Dynamic friction on rigid and flexible bonds
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A wide variety of problems involving molecular motion in liquids can be formulated in terms
of the generalized Langevin equation (GLE). The friction coefficient on a molecular bond or
on some more complicated reaction coordinate is then required. An often used approximation
is to set the dynamic friction constant equal to the autocorrelation function of the fluctuating
force exerted on the frozen bond by the remaining unfrozen coordinates. The true friction
involves projection operators and should differ from this approximation. In this paper we
derive various identities and show that the rigid bond approximation is the high frequency
limit of the true dynamic friction coefficient. We compute the “true” dynamic friction and the
friction approximated on the basis of the rigid or frozen bond and show that the asymptotic
limit is very accurate even for frequencies not much larger than the peak frequency of the
solvent spectral density. Two different dynamical systems are studied using MD simulations
with our newly devised NAPA integrator for systems with disparate time scales. In one the
molecule is not allowed to rotate and in the other it is allowed to rotate. Interestingly, even for
very long rotational reorientation times, small but significant differences in the long time decay
of the bond dynamic friction are observed for rotational and nonrotational molecules—
differences, however, that do not produce large differences in the static friction constants.

i. INTRODUCTION

A wide variety of problems involving molecular motion
in liquids can be formulated in terms of the generalized Lan-
gevin equation (GLE)."” When this approach is valid (and
it is not always valid), it is necessary to know how the dy-
namic friction coefficient varies with time. It is very difficult
to make a purely theoretical calculation of this quantity ex-
cept in the simple case of the translational* and whole body
rotations of rigid molecules.” What is often needed is the
friction coefficient on a molecular bond or the friction coeffi-
cient on some more complicated reaction coordinate. Var-
ious models have been used to describe bond friction. Con-
sider the bond in a homonuclear diatomic molecule. If the
bond length is very large compared to the diameters of the
solvent atoms (a situation that applies only when the mole-
cule is very close to the dissociation limit) each of the atoms
will experience strong forces only from solvent molecules in
their vicinity, and because these two sets of proximal solvent
atoms are very far apart there will only be small cross corre-
lations in the solvent forces on the two atoms. In this case the
friction on the bond will be well approximated by £, (#)/2,
where ¢, (¢) is the dynamic fricton on one of the atoms due
to its interaction with the fluid. Because the two atoms are
far apart this can be corrected using the Oseen form of the
hydrodynamic interaction,® but here it is necessary to use
the time dependent variant of the Oseen interaction. Neglect
of the hydrodynamic interaction gives the well known free-
draining limit. This approximation will be valid only if the
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bond is very long. When the bond is short each atom of the
molecule will experience forces from the same solvent atoms
and there will be strong short range cross correlations; more-
over, one cannot apply the Oseen form of the hydrodynamic
interaction to these problems because this is a far field limit
of the true hydrodynamics. Unfortuantely it is very difficult
to work out theoretical expressions when the intramolecular
atoms are near each other. One of the few meaningful at-
tempts to do this, based on a renormalized kinetic theory,
shows how difficult this problem is.”® In light of this, any
attempt to deal with a polyatomic in a realistic manner is
prohibitively difficult.

Despite these difficulties, there have been many interest-
ing attempts to understand vibrational relaxation, barrier
crossing dynamics, and diffusion controlled reactions from
this point of view.”'® A popular approach is to simulate the
system using stochastic molecular dynamics. In this ap-
proach one assumes that each atom in the molecule experi-
ences a random force, and because not much is known about
the above mentioned cross correlations, it is assumed that
the random forces on each atom are uncorrelated. The ran-
dom force is modeled as a Gaussian stochastic process with a
colored noise spectrum and with a strength given by the sin-
gle atom memory friction constant. The variant in strong
collision models is that each atom on the molecule experi-
ences independent and instantaneous binary collistons.''?
This ignores the fact that two neighboring atoms in the mole-
cule are likely to experience a strong force or a strong colli-
sion from the same fluid molecule. Often these models are
used without justification, usually for reasons of theoretical
expediency. In this paper we test this model against simula-
tion data, and show that it gives a poor approximation to the
friction on molecular bonds as might be expected.

Recently, an accurate method for the calculation of
time-dependent friction on molecular bonds as a function of
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the bond length, as well as solvent mass and structure, was
presented.'>'* This method (is outlined in Sec. IV) has al-
ready been used to determine the time-dependent friction for
a simple isomerization reaction.'> Detailed knowledge of
the time dependence of the friction was found to be impor-
tant in making accurate theoretical predictions of the rate
constant.

It is usually the case that the oscillator has a high fre-
quency compared to the frequencies characterizing the sol-
vent motion. To apply our methods it is necessary to treat
one of the most pervasive problems in the literature on mo-
lecular dynamics; that is, the problem of treating systems
with high and low frequency motions. Recently we have de-
vised a simple new integrator (NAPA: numerical analytical
propagator algorithm) to treat systems with multiple time
scales or disparate frequencies numerically.'® This integra-
tor allows us to determine the dynamic friction, {(#,w, ) ona
homonuclear diatomic bond as a function of the vibrational
frequency @, (for very high frequencies) from simulation.
For the first time it becomes possible to evaluate this bond
friction and to assess the accuracy of various theoretical ap-
proximations for it.

The dynamical system studied in this paper consists of a
harmonic oscillator dissolved in a Lennard-Jones (6-12) flu-
id with which the diatomic interacts through a site-site LJ
potential with the solvent atoms with the same parameters as
used for the solvent—solvent potential.

