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Rate constants evaluated from ( 1) the energy-loss turnover theory of Pollak, Grabert, and 
Hlinggi (PGH), (2) the Grote-Hynes extension of Kramers theory (GH), and (3) the 
microcanonical variational transition state theory for dissipative systems of Tucker and Pollak 
(pVTST) are compared with rate constants determined from direct computer simulations of 
generalized Langevin dynamics. The comparisons are made for a cubic oscillator under the 
influence of a slow bath characterized by a Gaussian friction kernel. In the ,uVTST 
calculations, which are based on an effective two degree of freedom,Hamiltonian, barrier 
crossing due to energy transfer from the bath to the effective Hamiltonian is neglected. This 
neglect is significant only at very strong coupling, where it causes the yVTST results to drop 
below the simulation results. Both GH and ,uVTST theories fail (as expected) in the energy 
diffusion regime, while PGH theory is only moderately successful. The PVTST results agree 
extremely well with the simulation results in the spatial diffusion regime, providing a 
significant improvement over the GH results at intermediate coupling strengths and over the 
PGH results at strong coupling strengths. This improvement is a result of nonlinear effects 
which are included in the PVTST approach but neglected in the PGH and GH theories. 

1. INTRODUCTION 

The importance of solvent effects on chemical reactions 
cannot be disputed, as it is one of the few topics which inter- 
ests both the organic and physical chemist. Of particular in- 
terest is the effect of solvents upon the rates of chemical 
reactions. During the past two decades, a number of theories 
which incorporate the effects of dissipative media on reac- 
tion rate constants have been developed.‘-’ Many of these 
theories are based upon a generalized Langevin equation 
(GLE) description of the dynamics, i.e., . . dwl) f mq= -dq-m s dT y(t - T)4(7) + $30, (1) 

0 

where q is a one dimensional system coordinate with mass m 
which is governed by the potential of mean force W(q), the 
friction kernel my(t), and the random force g(t). The fric- 
tion kernel determines the total nonisotropic effect of all the 
bath forces on the system motion. The random force, which 
is assumed to be a Gaussian random process, averages to 
zero and satisfies the second fluctuationdissipation rela- 
tion,6 

hWW3t)) = mkb Ty(t), (2) 
where kb is Boltzmann’s constant and T is temperature. 

Generalized Langevin dynamics, while offering the ad- 
vantage of making very complex problems tractable, only 
rigorously describes the dynamics of a single degree of free- 
dom (q) of a general n + 1 (n + CO ) dimensional Hamilto- 
nian in the limit of linear response, i.e., in the limit of infini- 
tesimal variations in the position q.6 The only exception, i.e., 
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the only case for which the generalized Langevin equation 
rigorously describes the dynamics for any finite displace- 
ment in q, is for the case of a very simple model Hamiltonian 
in which a bath of n (n --* w ) uncoupled harmonic oscilla- 
tors xi are coupled in a bilinear fashion-vV, = Z,g,n,q-to 
the system coordinate q. ‘** Despite these limitations, theo- 
ries based on GLE dynamics have been frequently applied to 
describe reactive motion for realistic molecular Hamilto- 
nians.“” 

A common practice has been to test the validity of a 
given GLE-based theory by applying it to some realistic mo- 
lecular Hamiltonian and comparing the resultant rate con- 
stants to rate constants from molecular dynamics simula- 
tions on the same Hamiltonian or from experiment.9-‘4 
However, because of the limited validity of GLE dynam- 
ics-the starting point for these rate theories-such tests are 
inconclusive. It is impossible to determine whether disagree- 
ments between theory and simulation arise because of as- 
sumptions made in deriving the theory or because GLE dy- 
namics are simply not valid. Comparison to experiment is 
even more ambiguous because errors due to inadequacies of 
the potential are also present to cloud the issue. Even if rea- 
sonable agreement is found between theory and simulation 
or experiment, the number of possible sources of error is 
such that cancellation of error as the source of agreement is 
nearly impossible to rule out. 

In the current work we present an unambiguous test of 
three theories based on GLE dynamics-( 1) the energy-loss 
turnover theory of Pollak, Grabert, and Hiinggi (PGH) ,I5 
(2) the Grote-Hynes extension of Kramer-s theory 
(GH),=” and (3) the microcanonical variational transi- 
tion state theory for dissipative systems (,uVTST) recently 
introduced by Tucker and Pollak.‘8~19 In order to avoid the 
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ambiguity caused by the inapplicability of the GLE for mo- 
lecular Hamiltonians, the theoretical rate constants are com- 
pared to rate constants obtained from a direct simulation of 
GLE dynamics, rather than from a simulation of molecular 
dynamics as was done by Straub, Borkovec, and Beme.” 
Thus the comparison of theory with simulation presented 
here tests the assumptions invoked in deriving rate constant 
expressions from the GLE. Such direct comparisons to the 
GLE have been made previously, but only for the restrictive 
case of exponential friction, see below. 15*24*25 As for the ques- 
tion of the applicability of GLE dynamics to molecular sys- 
tems, it has recently been addressed elsewhere,2@-23 so it will 
not be discussed further here. 

In order to simulate the GLE, the random force must be 
sampled in such a way that the second fluctuation-dissipa- 
tion relation [ Eq. (2) ] is satisfied. Because an exponential 
friction kernel, i.e., y(t) a e - Pt’r, corresponds to a Marko- 
vian random force, sampling of the random force for this 
kernel is less involved than for an arbitrary friction kernel, 
and previous comparisons to simulations of GLE dynamics 
with memory friction have been limited to this specific 
case.‘5*24*25 A method for determining the random force giv- 
en an arbitrary spectral density was introduced by Rice in 
194426 and applied to the Langevin equation 
[y(t) = a&t) 1 in 1945 by Wang and Uhlenbeck.” This 
method was more recently applied to numerical simulations 
of the GLE with arbitrary friction kernels by McCammon 
and co-workers. ” Tuckerman and Beme have further ex- 
tended this method by combining it with their reference sys- 
tem propagator algorithm (NAPA/RESPA) 29 to allow for 
efficient simulation when the difference in time scales for the 
system motion and the bath motion is largee3’ Since friction 
kernels extracted from molecular dynamics simulations gen- 
erally look much more like Gaussian than like exponential 
functions of time,12*23*31 the ability to simulate GLE dynam- 
ics for arbitrary friction kernels is an important advance. It 
allows one to test the theoretical rate constant expressions 
under more physically meaningful conditions than when ex- 
ponential friction is used. 

In this work, a cubic oscillator is used to model the one- 
dimensional reaction potential W(q) and a Gaussian func- 
tion is used to represent the friction kernel as described in 
Sec. II. Details of the GLE simulations are given in Sec. 
III A and the results of the simulations are given in Sec. 
III B. Special attention is paid to application of the, reactive 
flux method, which allows for efficient calculation of rate 
constants from the simulation data, to a cubic oscillator gov- 
erned by GLE dynamics. The three rate theories, PGH, GH, 
and,uVTST, are discussed in Sets. IV-VI, respectively. Each 
section includes a brief review of the rate theory in Part A 
and a comparison of the results to the simulation results in 
Part B. Conclusions follow in Sec. VII. 

II. SYSTEM AND PARAMETERS 
Specifying a potential of mean force along the system 

coordinate, W(q), a friction kernel, y(t), and a probability 
distribution for the random force is sufficient to completely 
specify a GLE [ Eq. ( 1) 1. Here the random force is assumed 
to be a Gaussian stochastic process. The potential of mean 

force along the system coordinate is defined in reduced units 
to be the cubic function 

W(q) = Y’-+-~q33v+f+ v,, (3) 

where all frequencies are given in terms of the barrier fre- 
quency ws (thus the reduced barrier frequency is equal to 
one), and the mass is set to m = 1. The cubic oscillator has a 
minimum at q = - 5 with frequency w. = w* and potential 
W= 0 and a maximum at q = 0 with potential W= Vf 
= 2/27 in reduced units. For all computations presented 

here /?( = l/k,?“) is chosen to give a barrier height of 
V* = lOk, T. This criterion yields j3 = 135. For T = 300 K 
this would correspond to a chemically reasonable barrier 
height of around 6 kcal/mol. 

