Molecular dynamics study of an isomerizing diatomic in a Lennard-Jones

fluid®

John E. Straub,” Michal Borkovec,® and Bruce J. Berne
Department of Chemistry, Columbia University, New York, New York 10027

(Received 17 February 1988; accepted 20 May 1988)

The behavior of the reaction rate of an isomerizing diatomic molecule solvated in a Lennard-
Jones fluid is studied by molecular dynamics simulations. A comprehensive study of solvation
effects on the rate constant, using the reactive flux absorbing boundary approximation of
Straub and Berne, is presented. We provide simulation data over three orders of magnitude in
solvent density for four systems differing in the mass of the solvent atoms and frequencies of
the internal potential. Rate constants are also calculated for the model system using both
Langevin Dynamics with exponential memory and impulsive collision dynamics of the BGK
model. A simple method for calculating the average energy transfer and collision frequency is
used to determine the collision efficiency for systems in which the mass of the solvent atoms is
lighter than, equal to, or heavier than that of the atoms composing the isomerizing diatomic.
We find that for solvents of equal and heavy mass compared to the solute the impulsive
collision model provides the best description of the dynamics. Finally, we employ a method
recently introduced by us to calculate the spatial dependence of the dynamic friction; we
compare the reaction coordinate friction at the transition state separation with an
approximation based on the single particle friction. This directly calculated reaction coordinate
friction, when combined with the Grote—-Hynes theory for barrier crossing, gives good

agreement with the simulation data at high density.

I. INTRODUCTION

Transition state theory provided the first theoretical
predictions of absolute reaction rates for chemical reac-
tions.! As expressed by Eyring? and Wigner,” the rate con-
stant is the probability of having the activation energy, mul-
tiplied by the equilibrium “reaction velocity” for crossing
the transition state surface separating reactants and prod-
ucts. Additionally, a prefactor, the transmission coefficient,
is included to account for the possibility of crossing the tran-
sition state to the product region and then recrossing to the
reactant state before deactivation.

In recent years renewed interest in these questions has
been stimulated by novel theoretical ideas* and new experi-
mental techniques. The experiments have provided chemical
reaction rate constant data as a function of the pressure or
viscosity of the solvent.”~!! Much of this work has been stim-
ulated by interest in Kramers theory and its recent exten-
sions.'>~"* These theories concentrate on the deviations from
transition state theory or the calculation of the transmission
coeflicient—quantifying recrossings of the transition state.

There is a whole cascade of approximations made in
interpreting the experimentally observed rate constant of a
reacting molecule in a solvent in terms of theoretical models.
First of all, one has to invoke the Born—-Oppenheimer ap-
proximation to separate the electronic and nuclear degrees
of freedom. Then, when the ground state potential surface is
given, one often approximates the motion of the nuclei by
classical mechanics. The potential surface arises from the
potential surfaces of the reacting molecule (solute), solvent—
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solute interactions, and solvent—solvent interactions. A po-
tential surface can be determined by ab initio calculation'® or
using semiempirical force fields. The details of the surface,
such as the activation energy separating reactant and prod-
uct states and the frequencies of the well and barrier regions,
are usually derived from spectroscopic data'® or fits to theo-
retical predictions after assuming a simple potential form.”
Femtosecond lasers should soon provide much greater cer-
tainty and detail.'® Nevertheless, the determination of a suf-
ficiently accurate potential surface is very often not feasible
and this point provides the major stumbling block for the
application of the powerful molecular dynamics methods to
problems of chemical interest. The interaction between the
reacting molecule and the solvent molecules is often not
known. It must then suffice to model this interaction by ap-
proximate semiempirical force fields.

Once the potential surface of the many-body system is
determined, the chemical rate constant can be evaluatedon a
computer by brute force application of modern algorithms.
Nevertheless, such an approach does not help in the under-
standing of the physical processes determining the rate con-
stant. To gain such an understanding further abstraction
from the real system is necessary. For example, when the
solvent moves rapidly compared to the solute, a substantial
simplification can be introduced by approximating the ac-
tion of the solvent by a modified potential surface for the
solute, the potential of mean force, and a stochastic bath
which captures the main dynamic features of the solvent.

The choice of those degrees of freedom considered to be
the “bath” and those belonging to the “system” is a matter of
convenience. The simplest choice for the system is one par-
ticular reaction coordinate; the bath is composed of all re-
maining degrees of freedom. An intuitively appealing choice
is to view the whole reacting molecule as the system and the
solvent degrees of freedom as the bath.
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The bath can be modeled on different levels of complex-
ity. The classical Kramers model'” is probably the simplest,
i.e., a Langevin constant friction model or the impulsive
collisional BGK model.'® Better description is possible by
more refined collisional models'' or by incorporating the
finite response time of the solvent using a frequency depen-
dent friction.'? The friction coefficient can be modeled in a
variety of ways. It can be thought of as friction acting on
different sites in the molecule. In such cases, mode coupling
theories and molecular hydrodynamics have been capable of
producing models of the friction coefficient for some simple
systems.'?° Fortunately, computer simulation techniques
have recently been developed which are capable of extract-
ing this information on arbitrarily complicated systems.?'

Finally, once the stochastic bath has been chosen, the
rate constant for such a system must be evaluated. In many
cases this is possible analytically.'>?* Rate coefficients de-
scribing the activation process increase strongly with the ex-
act number of degrees of freedom that equipartition energy
with the reaction coordinate on the time scale of the reac-
tion. Because the time scale of the reaction decreases with
the collision frequency or the friction coefficient, the effec-
tive number of degrees of freedom should decrease and the
rate constant should increase more and more slowly as the
collision frequency or friction coefficient is increased.>-°
This is in the spirit of unimolecular rate theory'!?® The bar-
rier crossing step is less sensitive to the exact number of de-
grees of freedom coupled to the reaction coordinate, but de-
pends strongly on the details of the friction or collision
frequency affecting the reaction coordinate.?’~?° Such an ap-
proach can be viewed as generalized transition state theo-
ry.3°

Given a stochastic model for the bath the problem of
calculating the rate constant has received substantial atten-
tion recently. Examples where analytical evaluation is possi-
ble are, e.g., the Kramers or BGK model for a single*’ or
several®>~! strongly coupled degrees of freedom, and non-
Markovian models® for not too large correlation times. On
the other hand, one has to face the fact that there are systems
where no analytical theories for evaluation of the rate con-
stant are available.>? In such cases, applications of existing
analytical theories yield incorrect rate constants. This point
is particularly subtle as only few criteria are known at pres-
ent to judge the validity of analytical theories.!>242932 A
typical example is the caging effect for an exponential fric-
tion kernel at large correlation times which reduces drasti-
cally the rate constant—an approximate bridging formula
can overestimate the rate constant by orders of magnitude.>?
In other studies, the efficiency of vibrational energy transfer
and the rate of collision between the solvent and the reaction
coordinate have been studied to determine the validity of
strong collision models.?*?*** There it was found that de-
tailed knowledge of the density of vibrational states which
can equipartition energy with the reaction coordinate on the
time scale of the reaction was prerequisite for an accurate
application of the theories.