Section II of this paper provides a detailed analytic
treatment of the dynamic friction on the bond. The analysis
is based on the case where the molecule is not allowed to
rotate. It is difficult to include the rotations because of diffi-
culties in performing the analysis in angle space. Neverthe-
less, we show in Sec. IV that in dense fluids, where the rota-
tions are hindered on the time scale of the force correlation
time, this analysis is applicable to the full problem. We de-
rive an expression for the bond friction, Eq. (2.7), and in
Sec. IV we use our simulation methods to determine this
quantity. We also show that when the bond frequency, w,, is
very high compared to the frequencies of motion of the sol-
vent, the asymptotic result given by Eq. (3.17) should be an
excellent approximation to the true friction. This latter re-
sult requires only the determination of the autocorrelation
function of the force exerted by the solvent on the bond when
the bond is held rigidly fixed at the bond length for the mole-
cule in vacuum. Although this rigid bond friction approxi-
mation has been used before by others'” no derivation of it
has been given and no assessment of its accuracy was avail-
able. A derivation and assessment is provided in this paper.
The question to be answered here is: How good is this rigid
molecule approximation? In this paper we show that, even
for relatively low vibrational frequencies, the asymptotic re-
sult, Eq. (3.17), appears to be an excellent approximation-—
a result that was unanticipated. A further test of this idea is
to use the GLE to calculate the absorption spectrum of the
diatomic molecule using the spectral resolution of the rigid-
bond dynamic friction. It is found that this gives excellent
agreement with MD. When the free-draining friction is used
the resulting spectrum is in poor agreement with MD. By-
products of the formal analysis of the GLE are a suggestion
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of yet another way to determine the exact dynamic friction
from unprojected dynamics and a demonstration of how
MD can be used to test whether the bath is Ohmic or non-
Ohmic.

The GLE for a molecule not allowed to rotate is much
simpler than for a molecule allowed to rotate. In very dense
fluids molecular rotations are hindered and the reorienta-
tional relaxation times are very long. One might imagine that
the friction on the molecular bonds will be different for rota-
tional and nonrotational molecules. If the molecule rotates
or librates the solvent force on intramolecular bonds will
fluctuate due to the rotations. In this paper we compare the
molecular dynamics for the rotational and nonrotational
molecules in very dense fluids and find that there are subtle
but small differences that will effect the static friction coeffi-
cient. Of course for more dilute fluids where the tumbling
times get small these differences should grow.

Il. ANALYTICAL THEORY OF DYNAMIC FRICTION ON A
HARMONIC BOND

1t is straightforward application of projection operator
techniques to treat the dynamics of a harmonic oscillatorin a
bath. 1821 If

A=(9),

denotes the state of the oscillator where ¢ = x — X, p is the
conjugate momentum, and P= (..,A*)(A,A*) " 'A de-
notes a projection operator onto A, one can derive the fol-
lowing generalized Langevin equation for A,

.n

A =iQA(t) -f d7K(m) A —7) + F(1), (2.2)

where (A,A*) is the canonical equilibrium average,
{AA ), the frequency matrix is defined as

. 0 1/;:,)
o | |
i} -—;1,262 0 (2.3)
F(t) is the random force, @ = 1 — Pis a projector onto the
orthogonal compliment of A, and L = — i{---,H} is the
Liouville operator.
F(1) = “QiL A = e"Q“( . 0 — ) , 2.4)
P+ uwq
and the memory function matrix is
K(2) = (F(2),F(0) * ) (A(0),A*+ (0)) ™! (2.5)
or
0 0
K(z) = ( ) . 2.6
0 {(0/p 29

£(¢) in Eq. (2.6) is the dynamic friction coefficient which
has the explicit form
g _ (8fe’@H5f )
p *

with

, (2.7)

Sf=p +uitg = — %+y52(x~ @), (28)

and &’ is given by

J. Chem. Phys., Vol. 93, No. 7, 1 October 1990
Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5086 Berne 6t a/.: Dynamic friction on bonds

& = [Bu{g] 2.9

where both (x) and (¢°) depend on x,, ®,, and the forces
exerted by the bath on the reaction coordinate x including
centrifugal distortion.

Equation (2.2) can also be written in component form

as,

dq _pr

dt pu

P _ e[ 1t —

4= —HB q(t) dr{(r)g(t — 1) + F(1),

O
(2.10)

where

F(t) = 'QL8f (2.11)

is the random force acting on the displacement ¢g. These
equations rigorously describe the dynamics of small fluctu-
ations from equilibrium.

Equation (2.7) shows that £(¢) involves the propagator
e'?“ which contains the projection operator Q. It is possible
to express £(¢) in terms of the time correlation function

b(0) _ (6f6f) 212
I &
which involves the propagator ¢ and is thus determined by
pure Hamiltonian flow. To derive this relationship we define
the correlation matrix

ilt

W) _ (1 (0),F(0) ) (AAT) ", (2.13)

or
2.(.2_2(0 0 ) 2.14
0 st (2.14)

u

From Eqgs. (2.5) and (2.14) we see that ®(z) and K(¢)
differ only with respect to the propagator: where the former
has ¢, the latter has ¢¢,

It is a straightforward but tedious matter to derive the
relationships between K (s) and ®(s) which are the Laplace
transforms of K(#) and ®(r) respectively. The basic ap-
proach is given in Berne and Pecora' Eq. (11 B 2), although
there is a typo reversing the order of the matrices. The result
is

K(s) = ®(s)[I— (sT — i) ~'®(s)] ~ .
This can also be expressed as,
®(s) =K(s) — K@) [sI — iQ + K(5)] ~'K(s).
(2.16)

Substituting in the matrices ®(s) and K(s) and i2 from Egs.
(2.14), (2.6) and (2.3) allows us to write

(2.15)

£ _ [B(s)/m) PR
u 1—A{[s/(s*+ ) ][ (d(s)/u)]}
or
$(s) _ [E)/p] TS
g 1+ {ls/ @+ MG/}
Taking the lim,_,£(s) gives for 3> 0
limé(s) = limg(s). (2.19)

50 50

The left-hand side of this expression is the static friction con-
stant &,

_.__lm - QL1
§o—ijo dt (872 5f ).

