"~ RolB, (10)
where ¥V, = 0.046 793 E ;. We have calculated ¥ using the
double zeta (minimal basis set) of Clementi and have found
that there is no significant change in the resulting electron~
water potential energy surface.®

The total potential energy surface, which we will refer to
as model potential I, is given by the sum of terms given in
Egs. (5)-(10). In Fig. 1, we plot the potential energy con-
tour for the fixed equilibrium geometry of the water mole-
cule. The pseudopotential thus obtained is not expected to

lnqﬂ rdm

FIG. 1. Potential energy contours of the electron water potential for model
potential I. This figure shows the electron water energy in the bisector plane
of the water molecule in its equilibrium geometry. The well depth at the
hydrogen atoms are approximately 0.8 eV. The contour increment indicates
achange of 0.2 eV.
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properly reproduce the cusps near the nuclei. This is prob-
ably not important for our simulations because we are deal-
ing with very low energy electrons. The figure shows that the
potential has a minima at the bond oriented geometry, i.e., as
the electron approaches along the oxygen-hydrogen bond
axis. The value of the minimum in the potential is about
—0.8¢eV.

The qualitative features of this potential energy surface
seem similar to that found by Schnitker and Rossky.?° How-
ever, the well depth of their potential energy surface is about
twice our value. This larger well depth is due to the differ-
ence in the models for water used by these authors and the
one used here. Schnitker and Rossky used the SPC model for
water in which charges on the oxygen (and thus the hydro-
gens) are adjusted so that the effective dipole moment of a
water molecule in liquid water is correctly obtained. This
value is larger than the value appropriate for an isolated wa-
ter molecule used here. The charge assignment in the central
force model of water is consistent with the dipole moment of
a monomer. Our approach has been to obtain an electron—
water pseudopotential using the well-known ground-state
quantum mechanical properties of an isolated water mole-
cule and to use such a potential for an electron in liquid
water. Thus all the parameters characterizing our model po-
tential are consistent with the properties of the isolated water
molecule.

Although it is true that in bulk water the ionicity of the
O-H bond is increased over the gas phase, the waters sur-
rounding the electron cavity do not feel the full dielectric
response found in bulk water. These water molecules may
then not have the same charges as in bulk water. Thus we
expect that the true pseudopotential for an electron in water
will lie somewhere between ours and Schnitker and Rossky’s
potential.

C. Self-consistent treatment of polarization effects

The long range polarization effect given by the approxi-
mate adiabatic polarization potential [cf. Eq. (7)], is only
valid when the electron interacts with an isolated water mol-
ecule. When the excess. electron is in liquid water, many-
body polarization effects can become important and their
inclusion will modify the effective action used in the path
integral Monte Carlo simulations. This subsection describes
the quantum mechanical treatment of many body polariza-
tion. Stillinger and David*® introduced a class of polariza-
tion models to describe classical ion solvation in small clus-
ters of water. Our quantum treatment of the many body
polarization effect makes use of a similar approach.

The excess electron induces a dipole moment on each
water molecule. In our model, a dipole polarizability is asso-
ciated with each oxygen atom. Assuming, for the moment,
that the excess electron is a classical particle, the additional
dipole moment induced on the oxygen atom of the /th water
molecule is given by classical electrostatics as

Hio = oG, (11)
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where G; is the external electric field due to the excess elec-
tron and all other induced dipole moments. The vector field
G, is explicitly given by

G,- =3’25l(!_""°_|_)_ i Tl'k':ukloslg(hikl)
ik

TP 0

k #i
where the second term in the above equation is the induced
dipole-induced dipole interaction between the ith and k th
water molecule and T, is given by

- 3r,r;
T, =1—-—%%

(13)

where |r; | is the distance between the oxygen atoms of the
ith and & th water molecule and r,, =r — R,. The function
S,(r) in Eq. (12) is an appropriate switching function which
partially accounts for the diffuse nature of the charge distri-
bution around the oxygen atom, thereby giving rise to a di-
pole polarizability that depends on r. For a purely classical
particle this function would be unity. With a switching func-
tion that rapidly changes over the size of the water molecule,
the many body polarization potential can be determined.
For a given value of r and the coordinates of all the water
molecules {R} the set of linear equations (11) and (12) can

" be solved for 1, (i =1,2,....N). Having obtained u,, the

polarization potential is given by

_e z Hio® riosl(slrio“

@, (r, {R}) = (14)

i=1
In our simulation we choose S (r) to be the switching func-
tion 1 — K (r) as defined in the work of Stillinger and David.
The & (r, {R}) is turned off at close distances by S(r), Eq.
7(b), so as to ensure that the expressions (14) and (7a)
reduce to each other for the isolated water molecule interact-
ing with an electron. The effect of §,(r) was found to be
negligible.

