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The generalized Langevin equation (GLE) has been used to model a wide variety of systems in 
which a subset of the degrees of freedom move on a potential of mean force surface subject to 
fluctuating forces and dynamic friction. When there is a wide separation in the time scales for 
motion on the potential surface and for relaxation of the friction kernel, direct integration of 
the GLE is very costly in CPU time. In this paper we introduce an integrator based on our 
previous work using numerical analytical propagator algorithm (NAPA) and reference system 
propagator algorithm (RESPA) that greatly accelerates such simulations. We also discuss 
sampling methods for the random force. Accuracy of this algorithm is assessed by comparisons 
with an analytically solvable example. Introducing dynamic friction kernels determined from 
full molecular dynamics (MD) simulations allows us to compare the accuracy of the GLE 
simulations with full scale molecular dynamics simulations. 

I. INTRODUCTION 

A wide variety of problems involving molecular motion 
in liquids can be formulated in terms of the generalized Lan- 
gevin equation (GLE) .lw3 

/+aw(q) ’ -- 
I a4 0 

dTg(t - 7)9(T) -I- R(t), (1.1) 

where q and 4 are, respectively, the position and momentum 
of a degree of freedom of interest, W(q) is the potential of 
mean force on this coordinate, c(t) is the memory friction, 
and R(t) is the random force. The second fluctuation-dissi- 
pation theorem4 gives a relationship between the friction 
kernel and the covariance function of the random force, 

l(t) =P(R(O)R(t)), (1.2) 
where@ = (k7’) - ‘. To proceed it is necessary to know how 
the dynamic friction kernel varies with time. What is often 
needed is the friction kernel on a molecular bond or some 
more complicated reaction coordinate. Recently, we have 
devised a method for extracting l(t) from molecular dy- 
namics simulations and have used this method to determine 
the friction kernel on vibrational coordinates.5*6 The explicit 
dynamic friction kernels obtained in this way can now be 
used in stochastic simulations based on Eq. ( 1.1). We and 
others have also devised methods for determining the poten- 
tial of mean force W(q). It is usually assumed that the ran- 
dom force is a Gaussian random process. If this assumption 
is made it is possible to integrate Eq. ( 1.1) and to simulate 
vibrational dephasing and energy transfer as well as activat- 
ed barrier crossing among other things. Such a stochastic 
simulation scheme consists of two parts. First, one performs 
full molecular dynamics to obtain the dynamic friction ker- 
nel and the potential of mean force and then one integrates 
the stochastic integro-differential equations, Eq. ( 1.1) .‘** 

In vibrational relaxation it is usually the case that the 
oscillator has a high frequency compared to the frequencies 
characterizing the solvent motion. It is then necessary to 

l ’ Ph.D. student in the Department of Physics, Columbia University. 

treat one of the most pervasive problems in the molecular 
dynamics literature; that is, the problem of treating systems 
with high and low frequency motions. Recently we have de- 
vised simple new integrators NAPA (numerical analytical 
propagator algorithm) and RESPA (reference system pro- 
pagator algorithm) to treat systems with multiple time 
scales or disparate frequencies numerically.‘-” These inte- 
grators have allowed us to determine the dynamic friction 
c(t) on a homonuclear diatomic bond from simulation.” 
For the first time it becomes possible to evaluate this bond 
friction and to assess the accuracy of various theoretical ap- 
proximations for it. Equation ( 1.1) when applied to the vi- 
brational relaxation of a very stiff oscillator will also have a 
separation of time scales because the oscillator frequency 
will be very large compared to the relaxation rate of<(t) . In 
this paper we introduce a method for integrating Eq. ( 1.1) 
that incorporates NAPA. For Gaussian Markov processes, 
the method is a direct one, useful for integrating the non- 
linear GLE without resorting to Fourier transform. For 
non-Markovian processes, this direct sampling method is 
possible, but impractical, and one must resort to Fourier 
transform methods.13-‘* 

The algorithm is tested on an analytically solvable sys- 
tem, namely, the GLE with exponential friction kernel.16 
The new method is then used to compare the predictions of 
the GLE with those of full scale molecular dynamics on a 
harmonic oscillator. It is found that molecular dynamics 
(MD) and the GLE give almost identical answers for the 
case considered here. The dynamical test system consists of a 
harmonic oscillator dissolved in Lennard-Jones (LJ) (6- 
12) fluid with which the diatomic interacts through a site- 
site LJ potential with the solvent atoms with the same pa- 
rameters as used for the solvent-solvent potential. We report 
elsewhere on the user of these methods to study vibrational 
dephasing and energy relaxation. 

