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Diffusion Monte Carlo simulations were performed to determine the absolute binding energies
of an excess electron to small clusters of xenon atoms (n<19). It was found that clusters as
small as Xe, could bind the electron. The ground state wave function of the excess electron and
the decomposition of the binding energy of the electron into kinetic and potential parts were
determined for a number of small clusters. Large (7> 50) and small clusters anions were then
studied at finite temperatures using path integral Monte Carlo. In all cases the excess electron
in small clusters was found to exist in very diffuse state extending well beyond the radius of the
cluster. However, in large clusters the electron was localized within the bulk of the cluster.
Various properties are presented to characterize the electron in Xe,~ as function of cluster size
and the results compared to an electron solvated in fluid xenon.

I. INTRODUCTION

The attachment of an excess electron to neutral clusters
of atoms or molecules has been the subject of much experi-
mental interest.'> However, as a detailed microscopic pic-
ture of an excess electron in a cluster has not emerged from
this work, there are many questions about the formation of
cluster anions that remain unanswered. For example, what
is the breakup of the electronic binding energy into potential
energy and kinetic energy and what is the spatial distribution
of the excess electron? It is unclear whether the electron
probability distribution is concentrated in the bulk or on the
surface of the cluster, or how the distribution changes as a
function of cluster size. The attachment of an electron to a
large cluster should be analogous to the solvation of an ex-
cess electron in bulk fluids—a topic of great current interest.
What are the differences between electronic processes in
clusters and bulk fluids? It has been shown that considerable
rearrangement of the solvent can occur in certain electron-
bulk systems.*® This effect may or may not occur in the
cluster anions.

Xenon cluster anions, Xe,, are studied here. Though
one xenon atom will not bind an electron, xenon is very po-
larizable and it is therefore reasonable to assume that an
electron will attach to Xe, when # is large enough. Since
accurate potential energy functions are known for both the
xenon-xenon and the electron—xenon interaction, this is an
ideal system to study. Also, comparisons may be made to the
bulk system studied by Coker et al.*

Diffusion Monte Carlo simulations were performed to
determine the binding (ground state) energy and structure
of an electron in small clusters of xenon atoms (n < 19) fro-
zen in the minimum energy geometries described by Hoare
and Pal”®. Clusters as small as Xe, were found to bind an
excess electron. The electron was found to exist in a diffuse
state in these small clusters. The results of the ground state
calculations for Xe;; were compared to low temperature
path integral Monte Carlo (PIMC) calculations (10K) and
found to be in good agreement. The restriction to frozen
xenon atoms was then relaxed and both large and small clus-
ters were studied at higher temperatures (50 K n = 13, 50,
100 and 100 K 7 = 100). In the large clusters the electron
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was almost entirely solvated and its properties resembled
those on an electron in a bulk fluid.

lIl. METHODOLOGY

Two methods were used to simulate the Xe,” anions:
diffusion Monte Carlo and path integral Monte Carlo.

A. Diffusion Monte Carlo
Diffusion Monte Carlo developed by Storer and Ander-

son,”!! offers a powerful method for treating ground state
problems and has been applied to many interesting systems.
The method is based on solving the imaginary time Schro-
dinger equation. For an electron moving in a potential field

of n frozen xenon atoms this equation is

T . Hyriry
ar '

=[ Ui Vz—[V(l')—Vref]]t/l(l',T), 2.1)
2m,

where V. is a reference energy and V(r) is assumed to be

V)= 3 Voo (IE =R/,

i=1
Here R, is the position of the ith xenon atom and V, _ . is
the electron—xenon pseudopotential.*