The quantum generalization of the above classical self-
consistent treatment of charge polarization effects, with the
water molecules treated classically, is simple. According to
the isomorphic picture®’ the quantum system is equivalent
to a classical ring polymer consisting of P electron beads
interacting with N water molecules. The ¢ th electron bead
and all the induced dipoles on the other water molecules
(except the ith water molecule) induce a dipole moment on
the ith water molecule, given by

pE =a,GP. (15)
The vector field G{” becomes
GO = erigS;(Irio ) _ i Ty 23S () (16)
' ol ¥ e
ki

where T is given by Eq. (13). Once again Eqgs. (15) and
(16) aresolved foruy) t = 1,2,...,Pand fori = 1,2,...,N. The
contribution of the many-body polarization energy to the
effective action S, is then given by

5 pgTES(rg))

e P
TwEAAT gr

t=1i=1

S8 (Ir“L{R} =
(17)
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The pseudopotential obtained by using Eq. (17) instead of
Eq. (7) for the polarization is the second (II) model poten-
tial. In the Monte Carlo simulation one has to calculate
@2, ({r},{R}) by solving Eqgs. (15) and (16) at each iter-
ation. In an actual simulation it is appropriate to count only
those water molecules which are within a cutoff distance of
the z th electron bead. We choose this cutoff distance R, tobe
about 5.5 A and at each step about a third of the water mole-
cules were included in calculating (2 ({r'"},{R}). The
matrix equation, for the induced dipole moments, was
solved by using an iterative scheme. This is faster than in-
verting the entire matrix at each step of the simulation.

lll. SIMULATION DETAILS

Within the path integral formulation, outlined in Sec.
II A, the calculation of the partition function is reduced to
the evaluation of a multidimensional integral, Eq. (3). The
structure of this integral quickly reveals certain problems
which arise as the number of beads P on the electron polymer
chain increases. If one were to make single particle moves
(as is normally done in the primitive algorithm) using the
Metropolis Monte Carlo technique, it is clear that the stiff-
ness of the polymer will allow only very small moves.*® Thus
configuration space will be covered very slowly. This prob-
lem will become particularly severe as P increases because it
is known from simulations of polymers that the Rouse relax-
ation time®® is approximately proportional to P2 To some
extent this problem has been overcome within the primitive
algorithm by resolving the chain modes into normal modes
and by moving each mode according to the appropriate force
constant.*® In addition, the movement of the center of mass
of the ring polymer (corresponding to the zero frequency
normal mode), seems to enhance the acceptance probability.
However, it does appear that when P exceeds several hun-
dreds (typically 400 or so) these modifications of the primi-
tive algorithm are not sufficient to overcome the inefficien-
cies in the sampling scheme. A similar argument can be
made about molecular dynamics path integral simulations
based on the primitive algorithm. In the work reported here
we have adopted a scheme for generating a priori transition
probabilities suggested by several workers.**> The basic
idea behind the algorithm is simple: the density matrix
between the two end points is written as a product of normal-
ized conditional probabilities. These transition probabilities
provide criteria for picking the next state point (configura-
tion) given the present state point and the end point. A use-
ful approximation for these conditional probabilities, which
is valid if € = B /P is sufficiently small, can be found by ex-
panding about the present configuration. The a priori transi-
tion probability is a Gaussian with the exponent in the Gaus-
sian depending on a drift term. The drift term contains the
interaction of the particle with the environment. For details
of this algorithm with application to low temperature liquid
“He (without exchange effects) the reader is referred to the
original article.*' To further enhance the sampling efficiency
we have neglected the drift term. When dealing with electron
solvation, this seems to be more efficient and the empirical
justification for this comes from a detailed study of an excess
electron in a He cavity at several densities.*?
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In our simulations, there are 216 classical water mole-
cules at a density of p=1.0 g/cc, and at temperature
T =298 K. The water molecules and the excess electron
were enclosed in a cubic box of length 18.6 A. As usual,
periodic boundary conditions were employed to eliminate
surface effects. The number of beads on the electron ring
polymer was varied from P =90 to P = 900. The conver-
gence of the results with increasing Pis discussed in detail in
the Appendix. In the staging algorithm used here a segment
of the chain is snipped and moved to a new position by sam-
pling according to the Gaussian transition probability.** The
length of the chain segment was taken to be 5 for P = 90, 20
for P = 450, and 40 for P = 900. This choice of chain seg-
ment length was made to optimize the transition probabili-
ties. Each move of the water molecule involved the displace-
ment of the center-of-mass of the molecules, vibration of the
atoms, etc. The step sizes were adjusted to yield an accep-
tance probability of about 30% for both the solvent mole-
cules and the electron ring polymer. For the P = 900 case an
equivalent of about 48 000 passes was used. These long runs
were necessary to insure convergence of the results.

The size of the cubic box in our simulations is 18.6 A and
this is not much larger than the thermal de Broglic wave-
length of the electron at room temperature which is 17.1 A.
The size of the electron and the long range of the electron—
water interaction (see the static potential ¥ %) implies that
one probably has to use Ewald summation. However, be-
cause the electron seems to localize rapidly to a small region
of about 8 A? in volume these long range effects are expected
to be screened efficiently. In systems where the states of the
electron are more delocalized, finite size effects may become
important.

The algorithm was coded and developed for optimal
performance on a single processor vector machine. The code
is described elsewhere** and its performance evaluated for a
number of computers. The runs described here were per-
formed on a CRAY 2 supercomputer.

IV. RESULTS

The presentation of the results is organized into two
subsections. In Sec. IV A, the structural aspects of the sol-
vated electron are analyzed and in Sec. IV B we discuss the
energetics of the problem. The results are presented for both
of the model potentials: the first model (I) is based on the
potential energy surface given by Egs. (5)-(10) whereas the
second model (II) is based on the self-consistent treatment
of the polarization potential [cf. Eqs. (15)-(17)]. These
results are all based on simulations with P = 900. Conver-
gence is discussed in the Appendix.