II. SAMPLING THE RANDOM FORCE 

The random force in Eq. ( 1.1) is usually assumed to be a 
Gaussian random process. To proceed we make this assump- 
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tion, recognizing that it may not be completely valid. In fact, 
by comparing the results of the stochastic simulation to full 
scale molecular dynamics we will be able to assess this ap- 
proximation. 

According to Doobs theorem” a Gaussian random pro- 
cess is Markovian if and only if the autocorrelation function 
of this process is an exponential function of the time. For a 
stationary Gaussian Markov process defined over a time T 
wecan divide the time Tinto P discrete time steps At. In this 
case 
P p+ , W,,PAt;R,- , ,(P - 1 IAt; . . . . R,,,O) 

zjGl K2(RjvAtIRj- I,O)P,(&,O)> (2.1) 

where Pp + , is the joint probability distribution that the ran- 
domforcewillhavethesequenceofvalues{Ro,R,,R,,...,R,~ 
at the corresponding times {O,At,2At,...,PAt), where 
K,( R,,At IRj _ , ,O) is the conditional probability distribu- 
tion that the random force will have the value Rj at timejAt 
given that it had the value Rj- , at time 0’ - 1) At and 
P,(R,,O) is the probability distribution that the random 
force will have the value R, at the initial instant t = 0. P, and 
K2 have the form 

P,(R,,O) = [4?rd] -I” exp[ - Rz/2c$], (2.2) 
K2(Rj,At IRj- IsO) 

= [4n-~r(At)~] - “’ 
xexp[ - (Rj -Rj-,~(At))2/2a2(Af)], (2.3) 

where 

+(t) ~ (R(O)R(t)) 
(R(O)R(O)) = ,(:“)O) 

(2.4) 

is the normalized correlation function of the random force, 

d = (R ;) = kTc(O) (2.5) 

is the mean-square value of the random force and 
d(At) = a-, (1 - @(At)). (2.6) 
Using Box-Miiller sampling” we can sample R, from 

P,(R,) and (R, - R,$(At)) from K,(R,At IR,,O). Know- 
ing R, and $( At) allows us to determine R ,. Likewise we can 
sample (R2 - R,$(At)) from K,(R,,At IR,,O). Knowing 
R, and ‘,&At) allows us then to determine R,. Continuing 
this procedure we can sample {R,,...,R,}. 

Once we have sampled the random force we must sam- 
ple an initial state for the oscillator from the distribution 
function, 

f(&) = Q - le+qW+ W(@l, (2.7) 
where Q is the canonical partition function. Again 4 can be 
sampled from the Maxwell distribution using Box-Miiller 
sampling and q can be sampled from exp [ - W( q)/kTj us- 
ing Monte Carlo sampling techniques.‘* In Sec. III we show 
how Eq. ( 1.1) can be integrated. 

The foregoing applies only to a one-dimensional ran- 
dom force with exponential time correlation function. It is 
not difficult to generalize this to an n-dimensional random 
force with correlation function matrix 

l&(t) = (R, (W$ Cl) > (2.8) 
which satisfies the conditions of Doobs theorem so that the 
multivariate set of random forces is a Gaussian Markov pro- 
cess;” that is, 

!c,p(t + T) = 5,,(opyp(4. (2.9) 
This requires diagonalizing the multivariate Gaussians in 
each K2 and Box-Miiller sampling the normal coordinates 
then transforming back to the original random forces. 

As has been shown in numerous studies, the dynamic 
friction calculated from molecular dynamics simulations of 
real liquids is nonexponential. This means that the random 
force is non-Markovian. It is possible to derive the joint 
probability distribution function for such a system. Its char- 
acteristic function has the form 

W(q t* nl n,eeXOJO) = ew[ - 4i$Ctj - ti)qj], (2.10) 
where $(t> is the normalized autocorrelation function of the 
random force as before. Fourier inversion then gives the 
joint distribution function P, of the random force. This is a 
multivariate Gaussian and involves the inverse of the corre- 
lation function matrix which couples the random forces at 
all times within the correlation time of the random force. 
One way to proceed with this is to transform to n normal 
coordinates, sample these using Box-Miiller and then trans- 
form back. Unfortunately this will be very computationally 
intensive because this matrix has dimension n X n, and n will 
be very large. Another method is to use Metropolis Monte 
Carlo sampling ‘* of this distribution. This is perfectly reali- 
zable but rather than present this method here we shall 
adopt the method pioneered by Rice’7,‘3*‘4 and exploited by 
McCammon et aLIs This involves the representation of the 
random force by a Fourier series. 