It is quite obvious that a simple choice of the bath results
in an oversimplification of the real action of the solvent on
the reacting molecule but allows a simple calculation of the

rate constants and vice versa. For example, a one degree of
freedom Kramers model, which might be a poor model for
the action of the solvent on the reaction coordinate, requires
only the evaluation of a single parameter (friction coeffi-
cient) and it is an easy matter to calculate the rate constant
from potential parameters. On the other hand, a model with
several degrees of freedom coupled to a non-Markovian
bath, which might be an excellent model for the bath, re-
quires the nontrivial evaluation of frequency dependent fric-
tion kernels and often makes the analytical evaluation of
corresponding rate constants subject to large uncertainties.

Rate constants are measured experimentally as a func-
tion of solvent density, viscosity, or pressure. In order to
compare these findings with theoretical models a large num-
ber of assumptions and simplifications are introduced. For
example, the system is treated classically, the friction on the
reaction coordinate is approximated by the friction on a
sphere in a viscoelastic continuum solvent, or the effects of
the potential of mean force are neglected. Obviously, such an
array of approximations is essentially impossible to control
in a realistic system, where many parameters are not well
known in advance. For this reason, a molecular dynamics
study of a system, in which one can control the parameters,
can be of great value in providing insights. This cannot be
done experimentally.

In this paper we make use of recent developments in
numerical techniques and present the results of such a study.
Our first priority was to choose a system where all relevant
quantities can be calculated with sufficient accuracy. This
imposes severe restrictions on the system. Actually, we have
to confess that the present lack of knowledge of potential
surfaces, solvent models, and interactions between reactant
and fluid makes it difficult to simulate real experimental sys-
tems. Therefore, we study an idealized system—the isomeri-
zation rate of a model diatomic molecule in a Lennard-Jones
fluid. The bond length can jump continuously between two
bound metastable states separated by an activation barrier.
In Sec. II we describe the equilibrium and time dependent
properties of a Lennard-Jones fluid. Section III details the
reaction system, summarizes the theoretical models used to
interpret our simulation data, and discusses our simulation
of the rate constants for four systems of different internal
potential or solvent mass. In Sec. IV we discuss in detail the
input for the various theoretical predictions in the form of
the collision efficiency and reaction coordinate friction, and
we present stochastic simulation data for our system which
addresses the accuracy of the theories in going from the as-
sumed equations of motion to the rate constant. Section V
discusses the relevance of this study for the interpretation of
other reaction systems.

Il. PROPERTIES OF A LENNARD-JONES SOLVENT

In this section, we summarize the equilibrium structural
and dynamic properties of neat Lennard-Jones fluid. The
intermolecular potential for a system of atoms of type A is

12 6
=t [(5)"~ (2]

where the Lennard-Jones reduced units are used in which

2.1)

J. Chem. Phys., Vol. 89, No. 8, 15 October 1988

Downloaded 04 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Straub, Borkovec, and Berne: An isomerizing diatomic

the atomic mass m, , radius o, , , well depth €, , , and Boltz-
mann’s constant kp are equal to unity. (m, 03, /€5, ) "2 is
the unit of time and the reduced density p = n, oaa- Allour
data is for the reduced temperature T'= kg T /€,, = 2.5.
Calculations were performed using a fifth order Gear
predictor—corrector algorithm®® on an FPS-164 attached
processor.>’ This algorithm naturally generates higher order
time derivatives of the velocity which are useful in the calcu-
lation of time correlation functions. The time step was

2x1072

A. Equilibrium properties

The potential of mean force between two particles is
defined by3¢"

w(r)= —kzTIng(r) (2.2)
in terms of the radial distribution function g(7).3¢ This can
be expressed as w(r) = U(r) + AW(r) where U(r) is the
bare two body potential, and AW(r) is the solvent induced

part of the potential of mean force.

In Fig. 1 the potential of mean force is displayed for a
Lennard-Jones fluid at a reduced temperature T = 2.5 for
several densities. These results are well reproduced by the

function

r a, + a,?
AW(r) =3 — 83 T a4 23
n i cos(ar—pB) + Zir (2.3)

which is accurate for > 0.7. The necessary coefficients are
listed in Table I.

B. Dynamic properties
In the theory of liquids, the generalized Langevin equa-
tion

mx = (2.4)

—f de’ E(t)x(t—1') + R(2)
0

wir)
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FIG. 1. The solvent contribution to the potential of mean force for a Len-

nard-Jones fluid. This simulation data is well fit by Eq. (2.3).

4835

TABLE I. Coefficients for Eq. (2.3).

P a, a, a, a, a a B

<0.50 —-97p 305 —073 014 048 27 14
0.50 —2.8 284 —96 7.9 1.56 5.7 0.15
0.70 —6.1 43 —160 12.3 1.52 64 0.82
0.80 —-1.9 44 —171 13.3 1.37 65 0.68
0.95 —12.1 49 —21.7 16.7 1.36 6.6 029
1.05 - 14.1 45 —215 17.4 1.10 6.9 0.66

has played an important role in the definition and analysis of
time dependent properties.*®>° x is a coordinate describing
the center of mass motion of a molecule, m is its mass, £(#) is
the dynamic friction, and R(¢) the random force.?*>*® The
dynamic friction {(¢) specifies how the fluctuations in the
velocity x will decay in time. It is defined by*!

C(t) = —f dr' 28D iy, (2.5)
o m

where C(t) = (x(£)x(0))/{x?) is the velocity correlation
function, and (--*) represents an equilibrium average over
the canonical distribution function e ~## where H is the sys-
tem Hamiltonian and 8 = 1/ky T. {(¢) can be calculated by
numerically inverting this equation.*!

In Fig. 2 the dynamic friction kernel £ () is displayed as
afunction of time for several reduced densities. These results
are accurately reproduced by the function

E@W =) e ' (1+a;t*) +axt'e P + a,t®e ]
(2.6)

with coefficients @, =~5.86X10* + 9.0 10%, a, ~ — 385
+ 6700°, =787 + 116p%, B=75.0, and y= 1.0. a; is ad-
justed from & (0).** The latter quantity has been determined
by the more accurate calculation of the diffusion coefficient
D of the particles from the mean square displacement using
the Einstein relation § (0) = k5 T'/D. Figure 3 shows the

10 —
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FIG. 2. The time dependent friction for a single atom of a Lennard-Jones
fluid at several reduced densities. This simulation data is well fit by Eq.

(2.6).
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FIG. 3. The zero frequency, or time integrated value _2,' (0) of the dynamic
friction £(¢) for a Lennard-Jones fluid as a function of density. The fit to the
data points is given by Eq. (2.7).

zero frequency friction coefficient as a function of density
and is accurately fit by

2 (0)=747p + 7.19p%" " 2.7

It can be seen that this fit to our data is in good agreement
with the molecular dynamics data of Fincham and Heyes,**
the approximate formula of Levesque and Verlet** valid for
higher densities, as well as the analytic low density expan-
sion.

The initial value of the friction kernel § (0) is the mean
square force on the coordinate divided by the mean square
momentum. It is independent of the mass of the solvent
atoms forming the bath but will depend on the density.*®
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FIG. 4. The zero time value of the dynamic friction £(¢) for a Lennard-
Jones fluid as a function of density. The fit to the data points is given by Eq.
(2.8).
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FIG. 5. The correlation time of the Lennard-Jones fluid as a function of the
zero frequency friction for several densities. The solid line is the approxima-
tion of Eq. (2.9).