A. Structural aspects

In order to elucidate the structure of the solvated elec-
tron, various correlation functions have been calculated. By
studying the behavior of these correlation functions a coher-
ent picture of the hydrated electron emerges. It is of impor-
tance to remember that potential model I corresponds to
pairwise additivity of the polarization potential whereas
model II corresponds to a self-consistent treatment of the
many-body polarization forces.
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What is the structure of the water molecules around the
electron? This is most easily answered by calculating the
radial distribution functions of the hydrogen and the oxygen
atoms measured with respect to the barycenter of isomor-
phic electron polymer, i.e.,

P
8- u(n= (5(r —Ry + —;; D r"’)).

=1

(18)

A similar expression holds for the corresponding electron
center-of-mass oxygen radial distribution function,
£.- o (r). The averages involving the electron center-of-
mass quantity are expected to be less accurate due to the
limited amount of sampling possible with only one bary-
center. In addition we have also calculated the true electron—
hydrogen radial distribution function which is given by

P
ge--11 (1) =71,;<2 8(r—Ry +r"’)>-

t=1

(19)

The true electron—oxygen radial distribution function,
g.-_o (7),1s given by a similar expression. In Fig. 2(a) a plot
oftheg, _ _ () for the two-model potentials as a function
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FIG. 2. (a) Top: The pair correlation function 8- o (r) asafunction of 7is

shown for the two model potentials for P = 900. The solid line, correspond-
ing to model potential I extends further in towards the electron center of
mass than for model potential II, which is shown in the broken line. The
region beyond 4 A does not show any structure above the noise level. Also
indicated is the running coordination number of four and six for both poten-
tials, bottom row gives the values for potential I and the top row for poten-
tial I1. (b) Bottom: The true electronic pair correlation function g,- ¢ ()
for the two model potentials. Model potential I extends further in towards
the oxygen atom on the water molecule than for model potential II. Both
correlation functions rise smoothly to 1 at about 4 A with no evidence for
structuring of water molecules around single electron pseudoparticles.

Wallgvist, Thirumalai, and Berne: Hydrated electron

of r is shown. There are several features that are worth not-
ing. The peak heights of both the curves are much smaller
than would be expected for the well-defined structure often
seen in classical ion solvation.*>*¢ The height of the first
peak in the solvated electron [see Fig. 2(a)] is 1.3 whereas in
the case of small ion solvation the height is near 3.0. It is
apparent that there is no perceptible structure seen in the
second solvation shell. There are two significant differences
between gf_,;m _o(r) corresponding to potential I and
g::;m _o (7) corresponding to potential II. The striking feature
in Fig. 2(a) is that in the region around 2.0 &, g‘e:; o(n)is

pushed outward by about 0.5 A as compared to gi;m o).
This implies that the electron excludes a larger region when
the effect of the polarization is treated self-consistently and
consequently there is a clear increase in the effective hard-
core diameter of the electron. Secondly, although both
curves do not show appreciable structure it is apparent that
the first peak of g::_om _o (7) is higher and narrower than that

seen in g’e_ _o (7). Furthermore, the location of the peak
height in g'_ _ (r) is shifted inward by about 0.3-0.4 A as
compared to the corresponding distance in g': o(r). The

distribution function obtained using model potential I is
much broader suggesting that the many body effects in po-
tential IT makes the electron behave more like a classical ion.
As a comparison to the earlier work on the solvated elec-
tron® it is of interest to obtain an effective one-body poten-
tial that the electron experiences in the polar solvent. One
can estimate this by inverting the radial distribution func-
tion, i.e.,

1
Vg~ — E l“ge;,,,_o (r)

and this yields a well depth of about — 0.26 kT (0 = 3.0 A)
for potential II. The corresponding value for potential I is
—0.15kT (0 =2.94).

The rather clear increase in the effective hard core ob-
served in g::m _o (7) as compared to g;- o, () can be rational-

ized by estimating the contribution of the repulsive part of
the self-consistent polarization given by Eq. (17). We as-
sume that the charge is located essentially at the center of the
electron ring polymer. Furthermore assuming that (i) the
induced dipole moments on all the water molecules are iden-
tical (a mean-field approximation), (ii) the average effec-
tive distance of the oxygen atoms from the electron bary-
center is 3 A, and (iii) on the average all the induced dipoles
are pointing in the same direction, the repulsive contribution
can be shown to be equal to

UNg (Ng — 1)cos’(8)
16¢r,_ )’ ’

For Nz = 6, cos(6) ~1 [which seems reasonable and is
suggested by P, (8), shown below], and (’e;,,, o) =3 Ait
turns out that z~0.383 D and the above equation yields
Uy ~0.1 kT. This increased repulsion arises from the fol-
lowing: The electron induces a dipole in a water molecule
which in turn induces an antiparallel dipole in a nearest

neighbor shell water molecule. The latter dipole points away

Ur
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TABLEI Energy terms for various quantities of the electron water system.
Ey o denotes the potential energy due to the internal distortions of a single
water molecule. Water energies given in kcal/mol water and electron ener-
gies in kcal/mol electron. The variance is given in parentheses. The kinetic
energy was calculated using the virial estimator (Ref. 40).