If the total time is T = PAt and R(t) is assumed to be 
periodic with period T we can express R (t) as 

R(t) = i {a, sin w,t + b, cos w,t}, 
k=’ 

(2.11) 

where t = (O,At,2At,...,PAt) and where wk = 2n-k /PAt. If 
R (t) is a Gaussian random process the {a, ,b,} will also be 
Gaussian random processes. 

P(bk,bk)) = fi [dr&]“*exp 
k=l 

_ ki, ‘a’2;b’)], 

k 

(2.12) 
where 

o$ =$ ,g (R(O)R(jAt))exp[ - 2rijk/P]. (2.13) 
J 0 

To proceed one samples a set of P ak ‘s and P b,‘s from the 
above Gaussian distribution using the specified force auto- 
correlation function to determine the dk’s. This set can be 
used to construct a realization of the random force using Eq. 
(2.11) which is easily evaluated using fast-Fourier-trans- 
form (FFT) methods. Sampling many realizations of the 
random force in this way allows us to generate an ensemble 
of random force realizations and to apply these to the inte- 
gration of the equations of motion. 

The direct sampling method based on Eqs. (2.2) and 
(2.3) or the Rice method both give a full time history or 
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velocity 4 is given by the following equations: realization of the random force R (t). Repeated application 
of these sampling methods give Nindependent samplings of 
the random force, thus giving an ensemble of random forces 
each consisting of P time steps. Let us denote the crth realiza- 
tion by {R g, R 7, R ‘; ,..., R “p). The autocorrelation function 
of the random force can now be calculated as a combined 
ensemble and time average 

4391 

4n+1 
(At>* F =q,, +AtQ, +- 

2ru 
n, (3.1) 

W)R(~=W)=+ $ (p-;+l) 
a 1 

x 2 R”,R”,,,. 
m=O 

If N and P are large enough, we should recover 

4 n+l =4, + (3.2) 

where q, = q( nht), etc., and F, is the force at the nth time 
step. The force is 

s 

f 
F(t) =f(q, - d~5(Wj(t - 7-1 -t R(t), (3.3) 

0 

(2.14) wheref( q) = - aB’( q)/dq is the force due to the potential 
of mean force, and R(t) is the random force. Writing Eq. 
(3.3) in discrete notation gives 

F,, =f(q,,) - At i w&An--k -I- R,, (3.4) 
k=O 

(R(O)R(t = nht)) = kT<(t = nht). (2.15) 
Note that Eq. (2.14) can be used to compute the autocorre- 
lation function of any observable. 

There are two extreme possibilities for carrying out this 
simulation. One long trajectory of length NP can be genera- 
ted and the time averaged correlation functions can be deter- 
mined or N short trajectories each of P time steps can be 
generated and the time correlation functions of the dynami- 
cal variables can be both time averaged and ensemble aver- 
aged over the N realizations of the random force. In the for- 
mer case only one FFT is used but it contains NP Fourier 
components. In the latter case n FFTs are executed each 
with P coefficients. If the computer is a vector machine with 
large memory the method involving only one FFT would be 
faster but memory is often limited and the second method 
would then be preferable. 

An alternative to the FFT method for obtaining a ran- 
dom force sequence has been recently developed by Harris et 
al.19 We do not employ this method in any of our simula- 
tions, but we mention it here for completeness. The method 
models the random force as an autoregressive process of or- 
der P with a Gaussian white noise source. A set of P auto- 
regressive parameters are obtained from the friction kernel 
by inverting a set of Yule-Walker equations. This process 
yields an approximation to the friction kernel which is a sum 
of P exponentials. Given this form of the friction kernel, a 
computationally efficient algorithm can be devised which 
incorporates NAPA or RESPA for integrating the GLE. A 
difficulty with which method lies in the fact that in order to 
obtain results accurate at long times, one needs to choose P 
very large. However, accurate results over short times can be 
obtained with a relatively small value of P. There are situa- 
tions when the long time behavior of the friction kernel is 
very important. For example, the dephasing rate of a nonlin- 
ear oscillator is determined by the full time dependence of 
the friction and any error incurred will produce errors in 
predictions of this quantity. 