Figure 4 shows the initial value of the friction kernel as a
function of density. The fit to the simulation points including
the correct low density behavior is given by

£ (0) =297pe' ¥, (2.8)

The correlation time of the liquid, defined here as
7. = { (0)/£(0) as with an exponential form, is shown in
Fig. 5 for £{(1), as a function of the zero frequency friction. It
is worth noting that the simple linear relation between the
correlation time and the zero frequency friction § 0)
greater than 20,

7.0.0216 + 4.74X 1074 £ (0). 2.9)

Such relations have been proposed previously.'® Thus, at
high friction (visco/gity) , T, increases linearly with the static
friction coefficient & (0).

To understand the dynamic friction, it is useful to think
in terms of the Laplace transform, or frequency dependence,
of the friction kernel

Z(s) =f dte="(1),
(4]

where the value at a particular frequency s represents the
dissipation experienced by a particle moving at that frequen-
cy. The static limit of the friction, i.e., the zero frequency
friction, is the time integral of the dynamic friction kernel

E<0)=J dt' ¢ (1),
(+]

The dependence of the dynamic friction on the particular
frequency of motion can be understood in terms of the cosine
transform Re § ( — iw). This function, normalized by the
zero frequency friction, is compared for a number of densi-
ties in Fig. 6. The maximum in the function is the frequency
of motion most strongly damped by the surrounding solvent
atoms.

(2.10)

(2.11)

J. Chem. Phys., Vol. 89, No. 8, 15 October 1988

Downloaded 04 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Straub, Borkovec, and Berne: An isomerizing diatomic 4837

A

Re {(-tw)/L(0)

o
o

0.0

100

FIG. 6. The frequency dependence of the dynamic friction {(#) for a Len-
nard-Jones fluid for several densities.

iil. CALCULATION OF RATE CONSTANTS
A. Reaction system

Our reaction system consists of a diatomic molecule A%
solvated in a fluid of atoms of type A. The solvent-solvent
interaction is the standard Lennard-Jones type defined in
Eq. (2.1). For simplicity the solute-solvent interaction is
taken to be a two site LJ potential in which each A* interacts
with each solvent atom through precisely the same potential,

o 12 o 6
UAA.(r)=4eAA[( AA) —( AA)]. (3.1)
r r
The diatomic intramolecular potential
Upens (1) =Q(1 =A%) forly| <y,
=Q(—yo)* forly|>p, (32)

is a symmetric bistable piecewise continuous potential with
parabolic barrier and harmonic wells. y is defined by
r=a+ (4Q/w?)"?y where a is the position of the barrier
maximum, Q is the barrier height, w, and w, are the har-
monic barrier and well frequencies, respectively, and
A = wg/w, is their ratio. The well and barrier regions are
joined continuously at p, and the well minima are located at
y= + ¥, where 2A%(1 +4%) =1 and yo=y,(1+42).
For the work discussed in this paper we use a value of
a=125. '

The reaction itself is defined as follows. The diatomic
molecule has a bistable internal potential providing two
metastable states. Vibrations about the inner state constitute
reactant while vibrations about the outer state constitute
product. The reaction consists of transitions between these
two states. The position of the barrier in the potential of
mean force precisely defines the transitions from reactant to
product.

B. Transitions state theory

The isomerization reaction
kr
A=B
k b
has a total kinetic reaction rate constant k = k/+ k?, the
sum of the forward and backward rate constants. In general,
the equilibrium rate constant can be conveniently written
aS"45

3.3)

where k is the true kinetic rate constant, kg is the transi-
tion state kinetic rate constant, and « is the dynamic trans-
mission coefficient measuring the deviation from transition
state theory. When the forward (backward) transition state
rate constant is inserted in Eq. (3.3) in place of k1¢1, k is the
forward (backward) rate constant. The transition state the-
ory rate is the maximum possible rate constant so that « is
always less than or equal to unity.*® The transmission coeffi-
cient is the same for the forward and backward reactions.
Note that whereas kg1 and x depend on the choice of reac-
tion coordinate x, their product, i.e., the overall rate con-
stant X, is independent of this choice.

The forward and backward transition state rate con-
stants are given by*®

k"’l’ST — kglns—_rout - (5(4)49@))
(6( — q))
k‘ll"ST — kg%t_;in — (5(9)49(4» ,
1—{8(—q)

where g = 7 — a is the reaction coordinate, 6(q) defines the
transition state, g is the reaction coordinate velocity, (- -*) is
a canonical average, and {(&( — ¢)) is the unit step function
that is unity in the reactant state (A4). If the barrier height
0> k, T, and the wells can be well approximated by harmon-
ic oscillators, a good and convenient approximation for the
one-dimensional reaction coordinate in the TST approxima-
tion for a symmetric double well is*®

k = KkTST’

34

3.5)

1D Wy -
kTSTz—Z_ﬂ’.e sQ

(3.6)

The absolute value of the rate constant k is the experi-
mentally observed quantity. As we are also interested in de-
viations from the transition state theory predictions, the val-
ue of the transmission coefficient « is of interest. It is
important to understand the effects of solvation on the tran-
sition state theory rate where the equilibrium constant and
activation energy is affected by the presence of solvent.

Detailed balance relates the ratio of the forward and
backward rates to the equilibrium constant K. If X;, and
X, are the equilibrium mole fractions for the inner and
outer wells of the diatomic,

K - kin-»out - Xout _ J‘:’e—ﬁw(')rz dr

eq — J out—in X, - J’ge‘ﬂ‘”"’/‘ dr ’

3.7)

where r = a is the position of the transition state and w(r) is
the potential of mean force. The 7* terms in Eq. (3.7) can be
added to the potential of mean force defined by Eq. (2.2),
giving the effective potential of mean force,
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FIG. 7. The (—) bare potential, the bare potential plus the rotational con-
tribution (- -), and the bare potential plus the rotational and solvent con-
tributions (—--), for the isomerizing diatomic molecule solvated in a simple
Lennard-Jones fluid of density p = 1.05.

AW, (r) = AW(r) — 2kBT1n(-’—) (3.8)
a

which includes the centrifugal distortions due to rotation of
the diatomic. Figure 7 shows separately the contributing
terms and the overall potential of mean force for the reduced
solvent density p = 1.05.

For our diatomic system, the gas phase transition state
theory rate constant is approximately

a2
r

k out—qn ( ) k TST-
r

The prefactor of each rate constant is due to the Jacobian in
spherical coordinates where it is assumed that the probabili-

(3.9)

(3.10)

Straub, Borkovec, and Berne: An isomerizing diatomic

the inner, r,, and outer, r,, wells. The gas phase potential is
given by Eq. (3.2). The corresponding equilibrium constant

is
as
K% :(

Figure 8 shows the behavior of the equilibrium con-
stants K, = X,,,,/X,, and the forward and backward transi-
tion state rate constants as a function of the solvent density,
normalized by the gas phase constants [Egs. (3.9), (3.10),
and (3.11)]. With the parameters a = 1.25, Q = 10, and
T = 2.5 we find for the gas phase, that the internal potential

L&

_)2_

r

(3.11)

parameters wp =15 and @,=30 correspond to
e = 1331073, ¥r"=851x107%,  and
K& =15.6; for wy =30 and w,=30 we find ky™

out—in

= 5591074, k9™ = 1.14X 107%, and K &° = 4.89. For

our reaction system, we find, as expected, that at higher sol-
vent densities the contracted state of the molecule will be
favored over the extended state which displaces a larger vol-
ume. This trend is quantitatively displayed.