Equation (2.1) can be regarded as a diffusion equation
modified by a first order chemical rate equation with a posi-
tion dependent “rate constant” F(r). If the time, 7, is subdi-
vided into sufficiently small time intervals, A7, over which
the diffusion process and the birth death kinetics are inde-
pendent, the full propagation can be regarded as the evolu-
tion of an ensemble whose members diffuse in space and are
then replicated or destroyed. At long times, the ensemble
will be distributed according to the ground state wavefunc-
tion, ¥,(r).'> When the potential energy is a rapidly varying
function of position, A7 must be taken extemely small and
the variance of calculated quantities will be large. This is an
inefficient algorithm and can be improved by importance
sampling 213

Schrodinger’s equation can be transformed from an

(2.2)
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equation for ¥(r,7), the wave function, to an equation for

f(x,7) = ¢¥(xr,7)¥(r), where ¥ is an arbitrary function of
the electron coordinates:
PED) _ 7 g (e )V log $r(r)]
ar 2m,
Hyr(r) }[
- - re (r9T) (2-3)
¥r(r) '

The familiar diffusion term and first order rate process term
again appear. The position dependent rate constant is, how-
ever, Hy/¥+. If ¥ is chosen to closely resemble an eigen-
function of H, the rate constant will be a slowly varying
function of position. Thus, A7 can be taken larger and var-
iances are much smaller than was the case before the intro-
duction of importance sampling. There is also an additional
drift term [the second term on the right-hand side of Eq.
(2.3) ] whose effect is to push the ensemble members away
from unfavorable regions of configuration space.

A good choice of ¥, (r) leads to the rapid convergence
of the algorithm. A pair product form was chosen because it
is both inexpensive to calculate and a reasonable approxirna-
tion to the ground state wave function. The idea is to take
two-body correlations into account directly while treating
many-body correlations effectively. This form has often been
used in variational calculations, the most notable example of
which is liquid *He'*!%:

¥r(0) = [ A(r —R,D.

i=1

24)

Two different functional forms for 4 (r) were used in the
present calculations. The first is the zero energy s-wave solu-
tion to the Schrddinger equation for the interaction of an
electron with a single xenon atom'¢:

ﬁz
[ 2m,
h,(r) was chosen because it has no variational parameters.
The variational principle

JerH¢
Jo*
is meaningful only for bound state problems. Thus, simula-
tions based on Eq. (2.3) using 4,(7) as the importance sam-
pling function, were performed to detemine the set of clus-
ters that would bind the electron. Having determined which
electron—cluster systems were bound, variational calcula-

tions were performed on these systems using a second func-
tion

- v
hy(r) = exp[—————r(’s o ar].

This form was chosen in order to accurately represent both
the short and long range behavior of #,. Since 4, seemed to
be a reasonable approximation to ¥, at small 7, the param-
eters ¥ and ¢ were fit to the rise of 4,(r). The long range
behavior obtained from simulations using #, suggested an
exponential form for the fall off at large ». The constant a
determining the rate of the fall off was variationally adjust-
ed. The variational integrals were evaluated numerically us-
ing a three dimensional quadrature.!” The resulting ¢, was

2.5)

V- e_xC(r)] rhy(r) =

(2.6)

0

(2.7)
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sufficiently close to the ground state wave function that po-
tential and kinetic energy and structure could be calculated
using the interpolation formula'?:

(A)p=2d), — (d),.

The virial estimator was used to calculate the kinetic energy
in all cases. The total energy E, can be calculated by averag-

ing Hir/tr:

=

¥r
_ JYrHdodv
Sfdv

The cluster geometries used in the calculations were
those determined by Hoare and Pal. The exact lowest energy
geometries were used for n = 7, 13, otherwise the geometries
used by Hoare and Pal at the start of their minimization
procedure were taken.”®

Simulations of Eq. (2.3) using 4, were run for 20 000
time steps and averages were collected for 10 000 time steps
(AT = 0.68). Simulations using 4, were run for 60 000 time
steps and averages were collected for 50 000 time steps
(AT=0.17).