III. INTEGRATION OF THE GLE 
In this section we describe an algorithm for integrating 

the GLE based on the velocity Verlet20’2’ scheme, a method 
close in spirit to that presented by Berkowitz et al” This 
method can be easily adapted for use with NAPA when the 
dynamics of high frequency oscillators is sought. Recall that 
the velocity Verlet algorithm for evolving the position q and 

where wk are a set of weights association with the numerical 
integration method for the memory integral (e.g., 
we = w, = $, wi = 1 otherwise, if the trapezoidal rule is 
used). Substitution of Eq. (3.4) into Eq. (3.1) gives a direct 
method for obtaining the positions. The velocity equation 
Eq. (3.2) requires F,, + , given by 

n+l 
F n+l =f@n+l) -At c WkckkQr,+,-k +R,+,, 

kc0 

(3.5) 
which involves 4, + i when k = 0. We separate out this term 
by writing 

F n+l =FL+, - AtwoiTo& + 1. (3.6) 
Substituting Eq. (3.6) and Eq. (3.4) into Eq. (3.2) and solv- 
ing for gn + , gives the result 

Qn+l = 
4, + (Af/2plV’n + FL,, 1 

(1 + (At)*woSo/2pl ’ 
(3.7) 

We now discuss the application of NAPA to the inte- 
gration of the GLE. The GLE reads 

pii =f(s, - j)rtW&t - 7) -t- R(t). (3.8) 

The trajectory q(f) is written in the form 
q(t) = 40(t) + S(t), (3.9) 

where the reference trajectory qo( t) is chosen to satisfy 
MO =fG?o). (3.10) 

This results in the following equation for S 
4 =fCqo + 8) --f(qo) - s f~~~(dk,(t--l -t&t-~)] +R(t). 

n __ 
(3.11) 

At the beginning of each time step, we choose a new set of 
initial conditions on q. and S which are 

q,(nAt) = q(nAt), Q,(nAt) = Q(nAt), (3.12) 

and 
S(nAt) = &At) = 0. (3.13) 

We note that this choice is only possible for Eq. (3.11) be- 
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cause the integral in it involves only the sum 4. + & for 
which we can simply substitute the previously calculated 
values of 4. The solution to Eq. (3. IO) subject to the initial 
conditions Eq. (3.12) can be obtained analytically (e.g., as 
in the case of a harmonic reference system) or numerically 
by integrating Eq. (3.10) form little time steps St= At/m to 
obtain qO,n+l =qo((n + l)At) and tioo,+ I =Qo(n + l)At). 
These are then fed into Eq. (3.11) which is then solved nu- 
merically subject to the initial conditions Eq. (3.13). The 

velocity Verlet scheme discussed above can be easily adapted 
for Eq. (3.11). Let us define 

G, = --At i W&(&,-k -d&w,) i-R, (3.14) 
k=O 

and, as before, we write 
G n+1= G’ n+l - AtwoiCo(4oo.n + 1 + 8, + 1) (3.15) 

separating out the k = 0 term. Then, solving for 8, + , gives 
the following velocity Verlet scheme for NAPA: 

4n+l = 9o.n + I + 6, + I = qo,n + , + T G,, 

‘[ffcqn + 1) -f(qo,n + 1) + Gn + G :, + , - AfwoCo4oo.n + 11 
&l+* =4o,n+1 +&+I =41o,n+1 + 2p 

( 
1 + (W2woSo 

> 4Q 

(3.16) 

The initial conditions are now reset so that 
qo((n+ l)W =q((n+ llht), 
&o((n + l)At) =Q((n + l)At), (3.17) 

and 
6((n+ 1)At) =&(n+ l)At) =0 (3.18) 

and the process is repeated. The resetting of the initial condi- 
tions on S and b to 0 at every step prevents the force term 
f(qo + S) --f(qo) from becoming too large, thus allowing 
the trajectory to be generated with a larger time step than 
could be used with ordinary velocity Verlet integration. As 
we shall see, for the GLE, even small increases in the time 
step yield large savings in CPU time. The reason for this is 
that with a larger time step, not only can shorter trajectories 
(i.e., smaller P) be used, but fewer points are needed for the 
friction kernel so that the time needed to evaluate the sums in 
Eqs. (3.4) and (3.14) is reduced. 