Potential I Potential I1
Eyono — 10.15 (0.22) —10.05 (0.23)
Eyo + 1.27 (0.07) + 1.28 (0.07)
E,  uo — 65 (18) — 63 (18)
Kinetic E +23(8) + 20 (8)

from the electron and thus gives rise to a repulsion. Consid-
ering that the effective well depth is about — 0.26 kT and
noting that the effective repulsion is about 20% of the abso-
lute value of the electron—water interaction (see Table I) it
seems plausible that the effective hard-sphere diameter can
increase by about 0.5 A when the many-body polarization
potential is treated self-consistently. This does not imply
that the net electron—water interaction for potential II is
larger (more repulsive) than for potential I. In order to give
amore accurate assessment of the effect of the self-consistent
treatment of the many body polarization potential one
should solve an approximate integral equation within the
quantum mean-field approximation.

The lower panel, Fig. 2(b), shows the true electronic
distribution, g.-_o (7). This shows that there is a definite
exclusion region with the size of the region being bigger in
g2 o (r) thanin gt (7). These curves will be structureless
even if there is a well-defined cavity with strong correlations
because one is averaging over all beads. The electron density
extends into the neighboring water molecules penetrating to
about 0.15 A from the oxygens. The total contribution to the
potential energy from the electrons in the region inside the
atomic cores is very small due to the low electron density
there. If a more repulsive electron-oxygen potential was
used the electron would not get as close to the oxygen atom.

The electron-hydrogen radial distribution functions are
shown in Fig. 3. Figure 3(a) shows that the radial distribu-
tion functions measured with respect to the center-of-mass
of the electron ring polymer, gzc;m_ﬂ (r), penetrates about 0.9

A further in than g: _ _o(r). The hard core of the electron

barycenter hydrogen distribution function is smaller than
the electron barycenter oxygen distribution by about the
equilibrium oxygen—hydrogen bond length. This is an indi-
cation that the water molecules are coordinated with the OH
bonds pointing towards the electron. Figure 3 shows clearly
the difference between gf’;m—ﬂ (r) and g:;,,,-n (7). The radial
distribution function g:;m_ﬂ (r) is quite structureless with

hydrogen penetrating closer to the barycenter (by about 0.6
A) than does 8. i (r). However, g.- i (r) shows pro-
nounced structure in the first two peaks centered at 2.5 and
3.5 A, respectively. The positions of the hydrogen peaks cor-
respond roughly to a structure where one hydrogen of a shell
water molecule points towards the electron and the other is
hydrogen bonded to a neighboring water molecule. This is
shown more clearly below in the discussion of orientational
correlation functions. The pronounced structure is consis-
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FIG. 3. (a) Top: The pair correlation functiong,_ , (r) is shown for the

two model potentials for P = 900. The solid line, indicating model potential
I, shows appreciable density further in towards the electron center-of-mass
than the model potential II, shown in the broken line. Model potential II
shows more structure in the shell region, with a well defined first peak at ~2
A, than the corresponding simulation employing model potential I. (b)
Bottom: The true electronic pair correlation function g,-_; () for the two
model potentials. Model potential I shows more density close by the hydro-
gen atoms on the water molecule than for model potential I1. Both poten-
tials allow for the electron to penetrate within a few tenths of an angstrom of
a hydrogen atom.

tent with our earlier observation that the model potential II
seems to make the electron more like a classical ion. The
effective potential felt by the electron is much softer if the
many-body polarization potential contributions are ignored.
Figure 3(b) shows the true gt ,, () and g~ , (), and re-
veals that the electron penetrates much closer to the hydro-
gen in potential I than in potential II. Both potentials allow
for the electron to tunnel into the hydrogen atom but again
the contribution to the total potential energy is small. A
more repulsive electron—hydrogen potential would keep the
electrons further away from the hydrogen atom.

In order to understand the local geometry of the water
molecules around the electron it is useful to know the coordi-
nation number of the water molecules. Accordingly, we cal-
culated the coordination number, 7y o (7), defined as

Nyo (r) = 4mp f Szge;.,. o (8)ds
0

and Fig. 4 shows a plot of this quantity as a function of r.
Neither n}; () nor ny o () shows evidence for clear struc-
ture. A sixfold coordination, necessary for octahedral geom-
etry, is obtained when r is approximately 3.7 A fOx; both
potentials and this is further than the distance of 3.1 A sug- '

(20)
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FIG. 4. The running coordination number, ny , (7) [defined in Eq. (20)],
is shown for the two model potentials. Neither n}, o (r) nor #j; o (7) shows
evidence for a clear water structure around the electron center of mass. A
sixfold coordination, necessary for octahedral geometry, is obtained when
r~3.7 A for both potentials [see also Fig. 2(a)].

gested by Kevan and co-workers.'5!’