The bath is defined by its friction kernel, which is chosen 
to be Gaussian in time. As shown by molecular dynamics 
simulations, a Gaussian friction kernel provides a reasonable 
representation of a molecular liquid.12,23*3’ The exact form 
used is, as shown in Fig. 1, 

which has the Laplace transform 

p(s) = ae’1’2’2a erfc 1 
( > 

-srD . 
Jz 
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(4) 

(5) 

Here the static friction coefficient a [ g( 0) = a] controls the 
strength of the system-bath coupling, erfc is the complemen- 
tary error function, and the time constant 7D is roughly a 
measure of the frequency ratio of the reactive motion to the 
bath motion. To model the breaking of a chemical bond of a 
solute molecule in a highly structured liquid, a reactive fre- 
quency O* of 1000 cm - ’ and an average librational frequen- 
cy of 100 cm - ’ are assumed. The value of TD for this scenar- 

06 I I I I I I 

Y(t) 

0 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35 

FIG. 1. The Gaussian friction kernel y(r) [ Eq. (4) ] as a function of time in 
reduced units (see the text) for a static friction coefficient (I = 7.0 (also in 
reduced units). The dashed line is the friction reproduced by the random 
force in a simulation, see Sec. III A. 

J. Chem. Phys., Vol. 95, No. 8, 15 October 1991 



io, which is used in all computations presented here, is 10 in 
units of l/w’. 

Ill. SIMULATIONS 
A. Procedure 

In order to integrate the GLE for an arbitrary dynamic 
friction kernel y(t), it must be possible to sample the Gaus- 
sian random force. This process is nontrivial because the 
autocorrelation function of the random force must be pro- 
portional to the friction kernel, as given by the fluctuation- 
dissipation theorem, Eq. (2). A convenient method for sam- 
pling the random force is that of Rice,26 which involves ex- 
panding the random force in a Fourier series. The expansion 
coefficients are sampled from independent Gaussian distri- 
butions whose widths are determined from the Fourier co- 
sine transform of the friction kernel. For further details re- 
garding this sampling procedure, see Refs. 28 and 30. As a 
check on the sampling procedure for the random force, fl 
times the autocorrelation function of the random force from 
the simulation at a = 7.0 is plotted against the analytical 
friction kernel for a = 7.0 in Fig. 1. The agreement, as re- 
quired by the fluctuation-dissipation theorem [ Eq. (2) 1, is 
quite good. 

Given a method for sampling the random force, the 
GLE can be integrated to give the progression of q andp, in 
time using standard algorithms. It was shown in Ref. 30 that 
using the velocity Verlet algorithm32 in combination with 
the NAPA/RESPA integrator29 is significantly more effi- 
cient than using the velocity Verlet algorithm by itself when 
there is a significant time scale difference between the system 
and bath motions. In particular, for the case of an harmonic 
oscillator of frequency 60 governed by an exponential fric- 
tion with a decay constant of 0.05, i.e., 3 in units of one over 
the oscillator frequency, a savings of a factor of 4 in CPU 
time was achieved by using the NAPA/RESPA method. 
Here the time scale difference is even larger. The time scale 
for decay of the friction kernel (the time at half-maximum, 
see Fig. 1) is 11.8 in units of one over the barrier frequency, 
and it proves beneficial to use the NAPA/RESPA method. 

When calculating rate constants, one is counting occur- 
rences of the rare event of barrier crossing, which happens 
with probability of order e-@“‘. Under the conditions 
Wt = 10, trajectories would spend an inordinately long 
time in the well before crossing the barrier, making the com- 
putation impractical. To avoid this difficulty we use the reac- 
tive flux method.33*34 The reactive flux method, which was 
designed for a double well isomerization, can be applied vir- 
tually unchanged to the cubic oscillator problem. To evalu- 
ate equilibrium rate constants one only needs to consider 
small displacements in concentration. Thus when evaluating 
the rate constant for the cubic oscillator, which represents 
the phenomenology A + B + C, the rate equations may be 
linearized, that is 

daN,(t) 
dt 

= - [k,+ (NO, +NO,)k,]c%(O, (6) 

where N$ is the equilibrium number of species X, SrV, (t) is 
the deviation in the number of species B at time t from its 

equilibrium value, k, is the forward rate constant, k, is the 
backward rate constant per unit volume and the term of or- 
der Slv, (C )2 has been neglected. The phenomenological de- 
cay back to equilibrium is then represented by a single expo- 
nential with a kinetic rate constant, k, , which is a sum of the 
forward rate constant and a pseudo lirst order backward rate 
constant, 

kc =$+ (NO, +N%,. (7) 
The reactive flux method gives the ratio of this kinetic rate 
constant to the conventional transition state theory kinetic 
rate constant.35 Since the forward rate constant is propor- 
tional to the kinetic rate constant, the reactive flux ratio is 
also equal to the ratio of the phenomenlogical forward rate 
constant to the transition state theory forward rate con- 
stant.34 

Application of the reactive flux method to GLE dynam- 
ics is relatively straightforward. First, a canonical ensemble 
of trajectories is found in the conventional dividing surface. 
For GLE dynamics, this ensemble has q = 0 fixed, and the 
associated momentum pq = 0 (m = 1) is sampled from the 
distribution QO( f Q)exp [ - $?$I, where 0 is the Heavi- 
side step function.3’ The Gaussian random force is sampled 
as discussed previously. As these trajectories progress in 
time (governed by GLE dynamics), one keeps a running 
ensemble average which keeps track of trajectories which 
recross the dividing surface. More explicitly this average is, 
with k the reactive flux and k,,, the conventional transition 
state theory rate constant,34 

k(t) = p = J dr[P+(r) -P-U’)l@[q(Ol, (8) 
TST 

where 

p * = O@( t 4)&q)e-BH’r) 
JdI’ e-BH(r)@( + rj)S(q) ’ 

(9) 

and S(q) is the Dirac delta function. For GLE dynamics, I 
represents simply q and p4. The weight function P + (P - ) 
gives the (normalized) number of trajectories in the dividing 
surface at time c = 0 which are forward (backward) cross- 
ing, and 0 is the Heaviside step function, such that 

@[dOI = 
1 if q(t)>0 (products) 
0 if q(t) <O (reactants) (10) 

is a function of time. Clearly, in the limit t-+0, O[q( t)] is 
one for all c + trajectories and zero for all P - trajectories, 
and lim,,, k = 1, or k = k,, . Short time transients, i.e., re- 
crossings, will cause oscillations in k(t) as it drops to a pIa- 
teau value k, . As the system returns to equilibrium, the pla- 
teau decays as the single exponential fi,e - ” with the 
phenomenological kinetic rate constant k, . However, in re- 
gions of physical interest, this decay generally occurs on a 
much longer time scale than the short time transients, and 
the initial plateau valuf, k,, is easily discerned from k(t) . 

The plateau value k, = k,,,/k,, is of interest because 
it is the ratio of the phenomenological forward rate constant 
k GLE to the transition state theory forward rate constant 
k =sT. The rate constant k,,, is the conventional transition 
state theory rate constant under the equilibrium solvation 
assumption. Mathematically, this assumption corresponds 
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to orienting the transition state dividing surface orthogonal 
to the system coordinate q. As shown by Chandler,33 under 
this assumption the conventional transition state theory rate 
constant can be written in the form of a one-dimensional 
transition state theory rate constant with the potential re- 
placed by the potential of mean force, i.e.,36*37 

k @O -/w 
lDTsT=ze , (11) 

where the harmonic approximation is assumed valid in the 
reactants region. This one-dimensional transition state theo- 
ry rate constant is exactly the rate constant to which the rate 
theories are easily compared. 

In the current work, s(t) at each value of the static 
friction coefficient was evaluated from an ensemble of 9000 
trajectories. The variance in the plateau value, Lo, which is 
evaluated from the binomial distribution of 0 [q(t) ] as in 
Ref. 24, is 0.005 or less for all values of the static friction 
considered. All trajectories were run for a total of 409.6 time 
units with a step size of 0.05 time units. In order to avoid 
overflow of the cubic potential function at very large positive 
values of the system coordinate q, trajectories which reached 
a boundary placed in the products region at q = 5/6 were 
stopped, and thereafter considered to remain in the products 
region {if q( t, ) >5/6, then 0 [t) t, ] = 1). The value of the 
potential at q = 5/6 is well below the value at the bottom of 
the well. The simulation results were unaffected by placing 
the boundary at a larger value of q. 