(2.8)

_ St (HY1)/Yrdv
B §fdv

=E, (2.9)

B. Path integral Monte Carlo

The density matrix in the position representation can be
expressed as

p(rr’;B)

P B
_fdr drf ! H p(r‘,r’*‘;—),
i~o0 P
p("";%) = (rle=#"|r),

P+ 1

(2.10)

(2.11)

where r' equalsr and r equals r’. The Hamiltonian for
the electron—cluster system is

—# n
H= Vv? vV —R.
2m,_, +i;l e—Xe('r ll)
V+ 3 Ve (R, —R]),
mee ‘; ]Z=1 xe-xe (| a

(2.12)
where Vy, x. is the Lennard-Jones potential (o = 4.0551 A
and € = 229 K). If Pis taken sufficiently large, the primitive
high temperature approximation to the density matrix may
be substituted into Eq. (2.10).'%-23 The diagonal elements of
the resulting density matrix may be then simplified to yield

p(l‘,R;l‘R) =Jdrlfdrp‘lde 1...J‘ dR"

xewp| =8 S VxR~ R
i>j=1

Xexp[ 2%3,2(’ r,.)?

__2 Z eI —RI)] (2.13)
1-11—

where because #°8 / my, is extremely small, the xenon atoms
are described classically. This formulation of the density ma-
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trix is isomorphic to a classical cyclic chain polymer in a bath
of xenon atoms. All equilibrium properties and imaginary
time correlation functions can be calculated by taking the
appropriate traces over the density matrix:

4) = Tr pA .
Trp

In order to describe an electron in low temperature clus-
ters, it is necessary to treat very large polymer chains
(P~10°). Therefore the force constants of the harmonic
bonds of the polymer are extremely large (k = m_ P /2#8).
Ordinary metropolis Monte Carlo or molecular dynamics
algorithms, which make no special provisions to treat these
harmonic degrees of freedom, take a prohibitively long time
to converge because only very small amplitude moves of
these degrees of freedom are accepted.?>-2¢ To treat this
problem, efficient methods first used in force bias?’ and
smart Monte Carlo®® are required.

The metropolis Monte Carlo® algorithm generates a
Markov process with a transition probability distribution,
W(X,X "), chosen so that after some equilibration time, the
configurations are distributed according to P(X)
= exp[ — S(X)1/Q where S(X) is the Euclidean action,
and Q is the partition function. W(X,X') is

(2.14)

[, TXX)PX")
WXX") =TX' [1 ] 15
(X,X') = T(X',X)min TX PO (2.15)

where T(X,X') is a conditional probability distribution
function from which particle moves are sampled. The beads
of the polymer chain representing the electron were sampled
from

2] 1 (rk—rt)z)
T(rors ) = s 2R |
(ro?j 4 1) kI-_—Il(Zﬂa'i)exp( 207

(2.16)
k=(,-+1—k)rk_1+’j+1 , (2.17)
G+2—k%
2R+ 1—k) 2
_PEG1-k) 18
% Pm.j+2-k) -

where j is the number of beads on the section of chain to be
moved and 7, and 7; , , are the end points of the section. This
efficient choice of T'(7,7') for the polymer was first pointed
out by Ceperley.?® It is exact for a quantum mechanical free
particle, a system that only contains harmonic bonds. Thus,
the harmonic bonds of the polymer are in some sense elimin-
ated from the problem. The algorithm for moving the elec-
tronic coordinates is to slice out and replace sections of chain
between fixed end points. The sections are chosen large
enough that the acceptance probability of the many particle
move is around 50%. One staging pass is thus defined as P
(the total number of beads) moves of the chosen section
length. This algorithm is discussed elsewhere in more de-
tail.*

Path integral Monte Carlo simulations on Xe; at SO0 K
were performed using P = 8000 total beads moving section
lengths of j = 400 beads for 100 staging passes. Xe;o, and
Xes at 50 K were simulated using P = 4000 beads moving
section lengths of j = 25 beads for 400 staging passes while
Xeigo at 100 K was simulated using P = 2000 beads moving
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section lengths of j = 25 beads for 400 staging passes. The
xenon atoms in all cases were simulated for j-S, standard
Monte Carlo passes where S, is the number of staging
passes.