From the right-hand side of the equality in Eq. (2.19) it
follows that when @ > 0

1 * iLt
b= f dt (fe™ 6,

a quantity that involves pure Hamiltonian flow and that can
be readily calculated from the MD trajectories. This gives a
direct method for determining the static friction. Alterna-
tively straight MD trajectories can be used to determine
(). Laplace transformation of this result followed by sub-
stitution into Eq. (2.17) followed by inverse Laplace trans-
formation gives the desired dynamic friction coefficient. In
subsequent sections we use our former MD method!? to de-
termine £(¢). Nevertheless, it is worth noting that this ap-
proach can also be used.

When the bath gives rise to Ohmic dissipation, £, > 0, it
follows that (}5( 0) > 0 whereas when the bath gives non-Oh-
mic dissipation, £, = 0and ¢(0) = 0. Thus when & > 0, mo-
lecular dynamics can be used to determine whether the bath
is Ohmic or non-Ohmic, according to:

fwdt(éfe“‘&f)z >0 Ohmic
0

=0 non-Ohmic.
It is interesting to note that for free motion (as opposed
to harmonic motion & = 0, and Eq. (2.17) reduces to

gls) _ [$(s)/p]

H 1= [(1/s)(d(s)/p)]
in which case if £, >0, $(0) = 0 and if £(0) = 0 it follows
that $(0) 0. Then the conditions are reversed from the
harmonic system given in Eq. (2.22).

Another thing we learn from Eq. (2.17) is that when o,
(and &) are much larger than all the frequencies in the bath
and &> {,, it follows that

(2.20)

(2.21)

(2.22)

(2.23)

tim £
Wy— ﬂ : 3
= 1im [$()/p] — lim &)
o= 1 —{[s/(+ )] [(d()/@)]} @-= p
(2.24)

Thus for a very high frequency harmonic motion the projec-
tion operator Q dissappears from the correlation function.
Denoting this limit by £ ‘=’ (s} and 4=’ (s) we get

(e0) — N 1 iLt

&N w{)lglw T (ofe™sf ),
and the dynamic friction can be derived from the Hamilton-
ian flow (i.e., with no Q in the propagator).

A simple model illustrates this. Let {(#) = {(0)e ~ " or
equivalently Z(s) = £(0)/(s + y). Substituting this into
Eq. (2.18) and solving for the case &> {(0) and &>y by
perturbation solution of the dispersion equation

(2.25)

f+ar+sE g
u
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shows that to leading order, ¢(#) = {(0)e~ " = £(?) as ex-
pected from Eq. (2.24).

. HIGH FREQUENCY LIMIT

In this section we will show that if the system consists of
a diatomic molecule then & <= (¢) will be given by the auto-
correlation function of the force on the bond of a rigid mole-
cule. This gives a high frequency asymptotic approximation
to the true friction §(¢) on a nonrigid bond.

£ = (LFO =FON 1O —FO,
3.1

where £ is the force on the oscillator coordinate when it is

fixed at a bondlength x,, £ is its average value, and e is
the unprojected propagator of the whole system with the
bond thus constrained. If the system consists of a diatomic
molecule, then Eq. (3.1) is the autocorrelation function of
the force on the bond of a rigid molecule. This will give an
approximation to the true friction £(¢) on a non rigid bond.
Later in this paper we shall assess the accuracy of this ap-
proximation.

To derive this result we find it convenient to use action
angle variables for the harmonic oscillator and to use the
adiabatic theorem of classical mechanics. Pechukas?® has
lucidly outlined how to treat a dynamical system in which
there is a high frequency classical oscillator coupled to a
slowly moving bath. Following Pechukas, let R be the slow
degrees of freedom of the liquid, with conjugate momenta P,
interacting with the high frequency, one dimensional oscilla-
tor with coordinate x (bond length), equilibrium bond
length x, and momentum p according to the Hamiltonian:

H=H,(P,R) + h(p,x,R). (3.2)
Here H, is the pure solvent Hamiltonian and 4 is the Hamil-
tonian of the oscillator containing its coupling to the liquid.
Let

I(eP) =—1—§>pdq (3.3)
21T

be the action, for fixed R, as a function of the oscillator ener-
gy €; the integral is over one complete cycle of oscillation.
The coordinate conjugate to [ will be an angle a. Equation
(3.3) can be inverted to give the oscillator energy as a func-
tion of I for fixed R. The classical Born—-Oppenheimer ap-
proximation then consists in replacing the Hamiltonian giv-
en in Eq. (3.2) by the Hamiltonian:

H=H,(P,R) + ¢(I,R) (3.4)

and regarding 7 as the oscillator momentum, conjugate to a
cyclic coordinate. We are interested in the case when the
oscillator period is very short (wo— «) compared to the
times over which P and R change significantly. In this case
the dynamics generated by H very accurately generates the
full dynamics generated by H. In this limit
I= —3H/da =0and & = dH /3l = @ (L,R). In this limit

the Liouvillian, iL = {---,H} for the full dynamical system
defined by Eq. (3.2) is replaced by the Liouvillian
iL, = {---,H} corresponding to the Hamiltonian averaged
over one cycle of the oscillator defined by Eq. (3.4), and the
propagator becomes:

exp iLt—~exp iL,1. (3.5)

The oscillator Hamiltonian
2
hpoaR) =2 ¢ Loz — x4 xR (3.6)
2m 2

in Eq. (3.2) can be expanded in a power series in (x — x, ).
For sufficiently high unperturbed frequency w, the displace-
ment (x — x,) will be very small and it is expected that this
power series can be truncated after the quadratic term with-
out seriously effecting the dynamics. After completing the
squares, 4 (p,x,R) takes the form

h(x,p,R)
P 1
==+ —uQ(R)*(x — x, —a(R))? 4+ F(x,,R),
2m 2
3.7)
where
2
wQ*(R) = uw? + (—‘L“xz’—R)—) , (3.8)
ax X = Xq
©(x0,R)
a(R) _—__f_so___ (3.9)
puQ(R)
FOR) = — (i"—("—’Rl) , (3.10)
X X = Xg
and
()] 2
V(xo,R) = 0(xo,R) — - LR (3.11)
2 uQ*R)
Transforming to action-angle variables:
X=X, +a(R) + [2L /uQ(R)]"?sin a (3.12)
p=[2mIQ(R)]"?cos a
allows one to write the Hamiltonian H as
H=H,(P,R) + V(x,,R) + Q(R)L. (3.13)