C. Transmission coefficient

The transmission coefficient «, a dynamic quantity, is
related to the normalized reactive flux** can be expressed

as47

k(n=(01gH1), —(01a(0])_, (3.12)

where 6(q) is the Heaviside function, which is unity forg > 0
and zero otherwise, and (--*) . indicate, respectively, aver-
ages over the normalized phase space distribution func-
tions*’

go( + §)8(q)e— D
§dT GO( + q)8(g)e ~PH®

PEND) = , (3.13)
where quantities without an explicit time variable are taken
at the time origin.

If the barrier separating the reactant and product states
ishighQ>» k,T, k() will decay on two distinct time scales.*
A fast initial decay will be followed by a slow decay, on the
order of ¢°¢,

ty distribution is strongly peaked at the potential minina of k(1) —ke- (3.14)
) 1 L L L ¥ LI LB T ¥ L L) T
14 -
{a) (b)
2 7 1T a ©
o
10 (goo o 1ts?® o .
o a o FIG. 8. The gas phase normalized
08 | e o 4} ] . equilibrium constant and transition
» o a state rate constants for the isomerizing
-4 o diatomic calculated through the po-
X 06 S 1 F 7 tential of mean force in Fig. 7 and Eq.
» o (3.7). The system parameters are
04 | 4 - A o B@=10 and T=2.5 in each figure
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from a ““plateau value” which is the transmission coefficient
«’

Straub and Berne have proposed the absorbing bound-
ary method for determining the transmission coefficient,
which is valid if the distribution of those trajectories which
recross the transition state conforms to the distribution of
Eq. (3.13).%® In such a case, the transmission coefficient

may be written
= T.T_ ,
T, +T_-T,T_
where 7, and T_ are, respectively, the probability that a
trajectory starting at the transition state, distributed accord-
ing to Eq. (3.13), will be trapped in the reactant or product
state for times on the order of ¢#2 before recrossing.

To calculate the trapping fractions T, one samples
points according to Eq. (3.13) which places trajectories ini-
tially at the transition state with + ( — ) velocity, heading
for the product (reactant) well. Each trajectory is propagat-
ed until it recrosses the transition state, at which point it is
removed. If we define the survival probability P, (¢) as the
fraction of trajectories which has not crossed the transition
state by time ¢, then P, (¢) will decay to the plateau value
T, . If k€kysr, k<1, the trapping fraction will be small,
and very few trajectories will have to be integrated for the
full length of the simulation. In this case, the absorbing
boundary method requires far less computer time than a full
reactive flux calculation.*®

(3.15)

D. Initial conditions

The initial distribution of states used in the calculation
of the transmission coefficient is defined by Eq. (3.13) where
the reaction coordinate is confined to the transition state.
When the reaction coordinate is simply defined in terms of
some separable coordinate, such as a linear combination of
Cartesian coordinates or the radial component of spherical
coordinates, the average of the velocities and coordinates
can be separated and the transition state theory rate of Egs.
(3.4) and (3.5) is simply*’

k%”=l<@mw, (3.16)
t—in 1 :
%~=X (9S(q), (3.17)

out

where S(g) may be defined in terms of the potential of mean
force w(q)>° as*®

e~ Pw(go)
J'Sedq e~ Pwa

which is simply the probability distribution function of gin a
canonical ensemble. However, in general ¢ is a curvilinear
coordinate, and the average of the positions and velocities
cannot be separated, as for example in butane.'**!

For our system, the reaction coordinate is the radial dis-
tance separating the atoms of the diatomic, and so the aver-
ages of the positions and velocities may be performed sepa-
rately. In this case, it would be most simple to use Monte
Carlo*’-%° or the SHAKE molecular dynamics algorithm’' to

S(go) = (6(qg —g0)) = (3.18)
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generate the positions and then assign the velocities random-
ly according to the Maxwell distribution weighted by the
reaction coordinate velocity. However, we chose to employ a
general Monte Carlo scheme which does not make use of this
fact.! It may be used to generate a distribution according to
Eq. (3.13) for a general curvilinear reaction coordinate.

The initial system configuration is denoted a, with total
potential and kinetic energy E,, reaction coordinate velocity
4., and probability p, = |¢,]le” PE:_ After a move, the new
system energy is K, with probability p, = |g, |e ~?*. If
the probability p,. >p, the move is accepted. Otherwise, a
random number between zero and one is generated and if the
number is greater than the ratio p,. /p,, the move is accepted.

Initially, the interparticle separation of the diatomic
was fixed at the barrier maximum for the potential of mean
force. The system was then equilibrated over 1000 passes
using a traditional Metropolis algorithm sampling coordi-
nates only to generate an equilibrium Boltzmann distribu-
tion. The solvent atom moves consisted of generating a ran-
dom translation of the coordinates according to a uniform
distribution within a cube. The dimension of the cube was
chosen to produce an acceptance ratio of 0.5.

Velocities were then Monte Carlo sampled according to
the weighted distribution of Eq. (3.13). The position and
velocity of each solvent atom was translated uniformly with-
in a cube. The moves for the diatomic molecule were of two
types. First, the center of mass position and velocity of the
rotor was moved, as if it were a solvent atom. Second, the
positions and velocities of the two atoms of the diatomic
were moved independently, as if they were each solvent
atoms, and then they were moved together along the inter-
particle separation to satisfy the distance constraint. This
allows for both translations and rotations of the constrained
diatomic. The move sizes for the solvent, diatomic center of
mass, and separate atom and diatomic were chosen to pro-
duce an acceptance ratio of 0.5 in each case.

To equilibrate the positions and velocities according to
the distribution of Eq. (3.13), 1000 passes were taken. After-
wards, a trajectory was generated. Configurations to be used
in the calculation of the transmission coefficient were sepa-
rated by 100 passes. The distributions were then compared
with Eq. (3.13) and found to be in excellent agreement.

E. Results

Our calculations of transmission coefficients for the iso-
merization of the diatomic molecule were performed on a
Cray XMP-48. In each case, we employed the absorbing
boundary method using the velocity Verlet algorithm with a
time step of 2 X 19‘3. The results are displayed in Table II.
For each system T = 2.5 and a@ = 1.25; p is the number den-
sity of the solvent and diatomic system; NP is the total num-
ber of atoms including the reacting diatomic; 4, Q, and w,
are potential parameters; m,. is the solute atomic mass; NT'
is the number of trajectories in each calculation of a trapping
coefficient T, ; t,,, is the total time over which the trajec-
tories were propagated. We have calculated the transmission
coefficient as a function of the solvent density for four sys-
tems, described below. The barrier frequency and solvent/
solute mass ratio of each system were chosen to examine

J. Chem. Phys., Vol. 89, No. 8, 15 October 1988

Downloaded 04 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4840 Straub, Borkovec, and Berne: An isomerizing diatomic

TABLE I1. Data from rate constant simulations.