The choice of reference system Eq. ( 3.10) will be good 
if, for example, f(q) represents an oscillator with frequency 
large compared to dm. However, if ,/m is com- 
parable to or much larger than the frequency of the oscilla- 
tor, another choice of reference system proves useful. Let 
q. ( t) satisfy 

Yiio =f(qo) - suxq,. (3.19) 
This case has been referred to in the literature as the dynamic 
caging regime. 3,22-25 With this choice of reference system, 
the equation for S becomes 

pz =f(qo + 6) -f(qo) + !3O)qo 
t 

- 
I 

d~i3+->[4oo(t-d +k-~)l +R(t). 
0 

(3.20) 
The integration of these equations proceeds exactly as de- 
scribed above. The advantage of this reference system can be 
seen immediately for the case thatf(q) has a harmonic term 
- ,uo’q. Then the reference system equation will have a har- 

monic term with an effective frequency 

(3.21) 

If <(O)/~>o’, then the vibrational frequency is determined 
primarily by &0)/p and is treated explicitly in the reference 
system. 

IV. DYNAMIC FRICTION WITH EXPONENTIAL DECAY 

As a test of the algorithm, we consider the stochastic 
dynamics of a particle in a harmonic well with exponential 
friction. The potential of mean force is then taken to be 

W(q) = 4 pG2q2, (4.1) 
where ~1 is the reduced mass, and 5 is the solvent shifted 
vibrational frequency. The friction is taken to be of the 
formr6 

g(t) = Ae - ar. (4.2) 
With a harmonic potential and exponential friction kernel, 
all the correlation functions can be obtained analytically and 
compared with the simulation results. In particular, we 
study the autocorrelation functions of velocity, position, en- 
ergy, and the random force. 

The parameters used in this study are A = 406, 
cz = 20.3, & = 60, y = 0.5, and the temperature is taken to 
be T = 2.5. These parameters are chosen to parallel those 
used in the molecular dynamics simulation which we discuss 
in Sec. V, and hence we express these quantities in Lennard- 
Jones reduced units. The values of A and a were chosen so 
that the exponential decay is qualitatively similar to the de- 
cay of the true friction obtained from MD. We integrate the 
GLE using the velocity Verlet scheme described in the Sec. 
III both with and without NAPA to compare the CPU 
times. When NAPA is used, since the potential Eq. (4.1) is 
harmonic, the reference equation (3.10) becomes 

. . -2 
90 = - 0 909 (4.3) 

which when solved subject to the initial conditions Eq. 
(3.12) gives the reference trajectory 

J. Chem. Phys., Vol. 95, No. 6,15 September 1991 



M. E. Tuckerman and B. J. Berne: Dynamics with multiple time scales 4393 

qO(t) =q(nAt)cosoit+Msincjt 
(I, 

(4.4) 

for nAt(t< (n + 1) At. In this comparative study, the ran- 
dom force is sampled directly using Eqs. (2.2) and (2.3). 
Since energy is not conserved in a stochastic simulation, an- 
other criterion is needed for determining a good time step. 
For exponential friction, we may use a direct comparison 
with the analytical results. However, in general, one may use 
the size of the fluctuations in the average kinetic or potential 
energies as a measure of the accuracy associated with a given 
time step. To obtain the same accuracy in the simulations, 
correlation functions are computed using Eq. (2.14) with 
P = 16384, At = 5X 10e4 and 1400 friction points [(Sk’s 
as in Eq. (3.4)] without NAPA and P= 8192, 
Ar = 1 X 10 - ’ and 700 friction points [cf. Eq. (3.14) ] with 
NAPA. In both cases, N = 5000. We find that NAPA gives 
a factor of 4 saving in CPU time, even though only a factor of 
2 is gained in the time step. When higher frequency oscilla- 
tors are involved, we have seen that NAPA will allow a larg- 
er time step factor over Verlet,’ and we expect that larger 
time step improvements will have even more dramatic sav- 
ings in CPU time. 