Likewise the fluctuating force defined by Eq. (2.8) can be
expressed as

Of = 8f(xo + a(R) + (21 /uQ(R)1"?sin a,R).
(3.14)
Substitution of these action angle variables and the Born—

Oppenheimer equation Eq. (3.5) into the time correlation
function ¢ =’ (r) of Eq. (2.25) gives

£ = lim L (8feTrsf),

3.15
Wy — o kT ( )

or

dR§d Pfedle —PRsfe™
ooty = tim L SARIAPIGdle PSSy
wo~w kT (dR{dP§Fdle "M
(3.16)
We proceed by noting that the average indicated by the an-

gular brackets in Eq. (3.15) indicates an average over a ca-
nonical distribution function with the Hamiltonian of Eq.
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(3.13). In the limit @, —» 0, 1> «, and from Tauberian
theorems applied to the Laplace transforms, it is clear that
wherever the action / appears in the integrals of Eq. (3.16) it
must be set equal to zero. This eliminates the angle a from all
the terms, and since a(R) -0 for w, — o allows one to re-
place 8fby [/ — f©], where £ is the force exerted by
fluid on the bond held rigid at bond length x,. When this last
result is substituted in Eq. (3.16), we find

£ == (1O =FOL OO,
3.17)

where we have implicitly taken into account that L, _, is the
Liouvillian corresponding to the bond being frozen at bond
length x,; thatis, L, = L, _ ,. Thus the dynamic friction on a
very high frequency bond should be very well approximated
by the dynamic friction on a frozen bond of bond length x,.
It is interesting to compare this result with what is ex-
pected if the Hamiltonian is purely quadratic
2
L2 x) .

m,o

N
V=%/u7)2(x—xo)2+ > %mawﬁ(xa — -
a=1 a

(3.18)

As shown by Zwanzig,?* it is a simple matter to algebraically
eliminate the bath modes x, from the equations of motion
based on this Hamiltonian and to derive the GLE. The dy-
namical friction coefficient is given explicitly by,

N gl o
L) =Y —5-cos(w,1) =j doJ(w)cos(wt),
0

a=1 M 0,
(3.19)

where g, is the coupling strength and J(w) is the spectral
density in the continuum limit. It is also a simple matter to
show that, if in Eq. (3.18) the bond x is fixed, the autocorre-
lation function of the property 8f=F, + u@*(x — X) sub-
ject to fixed bond length is

B <6f(0)exp(iLxﬁxed t)&f(t))

N
= agl CE (3.20)

= cos(@, ) = §(1),
m ol

where L, ., is the Liouvillian for the system with x fixed.
Thus in this harmonic bath approximation the dynamical
friction £(¢) is exactly equal to the autocorrelation function
of 8f for the system with the bond constrained at any length.
This means that for the harmonic bath it is a rigorous result
that one can calculate the friction by choosing a rigid refer-
ence system-—a result that was only asymptotically correct
in using the real Hamiltonian [see Eq. (3.17)]. Deutch and
Silbey recognized that this constrained reference system
could be used to calculate the friction in harmonic sys-
tems.** Later in the paper we use MD simulations to study
the dependence of the friction on the impurity oscillator fre-
quency.

Berne et al.: Dynamic friction on bonds

IV. MOLECULAR DYNAMICS METHODS AND RESULTS

A. Determination of the dynamic friction coefficient

In previous papers,'*'* we applied a very simple meth-

od for determing £ (¢) for any given reaction coordinate and
applied this method to the calculation of the friction on a
diatomic molecular bond embedded in a classical Lennard-
Jones liquid. This method is based on the following steps:

(a) The potential function for the coordinate of interest
is replaced by a harmonic potential

U@ (x;x0,00 ) = § pary (x — xo)? (4.1)

with frequency w,, and equilibrium displacement x,,.

(b) The generalized Langevin equation Eq. (2.10) is
multiplied by g(0), averaged over a canonical ensemble. Re-
membering that (R(#)¢(0)) = 0, this procedure yields an
equation for the velocity autocorrelation function C, (¢)

C,(1) = -f ark(r)C,(t —7), (4.2)
0
where the memory function is
K() =52+£(t—). (4.3)
U

These quantities depend parametrically on x, and w,. C, (¢)
is now determined from molecular dynamics simulations re-
placing the true intramolecular potential for x by the har-
monic potential, U ‘® (x;x,,w, ). Equation (4.3) is then nu-
merically solved for K(¢) using the method of Berne and
Harp? (or an equivalent method). If, furthermore, (x) and
{(¢*) are determined in the same simulation, &* [defined by
Eq. (2.9)] can be calculated.

(c) Substitution of X(¢) and @ into Eq. (4.3) yields
().

This can be repeated for different values of w, for a given
X4, and for different values of x,. Writing

§(t) =§(t;xoya)o) (4.4)

indicates the parametric dependence of the friction on x,
and @, .

B. Numerical integration of the equations of motion

The evaluation of the friction on very high frequency
oscillators can be performed using standard integrators like
the velocity Verlet integrator.?® Standard integrators are
stable only if the time step used is short compared to the
shortest period in the system. At high vibrational frequen-
cies there is a separation of time scales between the solute
and the host fluid. Standard integrators then require the use
of a very short time step and consequently a very large num-
ber of iterations to sample the requisite number of fluctu-
ations in the force exerted on the solute molecule by the
relatively slowly moving solvent. Fortunately, we have re-
cently been able to devise a new integrator'® called NAPA
based on the vibrational motion of the free molecule to inte-
grate the canonical equations of motion for the molecule
plus solvent using a much larger time step. For example, for
a diatomic with harmonic frequency of 300 (in LJ units)
dissolved in a LJ solvent whose peak frequency in the spec-
tral density function is around w,,,, = 20 (in LJ units), we
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are able to use a time step 8 X 10~ * instead of a time step of
1 X 10~* required for straightforward use of the Verlet inte-
grator. Clearly NAPA allows use of time steps an order of
magnitude larger than standard integrators.