HI. RESULTS
A. Diffusion Monte Carlo simulations of Xe,

Diffusion Monte Carlo simulations utilizing the impor-
tance sampling function %,, gave extremely precise and accu-
rate binding energies, |E,|, for the excess electron. The
smallest cluster studied was Xe; and the binding energy of
the excess electron was found to be 12 K. Clusters smaller
than 6 were not studied because the intrinsic accuracy of our
methods cannot establish whether or not they are bound
though 12 K can be taken as an upper bound on their binding
energies. In Fig. 1 the ground state energies for Xe;” through
Xe; are plotted vs cluster size and in Fig. 2 the cluster geo-
metries used in the simulation are presented. The binding
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_1250 1 j
5 10 15 20
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=25} .y
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-100 | .
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FIG. 1. Top: The ground state energy of an excess electron in Xe, as a
function of cluster size #. Bottom: The differénce between the ground state
energy of an excess electron in Xe,, and Xe, _ , as a function of cluster size.
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FIG. 2. Lowest energy geometries of Xe,;, Xe,,, Xe,s5, Xe,;, and Xe,,.

energy |E,| increases monotonically with cluster size [see
Fig. 1(b) the first derivative of Fig. 1].

The microscopic details of this result can be elucidated
by examining the electron—xenon pseudopotential (Fig. 3)
and the positions of the xenon atoms in the clusters. The
potential energy is large and positive near 7, x, ~0and hasa
deep minimum, 6000 K, at 7, x ~d;, /2 where d,;, is the
minimum of the xenon-xenon potential. Therefore, when
two xenon atoms are placed d_,, apart the minima of the pair
wise electron-xenon pseudopotential roughly overlap. This
forms a channel of negative potential energy between two
sources of large positive potential energy. The regions of neg-
ative potential energy outside the two atoms can be thought
of as open channels. In Fig. 4 the channels are illustrated for
Xe,. A broad, shallow, open channel can be seen surround-

4x10* T T L T T
3+ 4
2+ 4
x4
~
)
>
1+ u
oF
-1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
r/o

FIG. 3. The electron—xenon psuedopotential as a function of separation
measure in Xenon atom diameters.

FIG. 4. The potential energy surface (z=0) of Xe; . (Energy in Kelvin;
contour interval is — 1000 K.)

ing the cluster while the interior of the cluster contains deep-
er but narrower channels. Larger clusters, of course, possess
similar channels. Upon the addition of a xenon atom to a
cluster, existing channels are extended and new channels are
created. Since the channels form the basis for electron at-
tachment the binding energy increases with cluster size.
However, the binding energy increases more slowly between
n =12 and n = 13. This occurs because the lowest energy
cluster geometry undergoes a significant transformation at
this size. Upon adding the thirteenth atom to the apex of
Xe,, the cluster contracts into an icosohedron Xe,; (Fig. 2).
All channels in the interior of the cluster then narrow and
the open channels at the apex are closed. Note that the same
sort of decreased rise of the binding energy occurs between
Xe; and Xe;; when again the open channels at the apex of
the cluster are closed. This shrinkage of the channels causes
the change in kinetic energy to increase relative to the
change in potential energy, thus slowing the rise of the bind-
ing energy. The interplay between kinetic energy and poten-
tial energy is therefore a crucial mechanism in electron at-
tachment.

In order to determine the spatial distribution of the ele-
cron and the breakup of the binding energy into potential
and kinetic parts, a more accurate importance sampling
function was required. Therefore variational calculations
were performed on 4, as discussed in Sec. II. Optimized
average energies were found to be within about 20% of the
values found from simulations using 4,, for clusters Xe,,
n> 10. These energies and the values of the variational pa-
rameter a are summarized in Table I. Diffusion Monte Carlo
simulations performed using the optimized A, as an impor-
tance sampling function to obtain the desired data.