P NP A Q wpg ma NI T, T_  toa

0.005 32 05 250 150 1.0 1000 0.034 0011 200.0
0.05 64 05 250 150 10 500 0226 0.156 200
0.5 512 05 250 150 1.0 100 0.900 0.790 1.0
1.0 512 05 250 150 10 100 0.590 0.760 1.0
0.005 32 1.0 250 300 10 1000 0.025 0.011 200.0
0.05 64 1.0 250 300 10 500 0.172 0172 200
0.5 512 1.0 250 300 1.0 100 0.870 0.880 1.0
1.0 512 10 250 300 10 100 0.760 0.860 1.0
0005 32 05 250 150 01 1000 0.025 0.010 1000.0
0.05 64 05 250 150 01 500 0.152 0.106 100.0
0.5 512 05 250 150 01 100 0930 0.790 50
1.0 512 05 250 150 O1 100 0.770 0.910 5.0
0.005 32 1.0 250 300 40 1000 0017 0.012 200.0
0.05 64 1.0 250 300 40 500 0.188 0.110 200
0.5 512 1.0 250 300 40 100 0.800 0.800 2.5
1.0 512 10 250 300 40 100 0.780 0.820 1.0

particular limits of interaction between the solvent and the
reaction system. Below we describe each system separately.

1. Theoretical predictions

At low friction, the rate limiting step for the isomeriza-
tion reaction will be energy activation. Collisions are rare
and the rate will increase in proportion to the collision rate
or friction.

If the energy transferred on collision between a solvent
atom and the reaction coordinate is small compared to the
thermal energy kT, a weak collision model is most appro-
priate'?; the dynamics are modeled by the generalized Lan-
gevin equation

i = —aw(q> fd‘ £t —1") + R(D),

(3.19)

where g is the reaction coordinate, ¢ the conjugate velocity,
£ (1) the dynamic friction on the reaction coordinate, and
R(t) the random force which satisfies the second fluctu-
ation—dissipation theorem (R(#)R(0)) = uk,T{(1).

The rate for energy activation of the reaction coordinate
to the barrier energy Q has been shown by Grote and Hynes®
to be approximately

kye = Bf_;(_z__"ﬁg)_'gge -8
for BO> ky T and a harmonic well of frequency w,. In the
adiabatic limit, the solvent relaxes quickly and follows the
motion of the reaction coordinate. The friction felt by the
reaction coordinate is the integrated or zero frequency fric-
tion and Eq. (3.20) reduces to the Kramers rate for energy
activation

(3.20)

ke = —SZ:BQe“’Q, (3.21)
where { = 5(0).

If the energy transferred on collision to the reaction co-
ordinate is comparable to or larger than the thermal energy a
strong collision model like the BGK impulsive collision mod-
el is appropriate’; the dynamics is described by a master
equation where each collision of the reaction coordinate

with a solvent atom is assumed to thermalize the reaction
coordinate velocity, while leaving the position constant. The
rate for energy activation is almost equal to the strong colli-
sion approximation, i.c.,*

a _
kBGK :::—2-8 ﬁQa

(3.22)
where a is the collision frequency experienced by the reac-
tion coordinate. It should be noted that the strong collision
approximation gives the upper limit for the rate constant for
energy activation. - # Therefore, the smaller of the two rate
constants given by Egs. (3.22) and (3.20) will be rate limiting.

At high friction, the rate limiting step for the isomeriza-
tion reaction will be motion through the transition state
(barrier) region. Collisions are frequent and the reaction
coordinate is assumed to have a thermal distribution of
states up to and including the barrier energy. Deviations
from transition state theory occur if the motion of the reac-
tion coordinate through the barrier region is hindered; that
is, there are multiple rapid barrier recrossings.

Grote and Hynes have shown that the rate constant for
crossing the saddle region with parabolic barrier of frequen-
cy wp is given by’

—i'

kg (3.23)

Wp
where the reactive frequency A, is the positive solution of the
equation

A2 4,8, = b (3.24)

In the adiabatic limit where the bath relaxes quickly com-
pared to the solute the zero frequency friction £(0) willbe a
good approximation to the friction on the reaction coordi-
nate and {(0) >»wg. Equation (3.23) then reduces to the
Kramers rate for the diffusive crossing of a parabolic barrier

(27
kdiﬂ' = —§ kTST

(3.25)

in the limit of large ¢.

Similarly, the BGK impuisive collision model results in
Eq. (3.25) where the collision frequency « is substituted for
the zero frequency friction &.

To bridge between the low and high friction limits, and
provide a functional form for the total rate constant & for all
friction or collision frequency, it is necessary to use approxi-
mate connection formulas. For the weak collision models we

use'?

k7 '=ko '+ kg (3.26)

which also applies approximately in the adiabatic Kramers
limit. For the impulsive collision model we use>?

k~'=kgox + kst + kg (3.27)

2 Simulation results

In this section we present simulation results for four
different systems together with the predictions of those the-
ories presented in Sec. III E 1. A detailed discussion of the
application of the theories and the significance of their agree-
ment with the simulation results is given in Sec. IV. In Fig. 9
we plot the absolute rate constants for the forward and back-
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FIG. 9. k"~ (O) and k °**~» (@) absolute rate constants as a function of
the solvent density, expressed here as the zero frequency friction of the sol-
vent . The system parameters are 5@ = 10and 7= 2.5 in each figure while
in (a) my/mpe = 1.0, wg = 15, @y = 30; (b) my/m,. = 1.0, @y = 30,
wy=30; (¢) my/m,. =0.1, wg =15, wy=30; (d) my/m,. =4.0,
wg = 30, wy = 30.

ward reactions [cf. Eq. (3.3)] as a function of the zero fre-
quency friction £ = £(0) of the solvent. In Fig. 10 we plot
the transmission coefficient as a function of the zero frequen-
cy friction of the solvent £ = £(0). Note the different ap-
pearance of the absolute rate constants (Fig. 9) which would
be observed in an experiment and the transmission coeffi-
cient (Fig. 10) which can be meaningfully compared to dy-
namical theories. These differences arise from the potential
of mean force (solvent shifts). In this example, it is quite
obvious that without detailed knowledge of the potential of
mean force effect a meaningful comparison with dynamical
theories is impossible. Unfortunately, examples of such anal-
yses of experimental data are quite uncommon in the litera-
ture.

In system 1, the barrier frequency wp = 15 was chosen
to be lower than the dominant solvent frequency
Dyorvent =~ 30. Here it is expected that the solvent will respond
nearly adiabatically to the motion of the reaction coordinate
as it moves through the transition region. Figure 10(a) com-
pares the simulation results with various theoretical predic-
tions.

At low density and friction, the rate constants show
good agreement with the BGK theory. As the density is in-
creased the maximum in the rate constant and the initial fall
off agree with the nonadiabatic weak collision theory which
uses the full memory kernel (see Sec. IV C).

In system 2, the barrier frequency @, = 30 was chosen
to be comparable to the dominant solvent frequency. Here it
is expected that the solvent will have difficulties responding
adiabatically to the motion of the reaction coordinate. There
should be a definite separation between the adiabatic
Kramers and the nonadiabatic Grote—Hynes rate constants.

k/krgy
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k/kygy
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FIG. 10. The transmission coefficient as a function of the solvent density,
expressed here as the zero frequency friction of the solvent £. The theoreti-
cal predictions of the Kramers theory (—), the BGK theory (--~), the
weak collision model using the single particle approximation to the reaction
coordinate friction (-*-) (see Sec. IV C), and an exponential approxima-
tion to the friction (—-—) using the correlation time of Eq. (2.9). The system
parameters are fQ = 10 and T=2.5 in each figure while in (a) m, /
mp. = 1.0, 05 = 15, 0y = 30; (b) m, /m,. = 1.0, w5 = 30, o, = 30; (¢)
my/my. =0.1,05 = 15,0, =30;(d) m, /m,. =4.0,wp = 30, w, = 30.
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Figure 10(b) compares the simulation results with various
theoretical predictions.