The system simulated consists of a single homonuclear
diatomic molecule A, dissolved in a solvent consisting of 62
atoms 4. The solute-solvent interaction potential is taken to
be a site-site LJ(12-6) potential and the solvent-solvent po-
tential is taken to be pairwise additive with atom-atom inter-
actions also given by the same LJ(12.6) potential; thatis a
LJ potential with the same € and o The intramolecular po-
tential is taken to be either harmonic as specified in Eq. (4.1)
or rigid. The system is solved subject to cubic periodic
boundary conditions using the NAPA integrator for the har-
monic potential or the RATTLE?’ version of the SHAKE**?®
algorithm for the rigid molecule. For the case of the fiexible
molecule the method outlined in the beginning of this section
is used to determine the dynamical friction; whereas, for the
rigid molecule Eq. (3.17) is used to determine the dynamic
friction. Solvent forces parallel and perpendicular to the in-
stantaneous bond direction £, (¢), are calculated at each
step. F,; (¢) is the force on atom 7 at time ¢, then the force on
the rigid bond is

f(o)(t) :% (F, (t) — Fz (t))'f'u (),

where f© is the force on the rigid bond appearing in Eq.
(3.17). Thefactor of 1/2 in Eq. (4.5) arises because the mass
associated with the coordinate is the reduced mass of the
diatomic. §f @ (1) = £ (2) — £ (0) is then autocorrelat-
ed by time averaging over a molecular dynamics trajectory.

All of the simulations are done at a reduced temperature
of T=kyT/e=25 and a reduced density of
fi = po’ = 1.05. Simulations were done for molecules of bare
harmonic frequencies of w, = 20, 30, 60, and 90 in LY units
(¢/ma*)?. Inall of these cases x, = 1.25. Since the analysis
of the last section rigorously applies to the case where the
molecule does not rotate we simulate systems constrained
such that the diatomic is not allowed to rotate. We call these
simulations nonrotational dynamics. We also perform simu-
lations for the case where the molecule is allowed to rotate.
For both the rotational and the nonrotational flexible mole-
cule NAPA is used; however for the lower frequency flexible
rotational molecule (@, = 20 and 30) straight velocity Ver-
letisused.”® Inthe Appendix we show how NAPA is applied
when there are rotations. The simulations required on the
order of 2.5X 10° time steps.

As indicated in the previous subsection, the friction on
the harmonic bond is computed from the velocity autocorre-
lation function by numerical inversion of the Volterra equa-
tion Eq. (4.2). Since the diatomic is a single impurity in the
neat Lennard-Jones liquid, a very long run is necessary to
obtain a good correlation function. For the cases of w = 20
and 30, the run lengths were 2 X 10° steps using a time step of
2X107*. For @ = 60, it was found that if straightforward
velocity Verlet integration was used, energy conservation
tolerance required a time step of 1 X 107, For @ = 90, the
time step was found to be 6.67x 10~ *. The run lengths for
these two time steps would be 4 X 10° and 6 < 10° steps, re-
spectively. However, using NAPA, it was found that the

(4.5)
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same energy conservation could be obtained using time steps
of 1.75x 103 for @ = 60, and 1.5X 107 for @ == 90. The
run lengths required by these time steps were 2.29 X 10° and
2.67 X 10° steps, respectively. We see that the larger the fre-
quency of the bond, the more efficient the NAPA integration
method becomes. The numerical inversion of the Volterra
equation is an unstable process and requires closely spaced
pointsin C, (#). When NAPA is used, we find that the points
are not spaced closely enough because of the large time step.
However, a forward Euler scheme can be used to obtain ve-
locity points in between NAPA steps. This scheme is based
on the simple Taylor series approximation

v{h) = v(0) + ha(0), (4.6)
where a(0) is the acceleration at the beginning of the step.
This method, together with the corresponding backward
Euler scheme, was used with NAPA to calculate two veloc-
ity points in between each NAPA step. For the case of the
rigid bond, a run length of 2 10° steps was carried out
using a time step of 2 X 102, and the autocorrelation func-
tion of the force along the bond was computed. Because of
the large number of velocity points required in the @ = 90
case, the FFT method proposed by Futrelle and McGintry
was used to compute the velocity autocorrelaton function.?’
Using this method, one computes the Fourier transform of
the velocity along the bond as the simulation is running. This
requires less disk space, as it is not necessary to store the
entire trajectory. The velocity autocorrelation function is
computed by an inverse FFT of the square of the velocity
transform.

C. Numerical results

First, we discuss the case where the molecule is not al-
lowed to rotate. The velocity autocorrelation function for
the vibrational coordinate, C, (), for the four frequencies
(20, 30, 60, and 90) are shown in Fig. 1. To see how the
range of frequencies we studied compares to the range of
frequencies of the solvent, we plot the spectral density of the
velocity of a solvent atom in Fig. 2(a). This plot is based on
an analytic fit to the single particle friction kernal [see Eq.
(2.6) in Straub er al.'®]. This plot shows that the solvent
spectral density peaks at 20 and that frequencies greater than
90 contribute negligibly to the spectral density. Thus, for
oscillator frequencies in this range, significant dephasing oc-
curs only after very long times. The effects of the frequency
disparity can aiso be seen by plotting the absorption spec-
trum of the bond in the liquid. This is obtained from the
Fourier cosine transform of the velocity autocorrelation
function

I{w) :J’ C, (t)cos widt. (4.7)
o]

I(w) for the four frequencies studied in Fig. 1 are plotted in

Fig. 2(b). Note how the full width at half maximum,

Awewam, decreases with vibrational frequency, w,. This is

plotted in Fig. 3.