Further insight into the local geometrical structure of
the water molecules may be obtained by calculating two
orientational correlation functions. The first one is defined
as

p,,(e)o:<25[ﬁl,j.fe_ ‘—cos(B)]>, 2N
7 o

where R, is the unit vector pointing along the dipole of the
Jth water molecule and 7 _ , is the unit vector pointing from
the barycenter of the electron polymer to the oxygen atom of
the jth water. The second correlation function is defined as

Poy(0) < <z 8 [;‘OHJ.;ec:m‘ — cos(0) ] >,
7 7

where 7oy, is the unit vector along the oxygen—hydrogen
bond closest to the electron barycenter of the jth water. From
Egs. (21) and (22) it is clear that the two quantities are
dependent on the number of water molecules included in the
averaging process and, hence, are dependent on r, where r is
the magnitude of the distance measured with respect to the
center-of-mass of the ring polymer. Accordingly we have
calculated P, () and Py (8) by including only those water
molecules that lie within a shell of 4.5 A from the electron
center-of-mass. In order to examine the influence of the elec-
tron in reorienting the solvent molecules in the bulk we have
also calculated these orientational correlation functions
counting only those solvent molecules in the bulk.

A plot of Py, (6) as a function of cos(8) is shown in Fig.
5. Figure 5(a) shows the P}, (9) obtained by considering the
water molecules in the shell and bulk, Fig. 5(b) shows
P (6). The bulk distribution is quite similar for both the
model potentials. Both of these distributions are rather
broad with P}, (8) showing a maximum at 6~75° and
P} (8) exhibiting a maximum at 6~ 80°. When considering
the shell region there is a definite structure in 23 () and the
maximum is shifted to §~ 53° vs the bulk, §~0°. By com-
parison the shell and bulk P}, (8) is quite similar. More im-
portantly both P}, (8) and P (8) clearly demonstrate that

(22)
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FIG. 5. (a) Top: The orientational correlation function Pp, (6) as a function
of cos(8) for model potential I for shell and bulk regions. If the dipole was
pointing towards the electron center-of-mass the distribution would peak at
cos(8) = + 1. The shell region shows a slight tendency to point inwards as
compared to the bulk distribution. (b) Bottom: The orientational correla-
tion function P,, (&) for model potential II. The shell distribution peaks at
an angle closer to perfect dipole alignment than for model potential I

the solvent molecules around the electron are not strongly
dipole oriented, i.e., the water molecules do not have their
respective dipole moments pointing towards the electron,
with a corresponding peak expected near cos(€) = 1. Of
course more dipoles point inwards than outwards.

In Fig. 6, we present a plot of Py (8) as a function of
cos(0) for the shell and bulk water molecules. Both
Py () and P8, (0) clearly show a sharp peak at 6 ~20°in
the shell. This is clear evidence that the local geometry of
water molecules around the electron is more bond oriented
than dipole oriented, i.e., the OH bond of the water mole-
cules point inward. This conclusion, although in agreement
with the suggestion made by Kevan et al.,'®!” Jonah et al.,”®
and Schnitker and Rossky? is in contrast to previous theo-
retical work.?! It should also be emphasized that P, (8)
peaks at lower angles than P {;, (0) indicating that the mod-
el potential IT accentuates the bond oriented geometry.

There is little doubt that the electron forms a cavity in
liquid water at room temperatures. The electron ring poly-
mer was started randomly with the beads extending over
several water molecules. It was found that such a chain rap-
idly became quite localized in a region excluding the solvent
molecules. Since one sees this cavity formation it is of inter-
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FIG. 6. (a) Top: The orientational correlation function P oy (6) as a func-
tion of cos(8) for model potential I for shell and bulk regions. The shell
region is clearly peaked at an angle pointing towards the electron center-of-
mass. Compared to Fig. 5(a) there is a propensity for the water molecules to
orient their OH bonds towards the electron center-of-mass. These distribu-
tions are also sharper than the corresponding ones for P, (68) inFig. 5. (b)
Bottom: The orientational correlation function P oy (8) for model potential
IL The shell distribution of the OH bond vector shows a stronger orienta-

tion for the bond to point towards the electron center of mass than model
potential I.

+05 +1.0

est to characterize the geometrical properties of such a cav-
ity. The size of the cavity, which is on the average spherical,
can be specified by the electron radius. There are several
ways to define the radius and we have adopted the one sug-
gested by Newton,?' i.e.,
{R) =f lrlp(r)dr, (23)
where p(r) is the electron density, p(r)
={8(r—r® +4 2f_,r?)). With this definition, it is
found that the radius obtained using the model potential I is
2.25 A while using model IT itis 2.11 A. This indicates that in
model I the electron can intrude more into the space between
shell water molecules than it can in model II. This is consis-
tent with the stronger effective repulsion in model II. Quite
surprisingly these values are in excellent agreement with that
found by Jonah et al.,’® who used an entirely different model
potential. It should be noted that the earlier studies on the
solvated electron also predicted a similar value of the cavity

radius. 82047
Although the electron density distribution appears to be

6413

spherical and quite well localized, there are density fluctu-
ations in the solvent that cause fluctuations in the electronic
distribution. These fluctuations can therefore distort the
spherical shape of the electron ring polymer. In order to
assess the deviation from the spherical shape we have com-
puted the average eigenvalues of the electron moment of in-