At low density, the rate constants show good agreement
with the BGK theory. As the density is increased the maxi-
mum in the rate constant and the initial fall off agree with the
weak collision theory using the full memory kernel.

In system 3, the barrier frequency wz = 15.0 was chosen
to be less than the dominant solvent frequency, and the mass
of the solvent was decreased to m, = m,./10 to increase
the solvent response. Here it is expected that the solvent will
respond nearly adiabatically to the motion of the reaction
coordinate as it moves through the transition region. Figure
10(c) compares the simulation results with the theoretical
predictions.

At low density, the rate constants sit slightly below all
theoretical predictions. As the density is increased the maxi-
mum in the rate constant and the initial falloff agree with the
nonadiabatic Grote—Hynes theory which is closely approxi-
mated by the adiabatic Kramers weak collision theory which
uses the zero frequency friction.

In system 4, the barrier frequency @z = 30 is compara-
ble to the dominant solvent frequency, and the mass of the
solvent was increased to m, = 4m,. to impede the solvent
response. Here it is expected that the solvent will have diffi-
culties responding to the motion of the reaction coordinate.
Figure 10(d) compares the simulation results with the theo-
retical predictions.

At low density, the rate constants are in excellent agree-
ment with the BGK theory. The turnover region and high
density falloff occur at a higher density than with the lighter
solvent of system 3 and agree well with the nonadiabatic
Grote—Hynes theory using the full memory (see Sec. IV C).
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FIG. 11. The behavior of the reaction coordinate is described by trajectories at reduced solvent densities of p = (a) 0.005; (b) 0.05; and (¢) 1.0.

IV. ANALYSIS OF RATE DATA

To understand deviations between experimental results,
including those of complex simulations, and theoretical pre-
dictions it is important to determine first, if the dynamic
model is appropriate, second, if the basic assumptions of the
theory which connect the dynamic model with the rate con-
stant are valid for that system, and third, if the parameters
required as input are known accurately.

Molecular dynamics simulation can be effectively used
to examine dynamic trajectories and decide if their motion is
well modeled by the basic equations of motion used in the
theory, e.g., if the collisional energy transfer is best described
by a weak or impulsive collision model. Further, stochastic
dynamics can be used to simulate the chosen collisional
model and generate rate constants to test the basic theoreti-
cal assumptions which connect the equations of motion with
the kinetic rate constant. If all assumptions are met, then the
theory is compared to the experimental results to address the
validity of the model or the accuracy of required parameters.

In this section we examine the details of collisional ener-
gy transfer and find that for the equal mass system at low
collision frequency the microscopic dynamics are best de-
scribed by an impulsive collision model, rather than the
weak collision Langevin model. We also present the results
of stochastic simulations for the isomerization of the diatom-
ic molecule. For the BGK impulsive collision model, and
weak collision models using zero frequency and exponential
dynamic friction models, we find that the theoretical predic-
tions of Egs. (3.26) and (3.27) are accurate. Finally, we
examine the validity of using an approximation to the reac-
tion coordinate friction based on the single particle friction.

A. Collisional parameters

For the isomerizing diatomic molecule we would like to
know the frequency of collisions with the solvent & and the
average energy transfer on collision, |(AE )|.

Figure 11 shows the reaction coordinate energy as a
function of time for activated trajectories which begin just
above the barrier and are propagated in solvents of different
density. At low density, p = 0.005, the collisions are binary,
abrupt, and the energy transfer is likewise. Occasionally, a
collision complex is formed which is indicated by a spike and
adjacent “‘ringing” in the energy [see insert of Fig. 11(a)].

There are also large spikes from elastic collisions with no
resultant energy transfer. At p = 0.05, individual, binary
collisions are difficult to resolve. However, there remain
large abrupt transfers of energy. By p = 1.0, the changes in
energy are continuous in time and the energy is diffusive.

We have examined 175 activated trajectories, distribut-
ed according to Eq. (3.13), at a density of p = 0.005. The
diatomic _potential parameters are wp =30, A=1,
£QO =10, T= 25, andm, =mg..

For each trajectory we measured the time between ini-
tialization and first collision as well as the energy trans-
ferred. The resulting distributions of times and energies are
displayed in Fig. 12. The collision times are well described by
an exponential distribution with decay constant, corre-
sponding to the average collision time (A¢ ) = 5.0. The two
wings of the energy distribution, corresponding to increases
and decreases in energy, may be fit by exponentials. The
average increase in energy is (AE ) , = 0.24k, T, the aver-
age decrease in energy is (AE)_ = — 1.56k, T, and the
average energy change on collisionis (AE) = — 1.32k, T.
The exponential distribution displayed in Fig. 12(b) for
collisional energy change is simply proportional to exp
[(E—E"Y(AE) ]

The average collisional energy transfer at low density is
greater than the thermal energy kg T indicating that the im-
pulsive collision models, such as the BGK or strong collision,
are the best dynamic models for this system.

We can compare the average collision time (At ) with
that predicted by kinetic theory. The collision frequency for
our diatomic molecule A¥ in a monatomic solvent of atoms
A can be approximated from the collision frequency of an
impurity in a Lennard-Jones gas®***

Z,, =pm A; R /SkBT/‘n',uA? LA (4.1)

p is the solvent density, o Ops_a is the collision diameter for
the binary collision, u af _ a 18 the reduced mass of the colli-

sion pair, and *?" is the reduced collision integral.

For two spherical Lennard-Jones atoms o Af-A = (o At
+ 04 )/2. We can approximate the collision diameter of the
diatomic molecule by averaging the cross section seen by a
solvent atom moving along each of the three axes of the di-
atomic and assuming that each collision between the solvent
and the solute is a collision with the reaction coordinate.

Neglecting rotations, the area (in units of 7?3 /4) of the
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FIG. 12. The probability of (a) the collision time Ar and (b) the average
energy transfer on collision AE of a solvent atom with an activated diatomic
molecule. The envelopes are exponential fits to the data.

diatomic projected onto the plane perpendicular to the reac-
tion coordinate is unity, while the area projected onto each
plane containing the reaction coordinate of length r = a is
2 — [2cos™(a/2) —a(l — a*/4)"?1/m.55 Averaging the
three projections for the transition state separation
r=a=1.25 gives Oy = 121ando,, ,= 1.10.

The reduced mass u,, _, =2/ 3 and the reduced colli-
sion integral at T'= 2.5 is Q2" = 1.093.5 Using the low
density approximation from Eq. (2.7), p=£(0)/7.47, re-
sultsin Z; y = 1.72£(0) assuming slow rotations. We empha-
size that this estimate of the collision frequency is approxi-
mate, but adequate for our analysis.®’

We noted earlier that the BGK rate constant agrees well
with the numerical rate constants at low densities. To better
appreciate this agreement, we calculate the collision effi-
ciency B, which we define in terms of the measured rate
constant k and the BGK rate constant &k g as

k= B.kpck - (4.2)

Following Troe,>* we further divide the collision efficiency
as B, = B.,B.ar, into a “‘step size factor”

- (AE)_ T
ﬁcAE - [kBT— (AE)__

which reflects the efficiency of energy transfer per collision,
and a “‘total cross section factor”

4.3)

(4.4)

which reflects the accuracy of the kinetic theory approxima-
tion for the collision frequency. In the strong collision limit,
the average energy transfer per collision |(AE ) _|» kz Tand
B(.‘AE =L

Our simulation results in an average collisional energy
transfer of (AE)_ = — 1.56k;T. The average collision
time is (Az) = 5.0 at a density of p = 0.005 which gives a
collision frequency of Z;, ~5.35{(0). As a result,
B.ag =037, 8., =3.11, and B, = 1.15. The good agree-
ment between the simulation and BGK theory for systems 1
and 2 is the result of a compensation of errors. The kinetic
theory result overestimates the actual collision frequency by
afactor of 3. This is probably due to an energy dependence of
the collision frequency. The energy transfer, on the other
hand, is a factor of 3 less efficient than required by a strong
collision model.