The method outlined in the beginning of this section was
used to determine the dynamic friction coefficient, £() ona
flexible (i.e., vibrating), nonrotating bond with x, = 1.25.
For comparison a simulation of a rigid nonrotating diatomic
molecule with bond length x, = 1.25 was carried out. In Fig.
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FIG. 1. Velocity autocorrelation functions normalized by the initial value
for the nogrotational harmonic diatomic molecule in Lennard-Jonesium
(A = 1.05 T = 2.5) shown for the four vibrational frequencies @, = 20, 30,
60, and 90.

4 the dynamic coefficient on the flexible bond for the four
vibrational frequencies studied is compared with that on the
rigid bond determined using Eq. (3.17). Clearly for suffi-
ciently large w, it is difficult to discern a difference between
the two because whatever differences there are occur in the
long time tail. For reference, we plot £, (#)/2 in Fig. 5,
where {,, (1) is the friction experienced by a single Lennard-
Jones particle in the fluid. Although the differences may ap-
pear small, they can give rise to large differences in the static
friction values. The differences can be seen more clearly by
plotting the real and imaginary parts of the Fourier-Laplace
transform of the dynamic friction

(o) =J- dit(te ' = ¢ () — i§ "(w), (4.8)
0

where £ '(w) and { ” (@) are respectively the real and imagi-
nary parts. These are plotted in Fig. 6. The differences are
most pronounced in the small frequency behavior of {'(w),
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FIG. 2. (a) The spectral density of the velocity of a single solvent atom of
Lennard-Jonesium at same density and temperature as in Fig. 1 computed
from the analytic fit to the single-particle velocity autocorrelation function
of Straub ez al. (Ref. 15) using Eq. (4.7). (b) The spectral densities corre-
sponding to the velocity autocorrelation functions in Fig. 1 computed using
Eg. (4.7).

in particular, the values of { (@ = 0}, which is, by definition,
the static friction coefficient.

The analysis of Secs. II and III applies to the case in
which the diatomic molecule is not allowed to rotate; rota-
tions should not alter the results. To see this, we compare the
dynamic friction on the rotational flexible and rigid diatom-

30
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15 -

10 +

0 ' H i )
0 20 40 60 80
w

100

FIG. 3. A plot of the full width at half maximum, @py, v frequency for
the four spectra of Fig. 2(b). The curve is derived from a cubic spline fit to
the data points.
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FIG. 4. Comparisons of the dynamic friction kernels for the nonrotational
rigid and flexible diatomics at four different frequencies. The solid curve is
the friction on the rigid diatomic computed from molecular dynamics simu-
lations using Eq. (3.17). The dashed curves show the friction on the flexible
diatomic for the four frequencies as indicated in the figure.

ics for frequencies w, = 30, 60, and 90 in Fig. 7. We see
excellent agreement between the flexible and rigid cases at all
three frequencies. It is of further interest to determine
whether or not rotations will affect the friction of the bond.
Figure 8 compares the dynamic friction for rotational and
nonrotational dynamics for both flexible and rigid bonds.
From the figure, we see that there are subtle differences that
arise from rotations. Again, these differences will have a dra-
matic effect on the static friction coefficients.

V. DISCUSSION OF RESULTS

The analysis in Secs. II and III is for a nonrotational
flexible diatomic molecule dissolved in a liquid in which the

500 T —T T ~T
400 b
300 e
$on /2
200 ! B
lmr— -
QF
—100 1 1 1 1.

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. The analytic fit to the dynamic friction kernel £, (¢)/2 for a single

atom of Lennard-Jonesium (7 = 1.05 ’7\'== 2.5) due to Straub et al. (Ref.
15).
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FIG. 6. Real and imaginary parts of the Fourier-Laplace transform £ () of
the dynamic friction kernels in Fig. 4 for the frequencies w, = 30, 60, and
90, computed using Eq. (4.8). Also shown is the real and imaginary parts of
&(w) for the rigid diatomic. The heavy solid lines are the real and imaginary
parts of {, (@) /2 for the single solvent atom, based on the analytic fit of
Straub et al. (Ref. 15).

bond-potential can be anharmonic but must have a stable
minimum. The resulting GLE [cf. Eq. (2.10) ] correctly de-
scribes the anharmonic oscillator only when it is very close
to equilibrium. In this eventuality the force is effectively har-
monic, albeit with a renormalized harmonic frequency, @
[cf. Eq. (2.9) ], which is given by the curvature of the poten-
tial of mean force at the potential minimum. When the mole-
cule has a purely harmonic bond the potential of mean force
will be

W(x) =1 pwi(x — xo)* — kT In y(x), (5.1)

where p(x) is the cavity distribution function. If the mole-
culeis very stiff, that is, if y(x) varies slowly compared to the
bare quadratic potential, the GLE should be an excellent
approximation to the dynamics of the system for initial
states further from equilibrium than would be valid for a
dissolved anharmonic oscillator. In this paper we treat only
the case of a pure harmonic oscillator dissolved in Lennard-
Jonesium. In a subsequent paper we shall treat anharmonic
molecules where even a small anharmonicity has a dramatic
effect on the dephasing decay.