" ertia tensor, measured with respect to the center of mass of

the electron ring polymer. The three principle eigenvalues
for the model potential I turned out to be 2.10, 1.92, and 2.03
A whereas the model potential II yields 1.95, 1.80, and 1.89
A. The radii of gyration of the polymer obtained from these
eigenvalues are 2.02 and 1.89 A for potentials I and II, re-
spectively. Thus the cavity is very close indeed to being
spherical in shape and there seems to be negligible deviation
from this. In Fig. 7 we show a series of snapshots of the
polymer taken at various stages of the simulation. This
shows that the electron is localized (recall that the boxlength
is 18.6 A) in a small region of phase space. The shape of the
polymer is roughly spherical although there are some devia-
tions from this shape. In order to characterize the fluctu-
ations, which prove to be Gaussian, the variance in the cavity
radius was calculated. For both the model potentials, the
variance divided by the square radius, i.e., ((R2) — (R )?)/

yp———t It——— I

.,

X v - v X T v T Y
FIG. 7. Snapshots of the electron configurations projected along the xy, xz,
and yz axis, the water molecules are not drawn for clarity. Each snapshot is
taken at an interval of 8000 passes of the simulations with model potential I.
The electron is roughly spherical in shape. There are “fingers” of electron
densities extending beyond the immediate water molecules in the shell
around the electron cloud.
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FIG. 8. The imaginary time correlation function R (¢ — ¢') plotted as a
function of t — ¢* for both model potentials. The initial rapid rise time and
the consequent independence of £ — ¢’ indicates ground state dominance.
The value of R 2 at $#i/2 gives an indication of the size of the electron, with
model potential II giving a more compact electron than potential 1.

(R )? turns out to be 0.2.
It is also useful to calculate the Euclidian time correla-
tion function R ?(|t — ¢’|) defined as*®

Rz(lt—t',) — <Ir(t)__r(1')'2), (24)

which expresses the spatial correlations between the beads
and consequently the size of the polymer. In Fig. 8, R 2(7) is
plotted as a function of 7. It is seen that both
R2(7) and R % (7) rise quickly from zero to their plateau
values. This is an indication that the electron is found in the
ground state.*® The value of [R 2(8#/2)]"/? obtained using
model potential II is about 15% smaller than calculated us-
ing potential I. This is, of course, consistent with the cavity
radius calculations discussed above. If there is ground state
dominancein R ?(7), then R *(7) will rise exponentially and
the characteristic rise time, 7., [a time in which R (1)
reaches the plateau value] can easily be calculated. The
mean excitation energy AE, which is the average energy dif-
ference between the ground state and the lowest excited state
of the electron may be obtained as

ae=2
Te

This calculation gives AE = 1.76 ¢V for potential I and
AE = 2.07 eV for potential II. Surprisingly, potential I is in
better accord with the experimental result AE = 1.72 eV*®
than potential I. It should be emphasized that this is just an
estimate and for a proper calculation of the optical absorp-
tion spectrum a real dynamic calculation is necessary.!®
Since the ground state dominates, it is interesting to specu-
late on the nature of this state. The ground state dominance
along with the nearly spherical cavity suggests that the elec-
tron is in an S state. The broad, featureless, optical absorp-
tion spectrum indicates that there are not very many bound
states associated with the localized electron. This is also con-
sistent with the shallow well depth predicted by the effective
potential. Given a spherical cavity it is likely from optical
selection rules that the transition is from 15— 2P state.

It is interesting to consider the change in the local water

Wallgvist, Thirumalai, and Berne: Hydrated electron

structure induced by the electron. A probe of this would
involve calculating the radial distribution functions go (7),
Zowu () and ggy () by including the water molecules direct-
ly affected by the electron. A comparison of these distribu-
tion functions with that obtained in the bulk should reveal
the influence of the electron in altering the local structure of
the water. In obtaining the local pair correlation functions,
averages were performed over all pairs of water molecules
such that at least one of the molecules in a pair lies within a
radial shell. The radial shell was choosen to be within 3.6 A
from the electron center-of-mass. This region contains about
four water molecules. The bulk correlation functions were
obtained by averaging over all pairs of water molecules such
that no solvent molecules lies within the radial shell specified
above. It was found that there were negligible differences in
the local radial distribution functions between the two model
potentials. In what follows, we shall present the results ob-
tained using the second potential energy surface.

In Fig. 9 we plot the local external radial distribution
functions goo (7), gou (7), and gyy (7) as well as the corre-
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FIG. 9. The shell and bulk radial distribution functions
8oo (7), 8ou (), and guy (r) for model potential II. The shell distribution
is calculated using only those pairs of water molecules that have one mem-
ber inside a radius of 3.5 A from the electron center-of-mass, whereas the
bulk distribution is computed for both molecules outside this distance. Sim-
ilar graphs for model potential I shows only a negligible difference. All
graphs clearly indicate a loss of one hydrogen bond for the molecules inside
the shell around the electron cloud. This is seen in the ~25% reduction of
the first peak in the distribution.
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FIG. 10. The solvent—solvent energy calculated as a function of the distance
away from the electron barycenter for potentials I and II. The graph shows
the energetic loss of the solvent shell molecules due to the loss of a hydrogen
bond. See Fig. 2(a) for the corresponding density distribution.