B. Results 
Plots of the ratio k(t) of the reactive flux to the one- 

dimensional transition state theory rate constant as a func- 
tion of time are given in Fig. 2. The function R(t) for the 
cubic oscillator under the influence of a Gaussian friction 

FIG. 2. The ratio, k(t) = k(t)/k TST, of the reactive flux to the one-dimen- 
sional conventional transition state theory rate constant as a function of 
time for simulations of GLE dynamics. k(t) is shown for values ofthe static 
friction coefficient (a) a = 1.0 (-), (b) a = 7.0 (--), and (c) a = 20.0 
(-- -). All quantities are in reduced units, see the text. 

kernel is shown for three values of the static friction coeffi- 
cient, a = 1.0, 7.0, and 20.0. In the weak coupling limit 
(small a), recrossings of the dividing surface at q = 0 occur 
because energy deactivation of the trajectories is slower than 
one traversal of the well. Thus trajectories initially headed 
towards reactants will return to the barrier with an energy 
which is still larger than the barrier height, allowing them to 
recross the dividing surface to products. At a = 1.0, there is 
very little recrossing for the first - 6 time units, the length of 
time required for one traversal of the well, and R(t) drops 
very little. The following dropoff to the plateau value is very 
sharp, because most trajectories take a similar length of time 
to traverse the well. A set of representative trajectories for 
a = 1 .O are shown in Fig. 3. Note that the trajectory which is 
initially headed toward products does not recross the divid- 
ing surface (at q = 0), whereas one of those initially headed 
towards the well does recross the dividing surface once, after 
nearly a full traversal of the well. The time for this recrossing 
to occur is indeed around - 6 time units. 

In the limit of very strong coupling, on the other hand, 
recrossings of the dividing surface occur because strong sol- 

I I I I 
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-I 
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‘I 
q(t) 

0 
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___-___--_____-----_----------------------- 
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-11 " I I I 1 
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t 

FIG. 3. A representative set of trajectories governed by generalized Lange- 
vin dynamics for a cubic potential [ Eq. (3) ] under the influence of Gaus- 
sian friction [ Eq. (4) 1, for a static friction coefficient Q = I .O and a decay 
time constant 7D = 10. All trajectories were started at the barrier (q = 0). 
The maximum (q = 0) and minimum (q = - f) of the cubic potential are 
represented by dashed lines. Time I is given in reduced units, see the text. 
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vent forces can change the direction of motion of the reactive 
coordinate q. This limit has been referred to in the literature 
as the solvent caging regime. 4*9*‘o*24 In this limit trajectories 
which are initially headed toward products (dissociation) 
are just as likely to recross the dividing surface as those ini- 
tially headed towards reactants (the well), because recross- 
ing is cqntrolled by the solvent forces. For a = 20.0 the de- 
cay of k(t) to its plateau value is very different than the 
decay at a = 1 .O. The highly correlated and slowly damped 
oscillatory behavior is indicative of trajectories which re- 
cross the barrier repeatedly with a frequency determined by 
the solvent forces. Notice that the trajectories for a = 20.0 
shown in Fig. 4 all oscillate with amplitudes much smaller 
than the width of the well. Also, trajectories are seen to re- 
cross the q = 0 dividing surface repeatedly, even the trajec- 
tory which eventually reJaxes into the well. The damping of 
the oscillatory signal in k(t) occurs as the number of trajec- 
tories “trapped” by the “solvent cage” decreases, i.e., the 
number of trajectories which continue to recross the q = 0 
dividing surface decreases. Further exploration of the sol- 
vent caging effect is presented in Appendix A. Negative val- 
ues of k(t) indicate simply that the contribution of P - is 
greater than that of P + in Eq. (B), meaning that, at time t, 
there are more backward (initially towards reactants) tra- 

9(t) j-----j 

0 _____--_______-_____---------- 

-1 
0 20 40 80 80 100 t 
*I 

q(t) 

0 

w 

- - * - __----___---___---__------------- 

i -__--___-____-__-___------------------------- 
-1 1 I 0 I 

0 20 40 60 80 100 
t 

q(t) 

-1 I I I I 
0 20 40 80 80 100 

t 

FIG. 4. The same as Fig. 3 except for a static friction coefficient a = 20.0. 

jectories which are on the products side (q > 0) than there 
are forward (initially towards products) trajectories that are 
on the product side (q > 0). 

For intermediate coupling strengths, such as a = 7.0, 
the reactive flux illustrates an admixture of the behaviors 
seen at low and high coupling strengths. This admixture is 
also seen in the trajectories, a representative set of which are 
shown in Fig. 5. Notice that the singly recrossing trajectory 
resembles those at a = 1.0, while the multiply recrossing 
trajectory is more reminiscent of those at a = 20.0. 

The plateau values are presented in Fig. 6, which is a 
plot of various rate constants-normalized to the one-di- 
mensional conventional transition state theory rate constant 
[ Eq. ( 11) ]-as a function of the static friction coefficient a 
for a = 0.0 to a = 20.0. These results, as well as the values 
for a = 100.0, are listed in Table I. The plot (Fig. 6) covers a 
broad range of values of the static friction coefficient, en- 
compassing both the energy diffusion and spatial diffusion 
regimes. ‘-3V’5P’7,24 From the GLE simulation values, one sees 
that the Kramers turnover region’-3’15Y17 is between a = 1.0 
and a = 5.0. 

Notice in Fig. 6 that the rise and fall of the rate constant 
is given as a function of static friction coefficient a, which is a 
measure of the system-bath coupling strength, at fixed fric- 

‘- 
0 ___-____--____-_-___------------------------ 

-11 I , I I I 
0 20 40 60 00 100 
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‘3 
q(t) 

0 -_ _ - ___--___--____-_____----------------. 

w 
--- ____________________-----------------. 

0 20 40 60 80 100 
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FIG. 5. The same as Fig. 3 except for a static friction coefficient C-I = 7.0. 
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0.8 

Comparison to GLE Simulation 

j,. . (. , . ,&I 
- 0 5 10 15 20 

a 

FIG. 6. The ratio of the rate constant from three different calculations to the 
one-dimensional conventional transition state theory rate constant as a 
function of the static friction coefficient a (in reduced units). The decay 
time constant is fixed at a value of rD = 10. The solid line gives the GLE 
simulation results, the short dashed line the PGH results, the dashed line 
thepVTST results for 3 = 0 and the patterned dashed line the GH results. 

tion decay time constant, rD. In the literature, such Kramers 
plots are also given as functions of a variety of closely related 
but not necessarily equivalent quantities, such as pressure, 
viscosity, and damping. In particular, Straub et uZ.,‘~ in sim- 
ulations of rate constants for a bistable well under the influ- 
ence of an exponential friction kernel, plotted the ratio of k 
to km as a function of the static friction coefficient and the 
decay time constant. The time constant was related to the 
static friction coefficient by a simple constant of proportion- 
ality; hence as the static friction coefficient was increased, so 
also was the time constant. Because at high static friction 
this prescription yields extremely long decay time constants 
such that the system-bath frequency mismatch hinders en- 
ergy transfer, Straub et al. found the rate to be energy-d&- 
sion limited in this regime. In contrast, in the present work 
the decay time constant is kept fixed as the static friction 
coefficient is increased, and no evidence of rate-limiting en- 
ergy diffusion effects is seen at high static friction. 

TABLE I. Ratios of rate constants 

a &.a /km k t;y1s&s, k,,, /km km., &T 

1.0 0.44 0.99 
3.0 0.55 0.72 
5.0 0.52 0.55 
7.0 0.43 0.43 

10.0 0.29 0.29 
14.0 0.17 0.16 
20.0 0.097 0.080 

100.0 0.033 0.011 

where the perturbation parameter E is15 

l/2 
0.34 0.96 

1 
u@J=- , 

0.53 0.87 [ 1 E+l 
0.53 0.78 
0.46 0.67 
0.28 0.48 
0.045 0.21 
0.039 0.090 
0.010 0.011 The values of the remaining transformation parameters are 

not needed in practice. 
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In the energy diffusion regime (low static friction, 
a < 3.0) the simulation results rise from a limiting value of 
zero (not calculated) in the completely uncoupled limit, to a 
maximum of only - 0.6 in the turnover region (the value at 
a = 3.0, k,,,/k,, = 0.55, is not necessarily exactly at the 
maximum). Simple one-dimensional transition state theory 
overcounts the rate by 40% at its best. 