The dynamic friction appearing in the GLE is given by
Eq. (2.7) which involves a projected Liouville propagator.
The fluctuating force, §f, consists of two parts: a part arising
from the force on the bond, and a part representing the devi-

J. Chem. Phys., Vol. 93, No. 7, 1 October 1990
Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5082

50@ T 7 L] L)
w = 20
250 -4
(40
0
- 250 i i i i
9.0 0.2 .4 =X} 0.8 1.0
t
m L L] T Ll
w0
250 ¢ o
(4}
O
i i i b3
mo‘o 02 04 0¢ 08 1.0
t
500 Y Y T T
w = 60
250 - b
¢t
[+
1 i i i
2500.0 0.2 04 0.6 0.8 1.0

t

FIG. 7. Comparisons of the dynamic friction kernels for the rotational rigid
and flexible diatomics at frequencies @ = 20, 30, and 60. The solid curve is
the friction on the rigid diatomic computed from molecular dynamics simu-
lations using Eq. (3.17). The dashed curves show the friction on the flexible
diatomic for the three frequencies as indicated in the figure.

ation of the bare intramolecular force from the renormalized
harmonic force on the bond. Equation (2.17) shows how
£(z) isrelated to the autocorrelation function of the fluctuat-
ing force propagated with the true Liouville propagator.
This relationship is useful for two reasons. First, from it one
can derive an expression for the static friction on the bond in
terms of the ordinary dynamics of the system, a result given
by Eq. (2.21). This quantity is easy to calculate from MD
trajectories. Second, it is a useful starting point for the ensu-
ing asymptotic analysis based on the classical Born—Oppen-
heimer approximation which shows that in the limit w, — 0,
£(2) is given by Eq. (3.1). In this limit one can compute the
bond friction as follows: (1) Freeze the bond at the bare
bond length x,; (2) calculate the autocorrelation function of
8 O(t) = (fOr) — @, where £ is the solvent force
on the rigid bond. This is best done using MD with SHAKE or
another equivalent constrained MD algorithm.

This is a very simple algorithm for approximating the
bond friction. We must determine when this asymptotic re-
sult becomes valid. Figure 4 shows that for all the oscillator
frequencies (@, = 20, 30, 60, and 90) studied the rigid bond
approximation is excellent. This is very surprising since the
lower frequencies, w, = 20 and 30, fall near the peak of the
spectral density of the neat solvent {see Fig. 2(a)]. For these
frequencies the solute vibrations are not fast compared to the
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FIG. 8. Comparisons of the dynamic friction kernels for rotational and non-
rotational diatomic molecules in Lennard-Jonesium. The first three plots
show the comparisons for the flexible diatomic at the frequencies indicated.
The last shows the comparison for the rigid diatomic.

solvent dynamics and the adiabatic analysis should not be
valid. Why then is the asymptotic limit a good approxima-
tion to the true friction coefficient? In the discussion follow-
ing the derivation in Sec. III we show that for an anharmonic
oscillator coupled bilinearly to a harmonic bath, the dynam-
ic friction on the oscillator is rigorously given by Eq. (3.20)
and is thus independent of the oscillator frequency and of the
temperature. Whether or not an effective harmonic bath
model can describe dynamics in a real liquid can be tested by
studying the dynamic friction on the vibrating bond as a
function of temperature at constant liquid density. If there is
no frequency or temperature dependence, it can be conclud-
ed that the effective harmonic bath model is a good descrip-
tion. We have already seen that {{¢) is indendent of the bond
frequency, however, it turns out to be strongly temperature
dependent. This was determined by performing simulations
at four different temperatures for a bond frequency of 30 and
density of 1.05. For simulations done at temperatures
T = 1.74 (just above the melting point for this density), 2.0,
2.5, and 3.0, we find that £ (7 = 0) = 286.03, 362.52, 402.74,
443.66, and {(w = 0) = 15.97, 21.20, 20.13, and 19.09, re-
spectively. We thus conclude that the effective harmonic
bath Hamiltonian is not valid for the fluids studied here—
more about this in a subsequent publication.

The foregoing analysis is based on the case of a diatomic
molecule constrained not to rotate. Figure 7 shows that the
rigid bond friction is still an excellent approximation even
when simulations are done on molecules that are free to ro-
tate. Interestingly, the friction on molecules allowed to ro-
tate differs systematically from the friction on molecules not
allowed to rotate. This is shown in Fig. 8 where we compare
the friction coefficient on flexible molecules that can and
cannot rotate. The last plate in the figure compares the fric-
tion on rigid rotational and rigid nonrotational bonds. In all
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of these cases the deviation is largest at intermediate times. It
is easy to see why rotations enter in the rigid bond case. The
force on the rigid bond is then

fom =2 s [
)]+

a=1
—r

where F,,; and F,, , are the forces exerted by fluid atom  on
atoms 1 and 2 respectively of the diatomic molecule whose
center of mass position is R, bond length is fixed rigidly at x,,,
and orientation is defined by the unit vector, i, lying along
the molecular axis. Clearly if the molecule can reorient ii
changes direction and even if the solvent is frozen in place
this force will fluctuate. For the case of the nonrotational
molecule there will be no such contribution. This rotational
component can make a small difference in the static friction
coefficient. For example for the case presented here the static
bond friction for the rigid rotational molecule is 21.4 and for
the rigid nonrotational molecule is 19.7. It is of interest to
investigate the spectral densities of the vibrational velocity.
The velocity autocorrelation functions are given in Fig. 1
and the corresponding spectral densities are given in Fig.
2(b). From the GLE it is a simple matter to show that

Y (@)
[0 — & + 0y (@)]* + [0y ()]
where (1) = £(¢)/u, and ¥’ (@) and " (w) are the real and
imaginary parts of the Fourier-Laplace transform of y(¢)
[cf. Eq. (4.8)].

Using the friction coefficient determined in the rigid
bond approximation we can compute the spectrum predict-
ed using Eq. (5.3). This is compared with the simulated
spectrum in Fig. 9. Clearly, the GLE does very well. Shown
also in this figure are the spectra predicted if the single parti-
cle friction is used—more about this later. These spectra
were calculated using values of @ obtained from the MD

1.
r, —R+—xi
2 0

(5.2)

1
r, —R——x,i
2 0

o) =

(5.3)

0.8 T =T L T T
Simulations

............ Eq.(5.3) with rigid friction

- —— Eq.(5.3) with single—particle friction

0.6 o=80 9

(w)

0 25 50 75 100 125 150

FIG. 9. Comparison of the measured spectrum in Fig. 2 to the spectrum
predicted by the GLE in Eq. (5.3). The predicted spectra were computed
using both the rigid friction and the single-particle friction in Eq. (5.3).

simulations using Eq. (2.9). The values are @ = 16.02,
27.73, 58.55, and 89.48 for w, = 20, 30, 60, and 90, respec-
tively. Moreover the full width at half maximum predicted
by the GLE is in excellent agreement with the simulation
data.