sponding bulk functions g, (7). Figure 10(a), which shows
the oxygen-oxygen pair correlation function, clearly indi-
cates a significant decrease in shell oxygen density vs bulk
oxygen density. The location of the first peak is shifted in by
0.2 A and the height of the first peak is reduced almost exact-
ly by 25%. This suggests that the water molecules in the
radial shell engage in only three hydrogen bonds as com-
pared to four in the bulk liquid. In the process of accommo-
dating the cavity created by the localized electron, the clo-
sest water molecules are pushed back into the liquid. This
diminishes the distances between the shell water molecules

and its three hydrogen bonded neighbors. This is more clear-

ly seen in Fig. 9(b), which compares the g, (7) for the shell
(shown as a solid curve) and the bulk (shown as a dotted
curve). The first peak, corresponding to the hydrogen-bond-
ed water neighbor, is pushed in closer. It is also seen that the
two peaks in the shell g, (#) are about 30% smaller than
that of the bulk, indicating a disruption of the local hydrogen
bonded structure. The last panel, Fig. 9(c), which compares
hydrogen-hydrogen pair correlation function gy, (r) for
the shell and the bulk region also indicates the same effect.
The hydrogens affected by the presence of the electron are
drawn closer together than the hydrogen atoms in the bulk.
It is the anticipation of such changes in the local structure
due to the excess electron that had caused earlier workers to
introduce additional repulsive terms in the potential to ac-
count for the proximity of the water molecules closer to the
electron. This aspect is rather dramatically borne out in the
present work as well. In Fig. 10, radial solvent-solvent ener-
gy distributions are given. This is defined as being the total
solvent interaction of a water molecule at a distance r from
the electron barycenter. This figure demonstrates the differ-
ence in the energies of water molecules in the radial shell and
that seen in the bulk. The water molecules closer to the cav-
ity have higher energy which is consistent with the proximity
of the molecules as indicated by the local structure and the
destruction of the hydrogen bonds. This figure also shows a

rather sharp transition in the energy between the solvent
molecules in the bulk and the shell. A similar graph for po-
tential I (shown insolid) exhibits a rather continuous transi-
tion. This may have been anticipated from the rather broad
electron center-of-mass oxygen radial distribution function
obtained using the first potential energy surface.

B. Energetics of the solvated electron

The solvent—solvent energy for the central force model
of water is well documented and thus the question of interest
is the extent to which the electron affects the solvent-solvent
energy. In addition the electron—solvent energy gives an in-
dication of the strength of interaction between the electron
and liquid water. We have already noted (see Fig. 9) that the
electron significantly alters the local structure and conse-
quently the interaction energy between the water molecules
and the electron. However, on the whole, the influence of the
electron is essentially restricted to the first shell of water
molecules. In Table I, we present the various potential ener-
gy contributions for both model potentials.

In contrast to the difference seen in the structural
aspects of the hydrated electron between the two model po-
tentials we note that their energies are comparable. This is
understandable because the primary contribution to the
electron solvent energy comes from the static potential and
to a lesser extent the polarization potential. The latter is
dominated by the r—* term and the corrections to this term
are higher order in 7~ ".

The electron does seem to disrupt the local hydrogen
bonds, making the water molecules closer to the electron
engage in only three hydrogen bonds. This is indicated in
Fig. 11 where the hydrogen bond distribution for the shell
and the bulk region for the two potentials are shown. This
figure clearly shows that the water molecules in the shell
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0.0 01234567689 00 0123456789
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FIG. 11. The hydrogen bond distribution for the shell and the bulk region
for the two potentials are shown. A molecule pair is considered to be hydro-
gen bonded if their potential energy exceeds 4.0 kcal/mol. The shell region
shows the hydrogen bond probability to be at a maximum for three hydro-
gen bonds vs four in the bulk.
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engage in three hydrogen bonds. The bulk hydrogen bond
distribution is attained at a radial distance of about 3—4 A
from the electron barycenter. This bulk value is attained ata
shorter distance for potential I than for potential II. The
probability of finding three hydrogen bonds becomes negli-
gible outside the shell with virtually no difference between
the model potentials.

V. CONCLUSIONS

This paper is concerned with the detailed analysis of the
equilibrium properties of the hydrated electron. We first de-
vised an appropriate electron-water pseudopotential by rely-
ing heavily on the so-called effective potential (or optical
potential) approach to electron-molecule scattering. This
potential was used in path integral Monte Carlo simulations
with a sophisticated staging algorithm to calculate various
equilibrium correlation functions. These correlation func-
tions provide a very detailed picture of the structure of the
hydrated electron. This sort of approach is quite general and
can be used to study the behavior of an excess electron in
other polar solvents as well.'®-2° The detailed study present-
ed here has led us to the following conclusions:

(i) The electron forms a cavity even if the initial state is
delocalized. The radius of the spherical cavity is estimated to
be between 2.1-2.3 A. The fluctuations in the cavity radius is
approximated quite well by a Gaussian and the square root
of the variance is about 0.1 A.

(ii) The calculation of the imaginary time correlation
function characterizing the bead-bead correlations suggests
that the electron is found in the ground state of the water
cavity. An estimate of the mean excitation energy compares
well with the maximum in the optical absorption spectrum.
The ground state dominance along with various other corre-
lation functions allow us to suggest that the ground stateis a
LS state.