Table I1I summarizes the data taken for collisional ener-
gy transfer of 100 trajectories for two additional values of the
ratio of solvent to solute mass corresponding to the param-
eters of systems 3 and 4. For the system with heavy solvent,
my, /ma. = 4.0, the resulting values agree very well with the
expectations of an exponential model.>*>® Figure 10(d)
shows that for this mass ratio the Langevin and BGK predic-
tions are well separated. The simulation data shows best
agreement with the BGK model.

For the system with light solvent, m, /m,. = 0.1, be-
cause of the small transfer of energy it was more difficult to
define a collision. However, the data does display the expect-
ed trends, and results in a collision efficiency substantially
less than one, even with the overestimate of the kinetic theo-
ry result for the collision frequency. In Fig. 10(c) there is
less separation between the BGK and Langevin predictions.
As the solvent mass is reduced, the reduced mass of the sol-
vent—diatom collision pair decreases and the collision fre-
quency increases. Conversely, as the solvent mass is reduced
the zero frequency friction decreases, roughly as the square
root of the solvent mass. For this light solvent the BGK
theory prediction is close to that of the weak collision theor-
ies, each of which show reasonable agreement with the simu-
lation results. However, Table III shows that the collision

TABLE III. Collision energy transfer data.

ma/mae (A1)  (AE)_ (AE), B Bear B.
1.0 5.0 - 1.56 0.24 31 0.37 1.1
40 4.6 —2.85 0.73 4.8 0.55 2.6
0.1 3.1 —~0.78 0.16 1.9 0.19 0.4
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efficiency is low indicating that the agreement is coinciden-
tal. If we were to lower the solvent mass further we could
expect the BGK theory prediction will lie well above the
predictions of the weak collision model and that the rate data
would show agreement with the rate limiting weak collision
theory.

B. Model systems

In this section, we test the validity of the connection
formulas, Egs. (3.26) and (3.27).

We have used the absorbing boundary approximation to
the reactive flux*® to calculate transmission coefficients as a
function of the collision frequency or friction for a barrier
height of BQ = 10, a barrier frequency @y = 30, well fre-
quency @, = 30, and a transition state surface located at

= 1.25. These parameters correspond to systems 2 and 4.

The BGK impulsive collision model requires that at
random times, sampled from a Poisson distribution, the ve-
locity of the trajectory is randomized according to a thermal
distribution. Between collisions the trajectory is propagated
according to Newton’s equations of motion.® Trajectories
were propagated using the velocity Verlet algorithm with a
time step of 2 X 1072 on an FPS-164 attached processor.

Figure 13 compares the stochastic simulation results
with the connection formula, Eq. (3.27). The simulation
results show perfect agreement with the theoretical predic-
tions in the limits of low and high a. There is a small devi-
ation at intermediate a. These results indicate that the as-
sumptions implicit in Eq. (3.27) are satisfied for this
potential and choice of system parameters.

The weak collision generalized Langevin model is simu-
lated according to the equation of motion, Eq. (3.19). This s
readily done for constant friction {(¢) = 2{8(t) and expo-
nential friction £(t) = fe ™ */"/7, where ¢ = Z‘ (0). The de-
tails of such simulations have been described elsewhere.*2*®

Figure 14 compares the stochastic simulation results for
exponential friction with the connection formula, Eq.
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FIG. 13. The transmission coefficient for the isomerization reaction is
shown as a function of the collision frequency a where the dynamics are
defined by the impulsive BGK collision model. The solid line is the predic-
tion of the BGK theory, Eq. (3.27).
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FIG. 14. The transmission coefficient for the isomerization reaction is
shown as a function of the zero frequency friction £. The dynamics are de-
fined by the generalized Langevin equation with an exponential form of the
dynamic friction. The solid line is the prediction of the weak collision theory
using the exponential friction, Eq. (3.26), while the dashed line is the pre-
diction of Kramers theory, Eq. (3.26).

(3.26). The parameter 7, the correlation time of the sol-
vent, is given by Eq. (2.9). There is good agreement with the
theoretical predictions over the entire range of {. There is no
indication of a breakdown in the connection formula, Eq.
(3.26), in agreement with the limits proposed for its valid-
ity,13:32:57

Foreach of the model calculations, which grant the valid-
ity of the dynamic model, the theoretical predictions of Egs.
(3.26) and (3.27) show good agreement with the simulation
results.

C. Reaction coordinate friction

The dynamic friction used in the generalized Langevin
equation [ Eq. (3.19)] has several important properties. The
initial time value £, (0) is independent of the mass of the
solvent.3® Additionally, for an anharmonic oscillator linear-
ly coupled to a harmonic bath a change in the mass of the
solvent will cause a change in the time scale of the decay of
the friction, but will not change its structure.?"*® In particu-
lar, the time appears as wt where the frequency @ varies as
the inverse of the square root of the solvent mass. The corre-
sponding zero frequency friction will vary as the square root
of the solvent mass.

In applying the weak collision theories in Figs. 10(a)-
10(d) we have assumed that the friction on the reaction co-
ordinate £, () is related to the single particle friction &, ()
of Eq. (2.6) by £, (¢) = £, (¢)/2. This assumption is based
on the fact that for two particles moving independently with
diffusion coefficient D= 1/¢ the interparticle separation will
diffuse with coefficient D,, ~2/£ and the friction felt is one-
half the friction acting on a single particle. It is a rough as-
sumption to extend this to time dependent friction, or the
friction on two particles not in the independent diffusion
limit, but it is the most obvious and simple approximation.

This assumption gives us a friction for the case of equal
mass of solvent and solute atoms. For systems 3 and 4 where
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the solvent mass is varied, we have assumed that the equal
mass friction can be scaled in time, by multiplying the time in
Eq. (2.6) by the inverse square root of the solvent mass. This
would be exact for a harmonic bath linearly coupled to an
anharmonic oscillator.?":>®

The generalized Langevin equation, Eq. (3.19), as-
sumes that the friction experienced by the reaction coordi-
nate is independent of the particular value of the reaction
coordinate, i.e., that it is spatially independent. We have re-
cently shown that for the system studied in this paper, name-
ly a diatomic in a Lennard-Jones fluid, both the time struc-
ture and the zero frequency friction depend strongly on the
interparticle separation of the diatomic. If one wishes to ap-
ply the Grote—-Hynes theory to calculate the rate for barrier
crossing, or the non-Markovian theory for energy activa-
tion, it is important to calculate the friction at the barrier top
or in the well, respectively. Of course, it would be most satis-
fying to employ a theory which is based on a generalized
Langevin equation with spatially dependent friction.'?