At this point, we introduce a further time saving feature 
related to the evaluation of the memory integral. In princi- 
ple, one should use the entire velocity history in evaluating 
the memory integral in Eq. (3.8) at time t. Often, however, 
the friction kernel is a rapidly decaying function of time, so 
that for large t, the early history of the trajectory will con- 
tribute negligibly to the integral. Therefore, in practice, it 
proves useful to choose some upper cutoff time t,,, above 
which the contributions to the integral are small, and write 

s 

I 

s 

&be. 
d7. &)(i(t - T) z dTg(7-)Q(t - 7). (4.5) 

0 0 

Obviously, the interval [ O,t,,, ] should be chosen large 
compared to the decay time of the friction. For the A and a 
considered here, an interval oft,,, = 0.7 is sufficient. When 
the friction decays rapidly, this approximation proves to be a 
significant time saver. 

For comparison with analytical results, we integrate the 
GLE using the NAPA scheme with the same P, N, etc. given 
above. The random force is sampled directly using Eqs. 
(2.2) and (2.3). The figures below compare the results of 
these simulations with the analytical results. Before proceed- 
ing, however, we note that the energy autocorrelation func- 
tion is extremely difficult to obtain analytically, even for ex- 
ponential friction. We have recently derived an expression 
for the energy autocorrelation function for a harmonic po- 
tential of mean force which relates it to other simpler corre- 
lation functions. The derivation will be presented in a forth- 
coming paper;26 for now, we simply present the result. The 
normalized correlation function can be shown to be 

C,,(t)E mwwmt)) 
(SE ?) 

=+ct, -+:ct, + +[i-,ct)12, (4.6) 

where C, (t) and C, (t) are the normalized velocity and posi- 

tion autocorrelation functions, respectively, and SE(t) 
= E( t) - (B ). The derivation of this expression is based 
solely on the GLE and the assumption that the random force 
is a Gaussian random process. 

In Fig. 1 (a), we show the comparison between the dy- 
namic friction c(t) used in the sampling function for the 
random force and the correlation function (R(O)R(r))/kT 
computed from the GLE simulation [cf. Eq. ( 1.2) 1. The 
inset shows the difference between the simulation result and 
the true f(t). That is, 

AiT(t) = ICom (t) - Stru, (t) I. (4.7) 
We see from the figure that the correlation function for the 
direct sampling method gives excellent agreement with the 
c(t) used to sample the random force. In Fig. 1 (b), we show 
the energy autocorrelation function for the GLE simulation 
plotted against the analytical result obtained from Eq. (4.6). 
Again, the inset shows the difference between the simulation 
result and the analytical form. Similarly, in Figs. 2(a) and 
2 (b), we show the autocorrelation functions of the velocity 
and position, respectively for the GLE simulation together 
with the corresponding analytical forms. The insets again 
show the differences. We also ran the same GLE simulation 
using the FFT method in Eqs. (2.11)-(2.13) to sample the 
random force to check the agreement between the two 
schemes, and we find that the agreement is very good. The 
close agreement between numerical and analytical results 
shows that the GLE can be accurately integrated using the 
simple method described in Sec. III. 

To test the efficiency of the caging reference system Eq. 

““” 
: . ( ,’ , I 

-200 I 
0.0 0.1 0.2 0.3 0.4 0.5 

t 

1.0 r 1 I 

0.5 

Cd. (0 

0.0 

-0.5 1 I I t 0 1 I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

t 

FIG. 1. (a) The autocorrelation function ofthe random force divided by kT 
(solid line) plotted against the true exponential friction (dashed line). The 
inset shows the absolute value of the difference between the autocorrelation 
function and the true friction according to Eq. (4.7). (b) The energy auto- 
correlation function computed from the GLE simulation (solid line) plot- 
ted against the analytical result (dashed line) [cf. Eq. (4.6)]. The inset 
shows the absolute value of the difference between the numerical result and 
the analytical result. 
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1.0, f 1 

0.5 

C” (0 

0.0 

time steps alone, we gain a factor of At( NAPA)/At( Verlet) 
improvement using NAPA over the ordinary Verlet simula- 
tion. Since the number of friction points used also goes as the 
ratio of time steps, we gain roughly another factor of 
At( NAPA)/At( Verlet) from the evaluation of the memory 
integral. These considerations lead us to conclude that the 
ratio of the CPU time for the Verlet simulation to the CPU 
time for the NAPA simulation will be 

1.0, I , 

0.5 

c, (0 

0.0 

-0.5 

-1.0 I I I I L I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

t 

FIG. 2. (a) The autocorrelation function of velocity computed from the 
GLE simulation (solid line) plotted against the analytical result (dashed 
line). The inset shows the absolute value of the difference between the nu- 
merical result and the analytical result. (b) The position autocorrelation 
function computed from the GLE simulation (solid line) plotted against 
the analytical result (dashed line). The inset shows the absolute value of the 
difference between the numerical result and the analytical. 