(iii) One of the advantages of the path integral Monte
Carlo simulation is that one can probe the response of the
solvent molecules to the presence of the excess electron. The
study presented here reveals a number of interesting fea-
tures. We have indicated that there does not appear to be
very clear evidence for a sharp shell structure around the
electron. This is in agreement with the simulations of Jonah
et al.'® and Schnitker and Rossky.?® The number of water
molecules within a distance of 3.6 A from the electron bary-
center is about four. The solvent molecules closest to the
electron have their OH bonds pointing towards the electron
barycenter. This stands in contrast to the previously advo-
cated dipole oriented model but is in agreement with other
recent path integral simulations.'®?° It should be pointed
out that the feature in the potential that induces the OH
bond orientation is the static term which describes the inter-
action potential of the electron with the unperturbed charge
density distribution of the water molecule.

(iv) The density of the water molecules around the elec-
tron is considerably different from that observed in the bulk.
This dramatic difference is most clearly seen by comparing
the local solvent radial distribution functions and the corre-
sponding pair correlation functions in the bulk. The solvent—
solvent energy in the shell is also considerably higher than
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that of the bulk water molecules. It was also shown that the
average number of hydrogen bonds formed by the water
molecules in the shell region is one less than formed by the
solvent molecules in the bulk.

(v) In this article, we have used two model potential
surfaces to describe the electron—water interaction. The dif-
ference in the two potentials arises from the treatment of the
polarization effect. In potential II, we explicitly account for
the many-body polarization effects by self-consistently treat-
ing the induced dipoles on the (polarizable) water molecules
in the presence of the electron. We have shown that the in-
clusion of the self-consistent treatment of the polarization
potential has a significant effect on the structural properties
leading to a stronger effective repulsion between electron
and solvent. This is seen by examining the pair correlation
functions g- o n, 8- u (r) and the orientational corre-

lation function P, (8) and Py (8). On the other hand,
there is negligible difference in the solvent-solvent energy.
However, the scheme for treating the polarization effects
(without resorting to mean-field treatments) in quantum
systems presented here is quite general and will prove impor-
tant in investigating the states of an excess electron in other
highly polarizable systems.

(vi) From the technical point of performing path inte-
gral Monte Carlo calculations, it is becoming increasingly
clear that in order to obtain reliable results one has to resort
to quite sophisticated sampling methods. The algorithm sug-
gested by Pollock and Ceperly seems particularly suited for a
variety of problems.*'~** This algorithm and others®>*! are
essential when the number of beads in the electron polymer
becomes large. It would be surprising if the primitive algo-
rithm used in either MD or MC simulations gives accurate
results.

The path integral method in combination with the effec-
tive potential approach seems to be quite reliable in investi-
gating the properties of an excess electron in polar solvents.
However, as noted in the Introduction, several problems re-
main. We are still far away from simulating the dynamical
properties of the solvated electron which are needed to com-
pare directly with experiments. In fact, until these calcula-
tions are performed, the accuracy of the pseudopotentials
devised here and elsewhere cannot be judged. Fortunately,
the methodology for performing these real time calculations
have been proposed,? and thus it is realistic to expect that
these simulations will be performed in a few years.
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APPENDIX: CONVERGENCE WITH RESPECT TO P

The path integral formulation is formally exact only in
the limit of P— o . In practice, however, P is increased until
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the relevant physical properties of the system do not change.
The convergence of the results was ascertained by studying
various properties of the electron with increasing P.

The electron-oxygen pair correlation function,
8.-_o (7), was studied as a function of P. This was deemed to
be a sensitive test of the convergence with respect to P. In
Fig. 12, we show g,-_,, (») for model potential I for P = 90,
450, and 900. It is absolutely clear from Fig. 12 that as one
changes P from 90 to 450 (or 900) the pair correlation func-
tion changes. The electron—water interaction is never strong
enough to induce any structural changes by a single bead for
any P, hence the absolute lack of shell structure. There is a
clear difference between P = 90 and P = 450, 900. This fig-
ure allows us to conclude that P = 900 is sufficient to ensure
convergence of the true electron oxygen pair correlation
function.

Another useful criterion of convergence of the results
with respect to Pis indicated by the change in the interaction
potential between a water molecule and the electron over the
average distance between two connected beads on the elec-
tron chain. For P = 900, the average distance between two
neighboring beads, (Ar?,, )"/ was 1.0 A as opposed to
~2.4 A for the P = 90 case. An estimate of how much the
energy changes over an angstrom at typical distances from a
water molecule is approximated from Fig. 1 to be about 0.2
eV. Thus for P = 900 the change in energy is less than 1% of
kT whereas for P = 90 the energy differenceis ~20% of kT.
The energy scale in the problem is set by X7 and consequent-
ly the corrections to the Trotter formula arising from the
higher order terms is expected to be small. This also suggests

(does not prove) that P = 900 may be adequate.

From the above discussion it is evident that the results
obtained with P = 900 differs dramatically from those with
P = 90. In addition, the results obtained using P = 450 and
P =900 are in good agreement with each other. It is plausi-
ble that P = 900 represents a converged results, but given the
limitations on supercomputer time, we could not carry out
simulations with even higher values of P to verify this.

2.0 T T T T

1.5 -

%-_pir}

! 1
6 8 10

¢ (Angstrém)

FIG. 12. The true electronic pair correlation function g,-_ (7) as a function
of the number of pseudoparticles used in the simulation employing model
potential L. Error bars are indicated for some points on the P = 900 graph.
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