The basic structure of the electron is described by the
electron-cluster center of mass P(r), the electron probability
distribution at a distance r from the center of mass of the
cluster. This function is shown in Fig. 5 for a number of
clusters. The vertical line in Fig. 5 represents the center of
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TABLE 1. Variational calculations.

Cluster E,..’K (E)y/K a(a.u.)
Xer; —335+4 — 275 0.0075
Xep; —43048 — 349 0.007
Xep; —474+8 — 400 0.007
Xep, 55948 —478 0.007
Xeg; —~654+ 8 — 560 0.007
Xep, — 74848 — 642 0.0065
Xe;; — 847+ 10 - 731 0.0065
Xepn —960 + 10 — 825 0.007
Xep; — 1046 + 10 — 900 0.0065

the xenon atom furthest from the center of mass of the lar-
gest cluster (n = 19). Clearly, most of electron density is
found outside the cluster. For example the probability of the
electron being inside the cluster is 14% for Xe;; and approx-
imately 20% for Xe;. These estimates were obtained by
intergrating the P(7) up to the position of the furthest xenon
atom from the center of mass of the cluster. The differences
in behavior at short r in the P(r) are caused by the varying
proximity of a xenon atom to the center of mass of the cluster
(seeFig. 2). The effect of the channels on the electron spatial
distribution can be seen in the electron-xenon radial distri-
bution function g(r). This quantity is defined as the electron
density a distance r from a xenon atom averaged over all
xenon atoms (see Fig. 6) [f4m’g(r) = n, the number of
xenon atoms]. The first peak occurs at approximately
d.../2 and a second peak occurs at 3d,;,/2 thus denoting
the position of the channels. As cluster size increases the first
peak increases in height and the second peak sharpens. The
sharpening of the first peak with cluster size indicates that
the electron has a higher probability of being near a xenon
atom in larger clusters. Note this is true even if the g(7) are
divided by n. Therefore, there is an indication that the elec-
tron is becoming more tightly bound to the cluster.

0.5
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FIG. 5. The electron probability distribution with respect to the cluster cen-
ter of mass P(r) for three cluster sizes, n = 11, 13, 19. The vertical line is the
position of the furthest atom from the center of mass of Xe;.
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FIG. 6. The electron—xenon pair correlation functions g(r) for three cluster
sizes, n = 11, 13, 19.

The breakup of the electron binding energy into its po-
tential and kinetic parts (Fig. 7) supports the conclusion
that the competition between kinetic energy and potential
energy plays a crucial role in electron attachment. The basic
trend is an increase of kinetic energy and a decrease of poten-
tial energy with cluster size. Again, this occurs because the
addition of a xenon atom to a cluster increases the number
and depth of the channels of negative potential energy. These
sources of negative potential energy draw electron density
into the narrow channel regions. This costs kinetic energy
and the kinetic energy increases with cluster size. However,
as electron density is concentrated in deeper and more nu-
merous channels the potential energy of the electron de-
creases faster than the increase in kinetic energy. Therefore,
the binding energy of the excess electron increases as the
number of xenon atoms in the cluster increases. The breakup

4000 T T T T
,4—-:.:*?-7’*\'-"‘
_4_.;#./—- -~ ~
2000 |- ‘_/*"'*" - .
0 F .
-2000 |- o, -
‘._._‘ o
e ‘
~4000 |- ———— {n Trveeie
e —- (T)
— — — (.va>
-6000 L 1 1 L
10 12 14 16 18 20

Xe,

FIG. 7. The potential, kinetic, and total energies of an excess electron as a
function of cluster size.
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was not obtained accurately enough to completely verify the
conclusions of the previous discussion about the decreased
rise of the binding energy at # = 12, 13 and n = 18, 19. How-
ever, the general trends support the argument.