IV. COMPARISON OF PGH THEORY WITH SIMULATION 
A. Review of PGH theory 

In 1940 Kramers’ original paper” provided a challenge 
to theorists to provide a unified theory which could describe 
not only the energy diffusion and spatial diffusion regimes, 
but also the transition between them as a function of the 
system-bath coupling strength. A number of significant ad- 
vances have been made toward solving the Kramers tum- 
over problem.‘4*‘5~38*39 The most recent of these is the ener- 
gy-loss turnover theory of Pollak, Grabert, and Hiinggi 
( PGH ) , I5 a GLE based theory for the escape rate of a parti- 
cle from a metastable well. PGH theory is based on the idea 
that motion along the unstable normal coordinate at the sad- 
dle point-which is given by a linear combination of both 
system and bath coordinates-is more important for deter- 
mining the escape dynamics than is the system coordinate 
itself. 

The GLE, Eq. ( 11, may be transformed’.” into a cou- 
pled set of equations of motion for the unstable normal mode 
p and the stable “bath” normal modes &}, where the cou- 
pling is induced by the anharmonic part of the system poten- 
tial, V, (q) [ Eq. (3 ) 1. Note that the coordinates p and 4ji) 
are normal modes at the saddle point (p = 0, bi = O)), but 
are not the normal coordinates elsewhere on the potential 
unless the anharmonicity V, = 0. To zero order in the cou- 
pling the equation of motion for p is 

p4’*p= - W - (%Jph 
JP 

(12) 

while to first order in the coupling the ith bath mode equa- 
tion is 

j+ + ;1;y, = - UID av, - 04xlp), urn ap (13) 

where the eigenvalues, R *, {,l,), and eigenvectors, u, of the 
normal coordinate transformation are defined by the param- 
eters of the GLE.” In particular, the unstable normal mode 
barrier frequency along p is I6 

A ?* = 0”” 
1 + &A $)/A $1 ’ 

(14) 

and the zero-zero element of u, which measures the H 
overlap, is” 

(15) 

(16) 
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Solving the uncoupled equation ( 12) for the p motion 
and inserting this into the right-hand side of the stable mode 
equation ( 13) enables one to find the solution to the bath 
equations ( 13), which, in turn, enables one to evaluate the 
average energy lost by the ustable modep to the bath during 
one traversal of the well. ‘* 

The energy loss is given by the expressionM 

ds Re[g(is) If(s). 
a0 

(17) 

Re[g(is)] = d 
40 ( 

ae- ( 1/2,zrz, 

a*#e -” + Cl + s2 - as(2/J;;)D [ ( l/Jz)srD] 1” ) 

For the cubic oscillator,m f(s), which is the square of the 
Fourier transform of the force on the right-hand side of Eq. 
(12L is, 

f(s) = 167? (s/A*)[(s/;1*)*+ 11 
I 
* 

sinh(ns/il$) ’ 
(18) 

For a Gaussian friction kernel [ Eq. (4) ] the spectral density 
associated with the bath normal modes, Re[K( is) 1, is 

t (19) 

where 
x 

D(x) =e-2 
I 

dt et2 (20) 
0 

is Dawson’s integra141 and all other parameters are as pre- 
viously defined. 

From the average energy loss, the conditional probabili- 
ty P( E ]E ‘)dE that a particle leaving the barrier with energy 
E’ in thep mode returns to the barrier with an energy be- 
tween E and E + dE can be calculated. This conditional 
probability is then used to construct the steady-state energy 
distribution in the p mode, which can deviate significantly 
from the equilibrium Boltzmann distribution. Although we 
do not give the details here,” it is important to realize that 
PGH theory only allows for a nonequilibrium energy distri- 
bution for energies within a few k, T of the barrier-for en- 
ergies near the well minimum the distribution is assumed to 
be an equilibrium one. The escape rate is readily evaluated 
from the probability distribution, since particles reaching 
the barrier with energy in thep mode E > Yt react with prob- 
ability unity. The resultant expression for the escape rate is” 

k PGH =f2hs~ 9 (21) 
where 

fr=$exp[;l-Jm * ln(1 -e -/3AE(I +Jv4) 

--m 1+3 I. 
(22) 

In the reduced units used here, w. = w$ = 1 and ;1* gives the 
ratio of the unstable frequency (alongp) to the barrier fre- 
quency (along q). Note that the unstable frequency A t is 
exactly the reactive frequency of GH theory (see Sec. 
V B).42 

6. Results 

The ratio of the rate constants evaluated by PGH theory 
to the one-dimensional transition state theory rate constants 
are plotted against the GLE simulation results in Fig. 6. 
These ratios are also listed in Table I. 

In the energy ditfusion regime (static friction coefficient 
aG3.0) the PGH theory results correctly show a rise from a 

I 
limiting value of zero at zero coupling (a = 0). However, 
the PGH rate constant rises too slowly with increasing cou- 
pling strength, causing the rate at a = 1.0 to be 23% too low. 
Why is this? Recall that PGH theory assumes an equilibrium 
energy distribution for energies more than a few k, T below 
the barrier height, The full probability distribution is there- 
fore normalized by an equilibrium reactants distribution. If 
motion in the well is not ergodic, but can be decomposed into 
regular and irregular regions of phase space, then there will 
be regions of reactants phase space from which no reactive 
trajectories will arise. 43*44 In such a situation, normalization 
of the probability distribution by only those regions of phase 
space which contribute reactive trajectories would raise the 
rate constant over the PGH results, since the equilibrium 
distribution normalization used in PGH theory includes all 
regions of reactants phase space--both those that do and do 
not contribute reactive trajectories. Because the GLE simu- 
lations were performed by the reactive flux method, which 
effectively considers only the set of reactive trajectories 
which actually reach the barrier, the GLE simulation results 
imply normalization only by those regions of phase space 
which contribute reactive trajectories. Hence nonergodicity 
in the reactants region of phase space would cause the PGH 
results, which assume ergodicity, to fall below the GLE sim- 
ulation results as observed. In the model problem studied 
here all intermode coupling is induced by the system anhar- 
monicity, which is quite small near the well minimum,45 so it 
is likely that the well phase space will not be ergodic,46 espe- 
cially in the weak coupling (energy diffusion) limit. 

Another possible explanation for the underestimate of 
the rate constant by PGH theory in the energy diffusion 
regime is that the assumption that motion along thep mode 
can be treated only to zero order in the coupling is poor. It is 
possible that this assumption leads to an underestimate of 
the energy transfer to the bath. However, it is in the weak 
coupling energy diffusion regime that this assumption 
should be the most accurate, while the comparison of the 
rate constants to simulation show the largest deviation (in 
the range 1 .O<a< 10.0) at the lowest coupling, a = 1 .O. Fur- 
thermore, the perturbation parameter E which provides a 
measure of the validity of the perturbation theory is signifi- 
cantly less than one for this range of coupling strengths (see 
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Table II), indicating that perturbation theory should be val- 
id. 

At larger values of the static friction coefficient, the 
PGH results switch from a slight overestimate of the simula- 
tion results to a gross underestimate of the simulation re- 
sults. The poor performance of PGH theory for large values 
of the static friction coefficient for the system studied here is 
easily understood. PGH theory is only reliable when the 
average energy loss is significantly smaller than the barrier 
height, that is AE /Q t 4 1, where Q t is the effective barrier 
height along thep coordinate.” For the cubic oscillator un- 
der the influence of a Gaussian friction kernel, the effective 
barrier height along p is 

Qt= g 6Vt. 
( > 

(23) 

Note that the effective barrier height along p, Qf, can be 
much smaller than the barrier height along q, V’. The ratio 
AE/Q $ starts at 0.09 for a = 1.0 and increases to 0.99 at 
a=5.0.Thisratiois2.3fora=7.0and61.9fora= 100.0. 
Clearly PGH theory is unreliable for a- 5.0 and larger. 
Further discussion of the error in PGH theory for strong 
coupling for the system studied here will be left to Sec. VI B, 
the discussion of the pVTST results. 