With our method, the coordinate of interest x, which
could be a generalized coordinate or angle, is restricted by a
harmonic confining potential of frequency @ to a region cen-
tered at x,. We may write a generalized Langevin equation
forg=x — x,as

i = —fdt'[,u6')2+§,(t’)]4(l‘—t')+R(l‘),
(4]
(4.5)

where (q) =0, & = kz T /u {g*), and £, (?) is the friction
felt by the coordinate ¢g. The complementary memory func-
tion equation is

) = — fdz'[auﬂ’—)—]cv(t—t'), (4.6)
o p

where C, (¢) = (¢(#)§(0))/{4?) is the velocity autocorrela-
tion function. By calculating C, (¢) and & in a simulation
and inverting Eq. (4.6) we can extract the friction on ¢ for
motion near the equilibrium position. There should not be a
dependence of £, (¢) on w. Furthermore, a large o limits the
motion of the coordinate so that the friction should accurate-
ly represent the friction at a point along g, rather than an
average over a region.

We have calculated ¢, (¢) for the three /r\atios of solvent
to solute mass discussed hereatp = 1.0and 7'= 2.5 with the
interparticle separation confined near the transition state
separation » = 1.25. This allows-gs to determine the rate for
barrier crossing in the case where the solvent and solute
masses are equal and the rate for energy diffusion is large.
Table IV summarizes this data. The Grote-Hynes rate con-
stant using the reaction coordinate friction shows good
agreement with the simulation data. The Kramers theory
predictions are slightly less than those of the Grote-Hynes
theory. The approximate reaction coordinate friction, one-
half the single particle friction, has a zero frequency value
which is in each case less than the reaction coordinate fric-
tion, but never more than 25%. Therefore, for this system it
is important to calculate the reaction coordinate friction, but
the simple approximation gives reasonable agreement. How-
ever, for systems with more complicated reaction coordi-
nates, such as the dihedral angle of butane, it is more difficult

TABLEIV. Comparison between the exact reaction coordinate friction and
the single particle friction approximation. The transmission coefficients
correspond to the rate constants given by the nonadiabatic «, and the adia-
batic Kramers limit xx, of Eq. (3.26) using the exact reaction coordinate
friction.

my/my @y C(0) (02 g P Keom
1.0 30 18.8 145 060 068 067
1.0 15 18.8 145 043 053 050
40 30 295 291 050 059 067
0.1 15 5.5 46 065 072 072

to approximate the friction using single particle properties or
hydrodynamic theories. In such cases, it will be important to
calculate the reaction coordinate friction directly using the
above method or something comparable.’¢°

V. CONCLUSIONS

In this study we present a calculation of rate constants in
perhaps the simplest imaginable model for an isomerization
reaction—a hypothetical diatomic molecule which isomer-
izes between shorter and longer bond length states. We have
carried out a detailed study of the behavior of the absolute
rate constants as well as transmission coeflicients over a
wide range of solvent densities and considered different cases
where the mass of the solvent equals the mass of the solute
atoms, as well as for heavy and light solvents. The major aim
of this study was to obtain all necessary quantities which
influence the rate constant, such as the potential of mean
force, the friction on the reaction coordinate, and the energy
exchange on and frequency of collisions, in order to compare
the simulation results with available theories for chemical
reactions. In all cases studied we conclude: The present theo-
retical models of chemical reactions in gases and condensed
media are able to predict—within a factor of 2—the simulat-
ed rate constants. However, it is imperative to know several
key quantities: the potential of mean force, the friction on the
reaction coordinate, and the collision rate. Poor knowledge
of these quantities will ultimately cause incorrect predic-
tions of the rate constants. We would like to stress this point,
as several studies where experimentally measured rate con-
stants have been compared with theoretical models did
not—in our view—pay sufficient attention to these points
and have led to continuing controversy.®!%6!62-64 Reasona-
bly good estimates of these quantities, in particular the po-
tential of mean force or the friction on the reaction coordi-
nate, are available in the case of diatomic recombination
reactions only.?">? Unfortunately, for more complex reac-
tions such questions are matters of controversy where it is
likely that the only means of obtaining sufficient information
is extended molecular dynamics simulations.

The present model system allows for the study of the
energy activation between the strong collision and weak col-
lision limit as well as the influence of the potential of mean
force. We believe that similar molecular dynamics studies
provide a convenient alternative to more detailed but elabo-
rate scattering calculations.®® This is especially true at low
pressures where only a small number of bath gas molecules
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are required, which makes such calculations very quick even
on small computers.

At low density, for the equal mass case we find that the
rate constant agrees well with the BGK impulsive collision
model. When the solvent mass is increased the collisions are
more effective in transferring energy and the behavior shifts
further towards that of the impulsive collision model. The
details of energy transfer agree well with the exponential
model of Troe et al.>* For the lighter solvent, the energy
transfer is best described by a weak collision model. Our
estimate of the collision rate, based on the atomic collision
frequency for a simple Lennard-Jones system, overestimated
the rate while the energy transfer efficiency was less than
unity. These compensating effects explain the agreement be-
tween the simulation data and the BGK predictions.

On the other hand, the damping produced by the Len-
nard-Jonesium solvent is insufficient to produce large devia-
tions from transition state theory at high densities. The dif-
ferences between the predictions of transition state theory,
Kramers theory, and Grote-Hynes theory do not differ mar-
kedly and lie within a factor of 2. Nevertheless, some conclu-
sions from the present study can be drawn. it is clearly seen,
that the predictions of the Grote—-Hynes theory using the
proper frequency dependent friction are superior to the sim-
ple Kramers model. Furthermore, to approximate the fric-
tion on the reaction coordinate by the single particle friction
is a reasonable approximation in this case. For each ratio of
solvent to solute mass the assumption that the reaction coor-
dinate friction is one-half the single particle friction, with the
time constants scaled by the inverse square root of the sol-
vent mass, results in a zero frequency friction accurate to
within 25% of the directly calculated friction. However, the
strong spatial dependence of the reaction coordinate fric-
tion?' cannot be reproduced. However, we do not think that
these conclusions will necessarily apply to more complex
reactions. In particular, the correlation times in the present
case are not large enough to enter the regime of parameter
space where severe deviations from all known theories are
observed.* Other systems which include charge-dipole or
dipole—dipole interactions,® or isomerization reactions
which require large solvent displacements,® generate signif-
icantly higher friction on the reaction coordinate. On the
other hand, the theoretical estimation of the friction on the
reaction coordinate in those cases is much more problematic
than in our system, where the single particle friction as well
as the friction on the reaction coordinate have been evaluat-
ed accurately. It will be necessary to calculate the friction
using molecular dynamics simulation.

In conclusion, the results of the present molecular dy-
namics study of a model chemical reaction in a realistic rare
gas solvent as a function of density represents a novel chal-
lenge to our understanding of chemical rate processes in gas-
es and liquids. In this case, we were able to predict the rate
constant from simple models provided we knew the friction
on the reaction coordinate and the potential of mean force.
Detailed knowledge of these quantities is of key importance
for the understanding of our system as well as experimental-
ly studied systems. Unfortunately, in many realistic systems
such quantities cannot be estimated with sufficient accuracy.
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Therefore, we believe that similar studies on more compli-
cated reaction systems will prompt new developments in rate
theory and at the same time lead to a detailed understanding
of chemical reactions in condensed systems.
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