The only major assumption inherent in this work has
been that the electron will not perturb the cluster ground
state geometry from its neutral form. There are two reasons
to expect this to be the case. The binding energy of the elec-
tron per xenon atom is small compared to the pure cluster
binding energy per xenon atom. Also, the electron is spatial-
1y diffuse, tending to diminishe any perturbative effects. In
order to test this assumption more thoroughly, a path inte-
gral calculation on Xe;; was performed at 50 K and no per-
turbations of the xenon structure were found.

As the above calculations were time consuming, it
might be thought that a variation of the split operator FFT
method®® would be applicable to the electron—cluster sys-
tem. The usual method is to propagate a wave function ¢ in
real time on a grid. Time correlation functions are generated
which can be spectrally analyzed to determine eigenfunc-
tions and eigenenergies. Inspired by diffusion Monte Carlo,
an initial wave function was propagated in imaginary time
and the value of an energy offset, V_., was adjusted to pre-
serve the amplitude of the wave function. This procedure
insures that ¢(¢_ ) will be the ground state wave function
and V., will be the ground state energy. In order to accurate-
ly represent the ground state wave function, we have devised
an FFT method based on a spherical grid, equally spaced in
the radial coordinate studies of the ground and excited states
of cluster anions based on this FFT method will be presented
in a separate paper.

B. Path integral Monte Carlo

In order to assess the accuracy of path integral Monte
Carlo simulations of cluster systems, a test study was done
on Xe; with the xenon atoms frozen in their lowest energy
geometry. The path integral was evaluated at 7= 10K fora
number of different discretizations (P) and the results com-
pared to the ground state (see Figs. 8 and 9). Figure 8 shows
the convergence of the electron—xenon g(r). For reference,
the xenon—xenon radial distribution function, is shown be-
low the electron—xenon g(r) though it is not drawn to scale.
Figure 9 graphically presents the convergence of the average
potential energy and the average kinetic energy. The agree-
ment of the path integral and the ground state quantities is
fairly good although it takes from P = 60 000 to P = 80 000
to achieve convergence.

Having established the accuracy of PIMC simulations
on cluster systems, the restriction to frozen clusters was re-
laxed and the Xe; was studied at 50 K. The positions of the
xenon atoms are now sampled from Eq. (2.12). Thus the
electron moves on a potential energy surface subject to ther-
mal motion. Figure 10 presents a comparison between the
structural properties of Xe;;(7=0 K) and Xe; (T= 50
K. The probability distribution, P(r), of finding a xenon
atom a distance r from the center of mass of the cluster, and
the xenon—-xenon g(r) shown in the figure illustrate that the
cluster has undergone a considerable expansion. The pre-
viously discussed channels are therefore broader. This re-
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FIG. 8. The electron potential and kinetic energy as a function of discretiza-
tion P for Xe;; at 10 K.

duces the kinetic energy penalty that the excess electron
must pay to become localized within the cluster. This in-
creased localization can be seen in Fig. 11, where a compari-
son of the electron—cluster c.m. P(r) for the system at 50 and
0K s given. [ The xenon-xenon c.m. P(r) for Xe; at 50K is
included in the figure as a guide to gauge the increased local-
ization though it is drawn to a different scale.] The electron
has a higher probability of residing in the channels of attrac-
tive potential energy within the cluster at 50 K. The expan-
sion of the cluster has not decreased the depth of the chan-
nels significantly. The potential energy of the excess electron
is lower at S0K than at 0 K because of the increased localiza-
tion in the attractive channels. The corresponding Kinetic
energy of the excess electron increases only slightly from 0 to
50 K despite the increased localization (see Table IT). Thus
the binding energy of an excess electron at 50 K is roughly
double the binding at 0 K (see Table 11). That an electron
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............ P 1.0000x10*
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8(r) P
0.3} ’\ y .
/AL
A I
02 \\1 7
; N
0.1 <——“<"':e &) .
0.0 TR :
0 1 2 3 4 5 6
r/o