V. COMPARISON OF GH THEORY WITH SIMULATION 
A. Review of GH theory 

The Grate-Hynes extension of Kramers theory 
(GH),“j*” is a generalized Langevin equation based rate 
theory. The GH rate expression, which assumes a parabolic 
barrier, corrects the one-dimensional transition state theory 
rate constant for recrossings of the dividing surface caused 
by the presence of the bath, i.e.,r6 

lCGH = -$k,D,, 

where R * is the reactive frequency defined by Eq. ( 14) and 
k IDTST is given by Eq. ( 11) . In the reduced units used here 
wZ = 1 and R t gives the ratio of the reactive frequency to the 
barrier frequency. Although the GH expression was not ori- 
ginally derived within a transition state theory formalism, it 
has been shown to be equivalent to multidimensional con- 
ventional harmonic [ V, ~0 in Eq. (3) ] transition state the- 

TABLE II. The parameters of the reduced two degree of freedom Hamilto- 
nian Ht [ Eq. (25) ] as a function ofthe static friction coefficient a, given in 
reduced units (see the text). yf = 2/27 for all (z, Afl* is a measure ofenergy 
transfer [ Eq. (26) ] and E is a measure of the coupling strength [ Eq. ( 16) 1. 

a 

1.0 0.92 0.010 0.999 0.019 O.cQl 
3.0 0.76 0.013 0.996 0.019 0.004 
5.0 0.61 0.016 0.990 0.019 0.010 
7.0 0.45 0.020 0.976 0.019 0.024 

10.0 0.23 0.037 0.894 0.020 0.118 
14.0 0.045 0.134 0.285 0.047 2.51 
20.0 0.008 0.342 0.03 1 0.27 31.4 

100.0 0.0001 0.847 0.000 26 5.80 3872. 

~ry.~**~’ In conventional transition state theory a planar di- 
viding surface is placed orthogonal to the unbound mode at 
the saddle point-no optimization of the dividing surface is 
performed. 

B. Results 

The ratios of the GH rate constants to the one-dimen- 
sional transition state theory rate constants are shown in Fig. 
6 and listed in Table I as a function of the static friction 
coefficient. The results in the energy diffusion regime (low 
static friction, a(3.0) are as expected. The GH theory is a 
multidimensional transition state theory calculation, and it 
reduces to the one-dimensional transition state theory result 
in the limit of zero coupling. Hence, for this theory 
k/k,, = 1 for a = 0. The transition state theory result is 
incorrect in the weak coupling regime because it assumes an 
equilibrium canonical distribution of reactant states, when 
in fact population of states with energy greater than the bar- 
rier height is the rate limiting step.2Y5 

As the static friction coefficient is increased, the GH 
rate constant drops rapidly. This rapid drop in the energy 
diffusion regime means that multidimensional effects on the 
spatial diffusion are sizcable even for coupling strengths for 
which the rate is still controlled by energy diffusion. It is the 
significant contribution of spatial diffusion effects at weak 
coupling which causes the low maximum (-0.6) in the 
GLE simulation curve. Despite the rapid drop in the GH 
rate constant, the GH results are still significantly larger 
than the simulation results at these intermediate to strong 
coupling strengths. As stated above, GH theory is a multidi- 
mensional TST in which the dividing surface is not opti- 
mized. It is the poor choice of dividing surface which causes 
GH theory to overestimate the rate constant; see Sec. VI B 
for further discussion of this point. 

Finally, at very large coupling strengths (a = 20.0), the 
GH result actually falls below the GLE simulation results. 
This trend is continued at extremely high coupling, 
a = 100.0 (see Table I). Here the GH result falls - 3 times 
below the GLE simulation result. A poor choice of dividing 
surface can only raise the value of a transition state theory 
rate constant.48*49 Since the GH rate constant is lower than 
the simulation result, the deviation must be caused by the 
other main assumption of GH theory, that the anharmoni- 
city V, [ Eq. (3 ) ] is zero. For a cubic oscillator, inclusion of 
the anharmonicity would indeed raise the rate constant over 
the GH (harmonic) value (see Sec. VI B for more detail) .50 
The present simulation demonstrates that GH theory does 
not provide an upper bound to the rate constant in all cases. 

VI. COMPARISON OF pVTST WITH SIMULATION 
A. Review of pVTST 

Like GH theory,r6 pVTST” is a multidimensional 
transition state theory (for reviews of multidimensional 
transition state theory see, e.g., Refs. 48,49). In contrast to 
GH theory, pVTST allows for optimization of the dividing 
surface as a function of energy in a reduced dimensionality 
space comprised of an unstable mode, p, and a collective 
bath mode, u. ThepVTST also includes the effects of anhar- 
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monicity in the system potential by allowing for V, #O in 
Eq. (3). In PVTST the dividing surface is defined by the 
periodic orbits of a reduced two degree of freedom effective 
Hamiltonian, 

Hf=&? +@ + +-~~2p’ P 4 
+@‘a”+ V*(u,p+u,a), (25) 

where all parameters are defined in terms of parameters of 
the GLE [i.e., W(q) ,y( t) 1. The unstable normal mode fre- 
quency R r in Eq. (25) is the unstable frequency of PGH 
theory [ Eq. ( 14) ] which is also the reactive frequency of 
GH theory. 42 The collective bath mode frequency fi is given 
by 

f-y = u: 
(u&/A E2> - ( l/wf2) ’ 

(26) 

where 
11, s [ 1 - z& ] “2. (27) 

Note that the unstable coordinatep of,uVTST is exactly the 
unstable mode p of PGH theory; PGH theory is based on a 
one degree of freedom effective potential, whereaspVTST is 
based on a two degree of freedom effective potential. 

The PVTST rate constant is”’ 

P2a k’-T=/ICCH - 
2n 

dEf e-PEtFtot (El), (28) 

where it is assumed that the harmonic approximation is valid 
in the reactants well. Here E $ is the energy of the reduced 
Hamiltonian HI, and the flux through the dividing surface 
at energy E $ is 

Fto, (E $) = 23/2 (2~n’)lnSd~e-‘B/2~~yz,~~z, 

xc do[l +($+S’+&y]ln 

x [E * - V&a) ] 1’2. (29) 

The sigma integration in Eq. (29) is a line integral along the 
dividing surface, g( a,E *), at fixed energy E $, and V(g,cr) is 
the potential of the reduced Hamiltonian H * along g( a,E t, 
at this energy. The coordinate 2 represents energy transfer 
from the rest of the bath to the collective bath mode c, and 
hence to the reduced Hamiltonian H*.18 The width of the 
statistical fluctuations which cause this energy transfer is 
determined by the frequency shift parameter Afl2 which is 
given by 

(30) 

where the spectral density Re[z( is) ] is given in Eq. ( 19) for 
a Gaussian friction kernel. Note that kpmT provides an 
upper bound to the rate constant (provided that the assump- 
tion of harmonic reactants is valid). 

As discussed in Ref. 18, Aa2 is expected to be small, and 
hence it is expected that 9~0, when there is a large time 
scale discrepancy between reactive and bath motions. Thus, 
in the current work, where rD = 10, it should be a good 
approximation to assume that energy transfer contributions 
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to the two degree of freedom Hamiltonian are small and to 
set 2 = 0 in the sigma integral. Under this approximation, 
the Aux in Eq. (29) becomes simply the spatial diffusion 
component, i.e., 

F,,, (Er;A? = 0) = 23’2 c dcjl +(.f$r]“2 

x [E x - V(w) 1 1’2, (31) 

which is also the exact flux expression for the isolated Ham- 
iltonian Hz .I8 The periodic orbit dividing surface 
(pods)5’-54 of HS at energy E’ is exactly the path which 
minimizes this flux expression, F,,, ( Et;9 = O),” and the 
optimum dividing surface g( o,E $ ) is thus the set of all pods 
of the Hamiltonian Ht. The approximate rate constant 
k %Yz is 

A’ p2n k “s’z”;f = k,,, - - 
ws 277 I 

dEt e-BEtF (ES*9 = 0). tot 9 

(32) 
Note that including the energy transfer contributions can 
only raise the rate constant over the 9 = 0 result, because 
only trajectories crossing the dividing surface from reactants 
towards product are counted in the transition state theory 
formalism. ” 

When the pods of the Hamiltonian H* are used as the 
energy dependent dividing surface g( (T, E $ ) , the 3 = 0 rate 
constant, k IrvTs7( S = 0), may provide a more accurate es- 
timate of the rate constant than the full result including the 
energy diffusion contribution, kpvTST. This is possible be- 
cause the pods are an optimized dividing surface for the spa- 
tial diffusion contribution to the flux but not for the energy 
diffusion contribution to the flux. Hence, although the spa- 
tial diffusion through the pods provides an accurate measure 
of the spatial diffusion from reactants to products, the ener- 
gy diffusion through the pods is likely to be an overestimate 
of the contribution of energy diffusion to the overall flux 
from the reactants to products. Thus, although the 9 = 0 
result is lowered because of the neglected energy diffusion 
contribution, it may be closer to the true value than is the full 
result k pvTsT if the energy diffusion contribution is greatly 
overestimated. In order to provide a more accurate result 
than k*VTST(L?’ = 0), kpVTST [Eq. (28)] would have to be 
evaluated with a dividing surface g( a,E’ ) which was opti- 
mized to simultaneously minimize the spatial and energy 
diffusion contributions to F,,, (E $) [Eq. (29) 1. Since a 
practical method for generating this completely optimized 
dividing surface is not available, we focus on the calculation 
of the k pVTST( d” = 0) for which the optimized surface is 
known. The full calculations of kpvmT using the pods are 
presented in Appendix B for comparison. 