(3.19), we carry out a comparative study with 5 = 20, and 
A = 1800. This gives an effective frequency of about s1= 63 
according to Eq. (3.21). The reference system trajectory for 
nAt<t<(n + 1)At is given by 

40(t) = q(nAt)cos Rt + @X sin at. 
cl 

Based on the case discussed above of W = 60 and A = 406 
which has roughly the same effective frequency, we expect 
the time step improvement to be a factor of 2 which is indeed 
what we find. This gives rise to a factor of 4 saving in CPU 
time. It is worth mentioning that the caging reference system 
will yield large savings only in cases of extremely large 
&0)/p which occur much more rarely in real systems than 
cases of extremely large 5. 

To test the time step improvement with NAPA in an 
extreme situation, we carry out a similar comparative study 
using & = 300 and A = 406. Again, for the NAPA simula- 
tion, we use At = 1 X 10 - 3 and 700 friction points. We run 
500 trajectories each of length 40 000 time steps and find 
that the fluctuations in the average kinetic energy are around 
5%. To obtain the same accuracy in the average kinetic ener- 
gy without NAPA would require a time step of 
At = 3 X 10e4, 2333 friction points, and trajectories 133 333 
time steps long. The result is a factor of 11 saved in CPU time 
using NAPA. In general, there are two aspects of the compu- 
tation which primarily determine the CPU time required for 
the simulation: the number of time steps and the number of 
friction points in the memory integral. From the number of 

CPU(Verlet) = 
CPU( NAPA) (4.9) 

This ratio may be reduced, however, by noting that if the 
decay of the friction kernel is slow compared to the time step, 
then not every friction point is needed to evaluate the mem- 
ory integral in the Verlet simulation. In other words, the 
memory integral at the nth step may be well approximated 
by 

s 

f n/v 
d~!c(~)Q(t - 7) z c W,S”k4, - %/k, (4.10) 

0 k=O 

which requires only every tih point. By choosing Y = 3 for 
this case, and using in addition the approximation in Eq. 
(4.5), the CPU time required to obtain the same accuracy 
without NAPA is cut by more than a factor of 2. The saving 
in CPU time with NAPA, however, is still a factor of 5 for 
this case which shows that NAPA can still yield substantial 
improvements in CPU time. 

V. DYNAMIC FRICTION FROM MOLECULAR DYNAMICS 

The validity of the GLE approach to molecular dynam- 
ics can be tested by a direct comparison with an actual mo- 
lecular dynamics simulation. For this comparison, we 
choose to carry out an MD simulation of a Lennard-Jones 
fluid in which is buried a LJ diatomic molecule with har- 
monic bond. The fluid plus diatomic comprises a system of 
64 particles with temperature and density chosen to be 2.38 
and 1.05, respectively, in reduced units. The harmonic bond 
potential is of the form 

U(r) = @o; (r - ro)2, (5.1) 
where r is the relative distance between the atoms, p is the 
reduced mass, w. and r, are the bare frequency and bond 
length, respectively. This system is similar to those discussed 
in Ref. 12. Since the bond frequency is higher than the peak 
of the spectral density of the fluid (around 20 for this tem- 
perature and density), the potential of mean force which 
goes into the GLE can be represented to a good approxima- 
tion as a harmonic potential of the form 

W(r) = &5*(r- (r)j2, (5.2) 
where (r) is the equilibrium bond length averaged over a 
canonical ensemble, and 5 is the renormalized frequency 
which can be computed from 

52 = kT 
pX(r- W12) * 

(5.3) 

The friction kernel is determined from the MD simulation 
using the method of Straub, Brokovec, and Berne,’ which is 
based on the method of Harp and Beme. 