FIG. 9. The electron—xenon pair correlation functions g(r) as a function of
discretization P for Xe; at 10 K. The xenon—xenon g(7) is shown for refer-
ence and is not drawn to scale.
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FIG. 10. Top: Comparison of the xenon~xenon pair correlation functions
g(r) for Xe; at 50 and 0 K. The distribution at 0 K is not drawn to scale.
Bottom: Comparison of the xenon probability distribution with respect to
the center of mass P(r) for Xe;; at 50 and 0 K. The distribution at 0 K is
again not drawn to scale.
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FIG. 11. Comparison of the electron probability distribution function with
respect to the cluster center of mass P(r) for Xe;; at 50 and 0 K. The xenon
P(r) at 50 K is shown for reference and is not drawn to scale.

can become more tightly bound at higher temperatures than
at lower temperatures, is a rather counterintuitive result. It
is however, nicely explained by the concept of channels. In
spite of the increased binding, it should be noted that the
electron density is still extremely diffuse and it does not per-
turb the xenon spatial distribution from its neutral form; the
structure of Xe; (Fig. 10) is indistinguishable from that of
Xe,; at S0 K.

Small clusters can attach an electron. However, they
cannot be said to solvate one. A large fraction of the electron
density remains outside the cluster (see Fig. 5). Larger clus-
ters, Xes, and Xe;,, were therefore studied in the hope of
observing solvation. Figure 12 gives the electron probability
distribution with respect to the cluster center of mass super-
imposed upon the xenon probability distribution with re-
spect to the cluster center of mass for Xe o (7= 50 K and
T = 100K) and Xey (T = 50 K) anions. Clearly in the 100
atom cluster, the electron forms a bulk state; the electron is
confined almost entirely within the cluster. The effective di-
ameter of the excess electron has been reduced by a factor of
2 from its value in Xe;. This has several effects on the prop-
erties of the excess electron. The kinetic energy increases
dramatically from its value in smaller clusters. However, the
potential energy decreases even more dramatically making
solvation energetically favorable (see Table II). Again, the
interplay between kinetic energy and potential energy was
found to be a crucial element in electron attachment phe-
nomena.

The best way to make contact with the fluid xenon simu-
lation of Coker et al., is to compare cluster properties with
fluid properties at densities where the respective xenon-xe-
non g(r) are similar. Thus both Xe;; and Xe;y, at S0 K are
roughly comparable to a fluid at a density of p* =0.9
(though a higher density would provide a better compari-
son) and Xe o, at 100 K is comparable to a fluid at a density
of p* = 0.7.% Of course, these comparisons are at best quali-
tative. The electron—xenon g(r)s pictured in Fig. 13 show
extremely well defined first and second peaks and the begin-
ning of a third peak. [ The xenon-xenon g(r) is included in
Fig. 13 as a reference though it is not drawn to scale.] The
position and relative definition of the peaks is in good agree-
ment with the fluid results.*

The spatial distribution of an excess electron in a cluster
approaches that observed in the bulk fluid as cluster size is
increased (see Fig. 14). The electron-xenon g(r) should
converge to fluid result in the large » limit but because the
cluster systems are at a higher effective density and a lower
temperature than the fluid system (simulated at 248 K) the
peaks of the g(r) are somewhat closer and sharper than

TABLE II. Average excess electron properties.

Cluster Temp/K (V)/K (TYyK (E)/K
Xej; 0 —26984+50 2200 + 150 —474 48
Xes; 50 — 3400 + 100 2400 + 100 — 1000 4- 140
Xegn 50 — 12 600 +- 200 6800 + 500 — 5800 1 550
Xeioo 50 — 161004200 = 6500 4 500 — 9600 4- 550
Xe oo 100 — 14 600 4+ 200 5900 +- 500 — 8700 4- 550
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FIG. 12. The electron probability distribution with respect to the cluster
center of mass P(r) for an excess electron in the designated clusters. The
xenon probability is shown as a reference and is not drawn to scale.

those in the bulk liquid. This is substantiated by trends in the
fluid data* which indicate that an increase in density and a
decrease in temperature will increase and shift to closer dis-
tances the peaks of the electron-xenon g(7). Thus, cluster
anions, Xe, , resemble the fluid at large ».