Contour plots of the reduced dimensionality Hamilto- 
nian HS for the cubic oscillator under the influence of a 
Gaussian friction kernel are shown in Fig. 7 for three values 
of the static friction coefficient, a = 1.0, 7.0, and 20.0. Pa- 
rameters of this Hamiltonian are given in Table II for all 
values of the static friction coefficient considered. Also given 
are the parameters ACt2, a measure of the neglected energy 
transfer [ Eq. (30) 1, and E, which is an additional measure of 
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FIG. 7. Contour plots of the reduced two degree of freedom effective Hamil- 
tonian [Eq. (25)] forthecubicpotential [Eq. (3) ] with aGaussian friction 
kernel [ Pq. (4) ] with decay time constant rD = 10 and static friction coef- 
ficients of (a) a = 1.0, (b) a = 7.0, and (c) a = 20.0. Contours are at ener- 
gies - 0.6, - 0.25 (dashed lines); 0.01,0.075,0.25, and 0.45 (solid lines). 
Ah quantities are given in reduced units, see the text. 

coupling strength [Eq. ( 16)]. For no coupling, a = 0, the 
reduced Hamiltonian would simply be two uncoupled oscil- 
lators, a cubic oscillator of frequency ;1* = w* and a har- 
monic oscillator of frequency R. As the coupling is in- 
creased, the frequency /z $ decreases while the frequency fi 
increases. The increase in nonlinearity with increasing cou- 
pling strength a is illustrated by the increasingly skewed 
nature of the potential. Note that ,l t and R are normal mode 
frequencies at the barrier, and at large coupling are not the 
same as the normal mode frequencies in the well. The pods 
for H’ for a = 7.0 are shown in Fig. 8, for energy Ef (in 
reduced units) ranging from 0.074 to 0.1189 in increments 
of -0.001 87. Notice that the pods move away from the 
saddle point as the energy is increased. This behavior is ex- 
pected because, at higher energies, the available phase space 
in the barrier region is greatly increased by the anharmoni- 
city in a, and thus the bottleneck to reaction occurs in the 
much narrower well region.” 

It is important to note that for a metastable well pods do 
not necessarily exist for all energies above the barrier. A pods 
is only required to exist in (or bounding) the interaction 
region if there exists both a reactants trap and a products 
trap.54 A reactants (products) trap is defined as a region of 
the potential from which all trajectories proceed to reactants 
(products). For a metastable well, at high enough energy, 
trajectories from anywhere in the well can proceed to prod- 
ucts, and there exists no well defined reactants trap. Pods are 
thus not required to exist. For the case at hand, pods are 
found at all energies needed for convergence of the Boltz- 
mann integral [Pq. (32)] for a = 10.0 to a = 100.0. For 

Pods for a = 7.0 

-2 -1 0 
P 

1 

FIG. 8. Periodic orbit dividing surfaces (pods) as a function of the energy of 
the two degree of freedom effective Hamiltonian [ Pq. (25) ] for static fric- 
tion coefficient a = 7.0 and decay time constant r, = 10. Pods are shown 
for 25 energies ranging from 0.0741 to 0.1189 by intervals of -0.001 87. 
Contour levels are at Et equal to - 0.2, - 0.06 (dashed lines); 0.02,0.045, 
0.0747,0.09,0.11, and 0.15 (solid lines). All quantities are given in reduced 
units, see the text. 

aG7.0, pods are found to exist for energies from the barrier 
height to a maximum energy, E i, , where E f,,, is less than 
the total energy required for convergence of the Boltzmann 
integral. The value of E i,, decreases with decreasing cou- 
pling strength. In order to allow for convergence of the 
Boltzmann integral for each aG7.0, the pods for E $ = E k, 
is used as the dividing surface for all E $>E f,,, . As will be 
seen in the results, E ian is significantly less than the energy 
needed for convergence of the Boltzmann integral only for 
such weak coupling strengths that energy diffusion becomes 
the rate limiting mechanism for reaction. Transition state 
theory fails in this regime anyway. 

B. Results 

Like the GH theory, thepVTST theory is a multidimen- 
sional transition state theory calculation, and it reduces to 
the one-dimensional transition state theory result in the limit 
of zero coupling. Hence the results are incorrect in the weak 
coupling limit. In this limit a theory which allows energy 
transfer to be the rate limiting step, such as PGH theory, is 
required. 

Comparison of the ,uVTST ($” = 0) result to the GH 
result in the energy diffusion regime (Fig. 6) shows that for 
a > 1 .O the ,uVTST result drops much more rapidly with in- 
creasing static friction than does the GH result. As stated 
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previously, both GH andpVTST are multidimensional tran- 
sition state theories. However, they differ in that ,uVTST 
includes the effect of the anharmonicity of the cubic poten- 
tial on the rate constant and allows for optimization of the 
dividing surface in a reduced dimensionality space while GH 
does neither. For a cubic oscillator, the anharmonicity Y1 
[ Eq. (3) ] is negative and it will therefore cause an increase 
inthetotalfluxF;,,(JZ*;S =O) [Eq. (31)] andintheratio 
of the /LVTST rate constant to the harmonic ( V, = 0) GH 
estimate as seen by Eq. (32). For very small coupling 
strengths (a< 1 .O), the optimized dividing surface used in 
,uVTST differs very little from the conventional dividing sur- 
face used in GH theory. It follows that the dominant differ- 
ence between the two rate theories in this regime is the inclu- 
sion of anharmonicity, and the ,uVTST rate constant is 
larger than the GH rate constant. 

For a > 1 .O the GH result is larger than the PVTST re- 
sult, indicating that inclusion of anharmonicity does not 
dominate the difference between the two theories in this re- 
gime. The difference must instead be due to optimization of 
the dividing surface. Multidimensional transition state theo- 
ry provides a rigorous upper bound to the rate constant if no 
approximations are made in the evaluation of the rate ex- 
presSionS.48'49,"-"4 This property allows for variational opti- 
mization of the dividing surface, the best dividing surface 
being that which gives the lowest rate constant, or equiv- 
alently, that which gives the minimum flux through itself. 
Although in PVTST the energy dependent dividing surface 
is not optimized to minimize the exact flux expression, 
F,,, (B f, [ Eq. (29) 1, at each energy, it is optimized to mini- 
mize the exact flux expression, F,,, (E $;.L? = 0) [ Eq. (3 1) 1, 
for the effective two degree of freedom Hamiltonian Hf. 
Therefore ,uVTST would be expected to give a lower rate 
constant than GH theory, in which no optimization of the 
dividing surface is performed. From Fig. 6, this is clearly the 
dominant effect. 

In the spatial diffusion regime (a > 5.0) there is strik- 
ingly good agreement between thepVTST and the GLE sim- 
ulation results, especially in contrast to the GH results for 
a< 14.0 (see Table I). In this range of coupling, variational 
optimization of the dividing surface is clearly necessary for 
good agreement with the simulation results. It is encourag- 
ing that ,uVTST, which uses a dividing surface optimized for 
the isolated two degree of freedom effective Hamiltonian 
HI, is in such good agreement with the simulation results. It 
is possible that overcounting due to insufficient optimization 
of the dividing surface is being cancelled by underestimation 
of the rate due to neglect of energy transfer to the effective 
Hamiltonian Ht (setting Z’ = 0). For a = 10.0, an upper 
bound on the size of the energy transfer contribution is esti- 
mated to be about 15% of the 9 = 0 result. This estimate 
was found by comparing k pVTST using the full flux integral 
F,,, (E *) [ Eq. (29) ] for the pods dividing surface to 
k pvnT( 9 = 0) [ Eq. ( 32) 1. Since the pods dividing surface 
is not optimized for the energy diffusion contribution, 
k pVTST/k pVTST( b” = 0) is likely an overestimate of the ac- 
tual energy diffusion contribution (see Appendix B for de- 
tails). Also, the width parameter Aa*, which controls the 
amount of energy transfer, is very small, on the order of 

0.019 in reduced units for l.O<a<lO.O (see Table II). The 
width parameter is significantly larger than this value for the 
first time at a = 14.0, where Aa2 = 0.047, and here the 
PVTST (3 = 0) result is slightly lower than the GLE simu- 
lation result. 