The MD simulation was carried out for 3 x lo6 steps 
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with a time step of 1.75 x lo- 3, using NAPA on the equa- 
tion of motion for the bond length. As a simplification of the 
full dynamics, the rotational degrees of freedom of the di- 
atomic are frozen out by fixing its orientation in space. This 
is done so that the NAPA reference equation can be solved 
analytically. The autocorrelation functions of the velocity, 
position and energy are computed for this run for compari- 
son with the corresponding GLE simulation. Using Eq. 
(5.3), we calculate the renormalized frequency to be 59.6. 
To solve the GLE, the friction and renormalized frequency 
computed from the MD run are substituted into the equa- 
tion, and the GLE is integrated using NAPA. The random 
force is sampled using the Fourier method described in Eq. 
(2.11) with P=8192, At= 1X10e3 and 1000 friction 
points. A set of 500 initial conditions were sampled from the 
equilibrium distribution, and Eq. (2.14) was used to com- 
pute the autocorrelation functions in the GLE simulation. 

In Figs. 3 (a) and 3 (b), we show the comparison of the 
autocorrelation functions of the velocity and position for the 
GLE and for MD. We see that the agreement is very close. 
The close agreement between MD and the GLE for this case 
is not unexpected since the potential is harmonic, and as we 
have seen from the difference between o. and 5, the frequen- 
cy is not shifted much by the solvent. In Figs. 4(a) and 4(b), 
we show the autocorrelation functions of the random force 
and the energy, respectively. For consistency, it is necessary 
to use the energy of the bond in the form 

. 
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FIG. 3. (a) The autocorrelation function of velocity computed from the 
MD simulation (solid line) plotted against the GLE simulation result 
(dashed line). (b) The position autocorrelation function computed from 
the MD simulation (solid line) plotted against the GLE simulation result 
(dashed line). 
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FIG. 4. (a) The true dynamic friction kernel computed from the MD simu- 
lation (solid line) plotted against the autocorrelation function of the ran- 
dom force divided by kras computed in the GLE simulation (dashed line). 
(b) The energy autocorrelation function computed from the MD simula- 
tion (solid line) plotted against the GLE simulation result (dashed line). 

E=P:+pY(r- (r))‘, 
2P 

(5.4) 

when computing the energy autocorrelation function for 
both the MD and GLE simulations. Thus, in the MD case, 
the renormalized frequency average bond length must be 
obtained before the energy can be computed. We see that the 
energy decay predicted by the GLE is slightly faster than the 
MD result. In this connection it is worth stating that the 
energy correlation function provides a test of the assumption 
that the random force is a Gaussian random process. In mo- 
lecular systems the force can be resolved into a short range 
part and a long range part. We expect that the short range 
part will reflect energetic binary collisional events and will 
behave more like a Poisson process than a Gaussian process, 
whereas the long range part will be a superposition of a large 
number of terms representing the long range force from all of 
the neighboring atoms and will, by the central limit theorem, 
behave like a Gaussian random process. For a high frequen- 
cy oscillator vibrational energy transfer to the bath will be 
through both the short range highly energetic collisions and 
the longer range force.To the extent that the short range 
impulsive collisions contribute we expect that the stochastic 
simulation of the energy relaxation will not agree with the 
full molecular dynamics. We will return to this question in a 
forthcoming publication devoted to the question of vibra- 
tional relaxation in liquids. 
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VI. CONCLUSION 
In problems where there is a separation of time scales, 

the methodology embodied in NAPA and RESPA can con- 
siderably accelerate simulations. In this paper, we have 
shown how this can be done for stochastic simulations using 
GLE’s. The systems considered here involve high frequency 
vibrational motion damped by slowly decaying dynamic 
friction. Depending on the separation in the time scales, one 
can achieve accelerations on the order of 5 to 10 or more. 
Although not treated here, there is a class of problems for 
which NAPA and RESPA algorithms can lead to very large 
accelerations. Consider the case of an aqueous dispersion of 
polyballs (charged colloidal particles like polystyrene latex 
spheres). Each sphere will experience a frictional force due 
to the solvent plus long range forces due to Coulomb interac- 
tions with the other polyballs and due to hydrodynamic in- 
teractions (e.g., Oseen tensor). In such cases, one does not 
usually have a separation of time scales in the sense discussed 
above, but one must compute many forces because of the 
long range interactions. Nevertheless, the set of LEs or 
GLEs can be integrated efficiently using the RESPA meth- 
ods outlined in Ref. 11. If there is also a separation in time 
scales, then a double RESPA or combined RESPA/NAPA 
method can be used. Recent computations using this ap- 
proach to treat full MD simulations have resulted in acceler- 
ations approaching a factor of 50.‘* 
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