The xenon-xenon radial distribution function of the
Xe oo cluster changes from 50 to 100 K (Fig. 13). The clus-
ter at 50 K is “solid-like” and at 100 K is “liquid-like”. The
electron~xenon correlation decreases as temperature in-
creases (Fig. 13). This effect is also observed in the fluid.*
The change from a solid-like to a liquid-like state involves
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FIG. 13. The electron-xenon pair correlation function g(r) for an excess
electron in the designated clusters. The xenon—xenon pair correlation func-
tion g(r) is shown as a reference and is not drawn to scale.

two processes. Cluster “geometries” present in the solid are
thermalily broadened. Also new geometries not seen in the
solid become accessible.' The thermal broadening and the
new geometries allow nearest neighbor xenon atoms to sam-
ple configurations very far from the minimum of the Len-
nard-Jones potential with high probability. Since the chan-
nels are less structured, shallower and wider in the
liguid-like cluster compared to the solid-like cluster the po-
tential energy of the excess electron is higher in the liquid-
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FIG. 14. The electron—xenon pair correlation function g(r) for an excess
electron in the designated clusters and for the fluid at p* = 0.9.

like cluster. However, the kinetic energy of the excess elec-
tron is correspondingly reduced (see Table II). The
resulting binding energy for Xe;, at 100 K is therefore 10%
less than that of Xe, at 50 K (see Table II).

In the low density subcritical fluid, the excess electron
can strongly perturb the xenon structure. In regions around
the electron the first peak of the g(r) was sharpened relative
to the pure fluid.* In contrast, the excess electron does not
perturb the structure of small clusters. However, in Xe, at
100 K, as liquid-like cluster, this same electrostriction is ob-
served; the first peak in the xenon g(r) is sharpened relative
to that of the neutral species (see Fig. 15). Again, the excess
electron has a minimum potential energy if neighboring xe-
non atoms are d;, /2 apart. Therefore, the presence of an
excess electron can reduce the thermal expansion of a cluster
and cause a clustering to occur in a subcritical fluid. This will
sharpen the first peak in the radial distribution function in
both cases and also lower the xenon—xenon potential energy
of the cluster from the neutral species (see Table III).

In the high density fluid the electron did not effect the
xenon structure.* In the equivalent lower temperature clus-
ters, Xejo and Xey,, there are negligible perturbations of
the xenon—xenon g(r) (see Fig. 15).

IV. DISCUSSION

The behavior of an excess electron in both small and
large clusters has been studied. The electron was found to
attach to small clusters 7>6 where it exists in a diffuse state
with a significant fraction of its density outside of the clus-
ters. In larger clusters the electron forms a bulk state and its
behavior is more like that of an electron solvated in a fluid. A
simple picture based on attractive channels successfully ex-
plains the qualitative features of the observed structure and
energetics of the electron—cluster systems.

A major assumption made in this work is the neglect of
many body effects in the polarization of the xenon atoms.
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FIG. 15. Comparison of the xenon—xenon pair correlation functions g(r) of
the anions Xe;;, and Xe,;, and their corresponding neutral forms.

TABLE IIIL Xenon—xenon potential energy.

Cluster Temp/K (Viex.)/nK
Xes 50 —~ 996+ 3
Xeg 50 —~993 43
Xeiso 50 —1165+3
Xega 50 — 116543
Xeio 100 —~989+3
Xeioo 100 —968 + 3
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The psuedopotential only includes two body polarization
terms. Many body polarization should be included in a self-
consistent approach because xenon is very polarizable. It
remains to be seen if many body polarization will materially
change the results presented in this paper. The effect will be
investigated in a future publication.
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