Comparing the PVTST results and the PGH results for 
intermediate to strong coupling (LO(a<lO.O) in Fig. 6 
shows that although the PGH results are in very good agree- 
ment with the simulation results, the PVTST results are 
more reliably so. That is, the ,uVTST curve has the correct 
curvature (as compared to the GLE results), whereas the 
PGH results do not, indicating that the accuracy of the PGH 
results may be somewhat fortuitous. 

In Sec. IV B it was suggested that PGH theory is unre- 
liable for ~5.0 because the effective barrier height along the 
reactive modep is not substantially larger than k, T. In Fig. 
9, one traversal of thep mode well is plotted on the effective 
two degree of freedom potential used in the ,uVTST calcula- 
tions (both quantities are for intermediate coupling strength 
a = 10.0). The p mode well is defined simply by setting the 
value of the collective bath mode (T equal to zero in the two 
degree of freedom potential. Clearly, the minimum along the 
p mode is much shallower, Q * = 0.00 13 or O.l8k, T, than 
the minimum of the well in the two degree of freedom poten- 
tial. In fact, for the two degree of freedom potential the bar- 
rier height relative to the well minimum remains fixed at V* , 
that is at lOk, T in this case. 

a = 10.0 

2.0 
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FIG. 9. The periodic orbit dividing surface (pods)-heavy solid line-of 
the two degree of freedom effective Hamiltonian [ Pq. (25) ] for static fric- 
tion coefficient a = 10.0, decay time constant rD = 10 which gives the max- 
imal contribution to the flux at temperature fl= 135. Also shown is the 
PGH trajectory along the reactive mode p (heavy dotted line). Contour 
levels are at Et equal to 0.0,0.03,0.055, and 0.065 (dashed lines); 0.074 08, 
0.076,0.079 34, and 0.09 (solid lines). All quantities are given in reduced 
units, see the text. 
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Also shown in Fig. 9 is the pods of the effective two 
degree of freedom Hamiltonian which gives the maximal 
contribution to the reactive flux for temperature fi = 135. 
This pods defines a division between reactants and products. 
From Fig. 9 one sees that the PGH trajectory never traverses 
the full well; it never even enters the reactants region. PGH 
theory does as well as it does for 5.0<a( 10.0 because energy 
transfer in the well region is very limited,45*46 and most of the 
energy transfer actually takes place in the interaction region 
between the barrier and the well, which is explored by the 
PGH trajectory. At higher values of the coupling, i.e., 
aa14.0, the PGH trajectories no longer explore even the 
interaction region sufficiently, and the PGH theory rate con- 
stants drop significantly below the simulation values. The 
failure of a perturbation theory based on this one-dimension- 
al model for a) 14.0 is confirmed by the significant increase 
in the perturbation parameter E to values greater than one at 
large coupling strengths (see Table II). 

strength. This deviation is attributed to a breakdown of the 
assumption that phase space is ergodic in the well region. 

In contrast, at very large coupling strengths (a = 20.0), 
thepVTST result is again only slightly lower than the simu- 
lation result because of the neglected energy diffusion term. 
Here the width parameter for the energy transfer is an order 
of magnitude larger than at lower a’s, i.e., AR* = 0.27. It is 
not until the extreme value of a = 100.0 that the error in the 
PVTST (9 = 0) results approaches that in the PGH re- 
sults. Here the width parameter is yet another order of mag- 
nitude larger, Aa* = 5.80. 

At intermediate to strong coupling, that is, in the spatial 
diffusion limit, the PVTST rate constants agree almost ex- 
actly with the simulation rate constants, indicating that the 
effective two degree of freedom Hamiltonian is an excellent 
model for the full dissipative problem. In contrast, the GH 
rate constants in this coupling regime are nearly a factor of 
two larger than the simulation and ,uVTST rate constants. 
The PGH rate constants agree quite well with the simulation 
results in this regime, but this may be somewhat fortuitous. 
The curvature of the plot of the PGH rate constants vs the 
static friction coefficient (coupling strength) is incorrect as 
compared to the simulations. This curvature is correct for 
the PVTST results. Theoretically the PGH results are ex- 
pected to be unreliable in this regime because the effective 
barrier height along the reactive coordinate (which is rel- 
evant only to PGH theory) is not significantly larger than 
k, T. Concurrently, the use of a one-dimensional model for 
the zero order approximation becomes questionable. The 
two degree of freedom model used in PVTST provides a 
much better representation at stronger coupling strengths. 

VII. CONCLUSIONS 
Two multidimensional transition state theories and one 

energy transfer theory, all of which were derived under the 
assumption of generalized Langevin dynamics, have been 
tested against computer simulations of the generalized Lan- 
gevin equation for a cubic oscillator under the influence of a 
much slower bath characterized by a Gaussian friction ker- 
nel. In particular the microcanonical variational transition 
state theory for dissipative systems @VTST) of Tucker and 
Polk& is considered in comparison to the energy-loss turn- 
over theory of Pollak, Grabert, and HZnggi (PGH) and to 
the Grote-Hynes extension of Kramers theory (GH). The 
PVTST theory, which is based on an effective two degree of 
freedom Hamiltonian with a reactive mode and a collective 
bath mode, is considered in the limit that barrier crossing 
induced by energy transfer from the bath to the effective two 
degree of freedom Hamiltonian is negligible. This should be 
a good approximation in the case that the time scale of the 
bath motion is significantly slower than the time scale of the 
reactive motion, which is the situation studied here. 

PGH theory fails as the coupling is further increased. 
The one-dimensional model does not provide an adequate 
description of the dynamics. In contrast, the PVTST rate 
constant drops only slightly below the simulation rate con- 
stant as the neglected energy-transfer-induced barrier cross- 
ing ceases to be negligible. The GH results also drop below 
the simulation results, a sign that, in this regime, the neglect 
of anharmonicity outweighs the effects of using the conven- 
tional dividing surface. Finally, at extremely large coupling, 
none of the rate theories is in acceptable agreement with the 
simulation results. They are all significantly low. 

The very good agreement of the PVTST results, which 
are based on a dividing surface which is optimized for the 
isolated effective two degree of freedom Hamiltonian, to the 
simulation results in the spatial diffusion regime is signifi- 
cant. The deviation of the GH results indicates that optimiz- 
ation of the dividing surface can be as important in dissipa- 
tive systems as it has been shown to be in gas phase systems. 
Yet, from the agreement of thepVTST results, it is clear that 
the reduced subspace of the effective two-dimensional Ham- 
iltonian allows enough variation for sufficient optimization 
of the dividing surface. 

ACKNOWLEDGMENTS 

In the limit of weak coupling, i.e., in the energy diffusion 
limit, neither transition state theory (GH or PVTST) gives 
rate constants which agree with the simulation rate con- 
stants. This failure is expected, because all transition state 
theories assume an equilibrium distribution of reactants 
when, in fact, population of reactants with energy greater 
than the barrier height is the rate limiting step in this regime. 
In this regime PGH theory correctly predicts a rise in the 
rate constant from a value of zero in the limit of no coupling. 
As compared to the simulation results, however, the PGH 
rate constant rises too slowly as a function of the coupling 

We would like to thank Kaushik Ghosh for useful dis- 
cussions on functional analysis and Miguel Sepulveda for 
providing a trajectory integration subroutine based on the 
NAG library. This work has been supported by grants from 
the National Science Foundation (No. CHE-87-00522), the 
U.S.-Israel Binational Science Foundation and the Petrole- 
um Research Foundation. 