In the Introduction we discussed the kind of stochastic
modeling that is becoming increasingly popular. If each
atom / in the diatomic molecule is assumed to obey a GLE of
its own

2 '
mi, = — W _ 3 f dr, (t — )%,(1) + R,(1),
j=1J0

Ix;
(5.4)

where W(x) is the potential of mean force and §; (¢) is the
friction matrix. If the cross frictions are ignored
(£, (1) = §&,, (1) = 0) and one transforms to center of mass
and relative coordinates one obtains for a homonuclear di-
atomic molecule,
11
oW dr

px = — ———

) x(1) + R(1),

e p(L—1T)
5 (5.5)
where £, (¢) is the friction on a single atom of the homonu-
clear diatomic molecule. This is obtained by dissolving this
single atom in the solvent, determining its velocity autocor-
relation function, and using the method of Berne and Harp*
to determine the single particle friction. This is the free
draining model of bond friction, a model that ignores cross
correlations between the solvent forces on each atom of the
diatomic. In this model the bond friction is given by,

G =¢4,(0/2. (5.6)

We have already discussed when this might be a valid
approximation. In Fig. 6, we present simulated {(w) and
compare it with §, (@) /2. Clearly for bond length x, = 1.25
studied here there are significant discrepancies in the free
draining limit at all but high frequencies. These discrepan-
cies show up in both the real and imaginary parts of { (). To
understand why there is agreement at high frequencies it is
useful to look at the time dependence of {(¢) in the figures.
The short time decay is due to the very strong repulsive colli-
sions between solvent atoms and the atoms of the diatomic.
The time scale of this short time decay is the duration of a
collision. These very strong repulsive collisions require the
solvent atoms to be close to the molecular atoms. Collisions
along the molecular axis will contribute to the friction much
more strongly than collisions transverse to the molecular
axis. Such collisions will take place when a solvent atom
approaches from one end or the other. In such a collision the
solvent atom will not simultaneously interact strongly with
both molecular atoms, and these contributions should not be
effected by cross-correlations and should thus be well ap-
proximated by the free draining model. Because these short
time effects contribute only to the high frequency friction,
wefind that§ ;, (w)/2 agrees well with the true £ ' (@) at high
frequencies. Any phenomena dominated by these close-in
collisions should be accurately described by an independent
binary collision approximation. The long time behavior is
due to collective hydrodynamic effects and should be poorly
described by the free-draining model. In frequency space
these hydrodynamic effects contribute to the low frequency
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friction and there we see large deviations from the single
particle free draining model. A sensitive test of the free
draining model is shown in Fig. 9 where a plot of the spectra
calculated by substituting ¥, (@) ={,,(w)/2u into Eq.
(5.3) is compared to the true spectra. It is clear from this
comparison that the free-draining model fails.
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APPENDIX

In this appendix, we show how the NAPA integration
method can be applied to the case of a rotating molecule.
~ Ifr, and r, denote the positions of the two nuclei of the
diatomic and the intramolecular potential isr =r, —r, of
the form

V(ry =1k(r—ry)? (A1)

the Taylor series expansion to second order of the potential,
V(r), in Cartesian coordinates around the point (x,,5,,2, )
gives

Vixy,z) =—%-2Kij(x,. — X ) (X — X5, (A2)
7
where the force constant matrix is
K =kxgxp/r3. (A3)

If the oscillator is very stiff, then this second order expansion
is a reasonable approximation to the original potential ¥(r).
From the definition of K;, the following properties can be
easily verified:

th sz‘i
K,-,-Klj =K?j
S Ky=k

Transformation to normal modes diagonalizes the 3 X 3
matrix K;. The normal mode frequencies are

(A4)

0l =K, +K, +K, =k (AS)

where the two zero frequency modes correspond to the two
rotational degrees of freedom while w; corresponds to the
single vibrational degree of freedom. Because of the degener-
acy in the eigenvalues, a Gram-Schmidt orthogonalization
procedure may be used to obtain the corresponding eigen-
vectors from which the unitary transformation U to normal
coordinates can be constructed in the usual way. If x denotes
the vector of Cartesian components and ¢ denotes the vector
of normal mode coordinates, then the transformation is writ-
ten

x = Ug. (A6)

Berne ef a/.: Dynamic friction on bonds

When written in terms of the gs, the potential becomes a
function of ¢; alone

Vigs) =1kqs. (A7)

The NAPA method'® is used to integrate the ¢, equation,
while the ¢, and ¢, equations can be integrated by any of the
standard methods (for example the velocity Verlet integra-
tor). Then the unitary transformation U is used to transform
back to Cartesian coordinates in terms of which the forces
due to the solvent are computed.

Since the only parameters in the harmonic potential Eq.
(A1) are the force constant k and the minimum 7,, the
choice of the Cartesian components x,q is arbitrary so long as
they satisfy

X +V;+z=rl. (A8)

It is found that the best choice for use with the NAPA inte-
grator is

X;
Xn = - )‘O . ( A9 )
r
Substituting this choice into Eq. (A3), the matrix elements
K; become

K, =kxx;/r*. (A10)

We see that the matrix elements K; are no longer constants,
but depend explicitly on the coordinates associated with the
diatomic at a given time step. Although the normal mode
frequencies remain independent of the coordinates, the
transformation matrix U must be recomputed at every time
step. However, since this calculation is relatively simple, the
extra time spent will not be a significant disadvantage.
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