APPENDIX A: THE CAGING EFFECT AT LARGE 
COUPLING 

At very large system-bath coupling strengths, motion 
along the system coordinate Q in the barrier region will be 
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highly oscillatory if there is a sufficient time scale disparity 
between system and bath motion. This highly oscillatory be- 
havior, as illustrated by trajectories with static friction coef- 
ficient a = 100 (see Figs. 10 and 11) has been referred to in 
the literature as the solvent caging effect.4*9,10*24 Below, we 
show that the observed oscillations along the system coordi- 
nate q can be explained both from the traditional caging 
point of view4*9*‘0*24 and from an alternative normal coordi- 
nate point of view.‘5*55 

In the traditional view of solvent caging, the slowly 
moving solvent is said to form a rigid cage around the disso- 
ciating solute. The fast moving solute oscillates many times 
within this cage before solvent motion breaks the cage and 
allows for solute dissociation. This view of the system coor- 
dinate can be determined from the GLE when the decay of 
the friction kernel (i.e., the correlation time for the random 
force) is very slow compared with oscillations in the system 
motion. First, the GLE is rewritten as 

m@= dW 
- - + WMW - myWq(t) 

4 

- my(O) 4(T) + &a, (Al) 

where the memory integral has been integrated by parts. For 

q(t) I 
0 

,--------------------------------------------- 
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t 
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-I’ , ‘ , I 
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t 
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I 

0 

FIG. 10. The same as Fig. 3 except for a static friction coefficient a = 100.0. 
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t 

FIG. 11. The ratio A(t) = k(t)/&, of the reactive flux to the one-dimen- 
sional conventional TST rate constant as a function of time for simulation of 
GLE dynamics with static friction coefficient a = 100. 

the Gaussian friction kernel, given that q(O) = 0, the GLE 
becomes 

mij= dW - - - my(O) (q(f) - a[q,f I) + &I, 
4 

(A21 

where 

a[q,t] =$- 
I 

td7(t--7)e-‘r-r’z’~q~~). 
D ’ 

(A31 

If the decay constant rD is large, the contribution from 
a [ q,t] will be negligible since +< t)/~( 0) goes as l/?D. Un- 
der these conditions the GLE becomes 

d mgz -- 
& [ 

W(q) + -+ v(O)!? + !c(O, 1 (A41 

as shown in Ref. 24. The effective potential in the square 
brackets is plotted along with W(q) in Fig. 12. For the cubic 
potential with m = 1, this effective potential is strongly har- 
monic around q = 0 with a frequency of 

0 = [y(O) - 1]“2, (A51 
where y(O) = m(a/T, ). For fixed r,, the degree to 
which the system coordinate q will exhibit high frequency 
oscillations is determined entirely by a. For small enough a, 
w2 < 0, and q will exhibit the behavior of an unbound mode. 
Fora= 100andrD = 10, w = 2.64, in agreement with the 
frequency of oscillations seen both in k(t) (Fig. 11) and in 
the simulated trajectories (Fig. 10). However, the approxi- 
mate GLE in Eq. (A4) predicts that the trajectories would 
oscillate around q = 0 for long times. A closer look at Fig. 10 
shows that the high frequency oscillations continue for very 
long times, but the minimum around which these oscilla- 
tions occur drifts over time. This drift occurs because 
rD = 10 is not large enough for a [ q,t] to be completely ne- 
glected. 
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To understand the effect of a [ q,t] , an effective poten- 0.200 

tial-which explicitly includes a [ q,t] -from which the 
GLE in the form of Eq. (A 1) can be derived exactly is con- 
sidered. The force my(O)a[q,t] in Eq. (A2) is nonlocal in 0.150 

time and therefore depends on the entire history of q(t). 
Such a force can only be derived from a nonlocal potential 0.100 

and is thus written as a nonlocal or functional derivative of W(q) 
such a potential with respect to the function q(t). Denoting 
the nonlocal potential as .W’=, [q,t 1, the GLE is written in 

0.050 

the form 

mq= - STeIT [w 1 
&?U) 

+ at). (A61 

In order to find a nonlocal potential which will give back 
the GLE, the deterministic part of the force on the right- 
hand side of Eq. (A2) is functionally integrated, giving an 
effective potential of the form 

we,, LqJ 1 = - dz[ W(q(z) 1 

+ ImY(O){dz) - dq,d)2] + dq,t ],(A71 

where W(q(z) ) is the ordinary potential of mean force, Eq. 
( 1). Note that because ?Ye, [q,t ] is obtained by functional 
integration, it has the dimensions of an action. The nonloca- 
lity of the effective potential is reflected in the integral over z 
which is an integral over all time. The additional functional, 
E[q,t], is required because the functional derivative of the 
first term does not yield the GLE exactly. The term E[q,t] 
corrects for this. Explicitly, the functional derivative of Eq. 
(A7) is 
srr, [at 1 

Sq(r) 
=&t-z) 
&7(t) 

+ my(O) (q(z) - 4q,zl> 

>I 
If e[q,t] is chosen such that 

- WqJl _ 
s SqW 0 dz my(O) (q(z) - 4wl) +$, (A9) 

We, [q,t ] will reproduce the GLE exactly. By functionally 
differentiating Eq. (A9) with respect to q(t ‘), the second 
derivative of E[q,t] can be shown to be independent of q 
altogether. Thus c[q,t] can be computed exactly from the 
functional Taylor series taken out to second order in q. The 
result is 

- dz’q(z)j(Iz-z’I)q(z’) 

-Flow dz[dTld#q(T) 

x icz - dj(z - +I 
Y(O) 

q(6). (AlO) 

By transforming to dimensionless variables in Eqs. (A7) 
and (AlO), it becomes clear that e[q,t] is smaller than the 
harmonic term in Eq. (A7) by a factor of l/rD so that it may 

0.000 

-0.050 

-0.100 ’ I I I II I 
-1.5 -1.0 -0.5 0.0 0.5 1.0 

9 

FIG. 12. The effective caging potential as given by Eq. (A4) (dashed line) 
plotted against the true potential F’(q) given by Eq. (3) (solid line). Here, 
m = 1, y(O) = d2/lr(&,), a = 100, and r, = 10. 

be neglected for the purposes of this analysis. 
Neglecting g[q,t] is equivalent to neglecting the de- 

pendence of a [ q,t] on the endpoint of the path (i.e., q at time 
t). If this approximation is made, then 

Spelt t!ht 1 co dz 
Sq(t) 

-E- 1 m?(z)) 
&IO) 

+ -@y(O) (q(z) - 4wl 12]&f - z) 

=---& [W(q) +pny(O)(q(G -44Jl)2]p 
(All) 

where a [ q,t] is now assumed to be independent of q at time t. 
This approximation amounts to replacing the effective non- 
local potential by a local one of the form 

W, (q,d = W(q) + @qW (4 - a[q,t 1 12. (A=) 

Like the potential in Eq. (A4), the potential in Eq. (A12) 
has a strong harmonic component for large y( 0), but it also 
has a time-dependent minimum. For the cubic potential of 
Eq. (3) (m = l), Eq. (A12) becomes 

we, (et) = v - &t - ;q3 + @UN (4 - ar.q,t 1 12. 
(A13) 

The position of the minimum is obtained by solving the qua- 
dratic equation h’W,,/aq = 0 which yields the two roots 

q* (0 = f[y(O) - 11 f Jgrm - II2 - $YKm[qJ I* 
(A14) 

From the second derivative of W,, (q,t), it can be seen that 
q- (t) is the position of the minimum while q+ (t) is the 
position of the barrier at time t. By evaluating the second 
derivative of W,, (q,t) at q = q _ , the time-dependent fre- 
quency is found to be 
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o(r)+$qJ* 
= [y(O) - 1 - 3q- (G] I’*. (A15) 

To see how well the approximate effective potential of 
Eq. (A12) represents the true effective potential, q _ (t), 
computed from each of the three trajectories in Fig. 10, is 
plotted in Fig. 13. This plot shows that q- (t) follows the 
trajectory q(t) extremely well. Although it is difficult to see 
from the two figures, there is a slight time shift between the 
two, i.e., q _ (t) is slightly ahead of q( t). This is, no doubt, 
the result of neglecting c[q,t] . However, the approximate 
effective potential seems to be a very good representation of 
the true effective potential for this case. Figure 10 also shows 
that the frequency of oscillation in q(t) does not vary much 
except for the reactive trajectory. According to Eq. (Al5 ), 
the frequency should not vary much unless q _ (t) becomes 
large. For the reactive trajectory in Fig. 10, this is indeed the 
case, and the frequency of oscillation decreases steadily for 
f > 100 as q(t) goes off towards products. 

The caging effect can also be understood without intro- 
ducing an effective potential along the system coordinate q. 
Instead, one makes the observation that at large system- 
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FIG. 13. The position of the minimum of the effective potential [Eq. 
(A14) ] as a function of time corresponding to the three trajectories in Fig. 
10. 
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bath coupling strengths the system coordinate q does not 
coincide with the local reaction coordinate-the unbound 
mode-at the saddle point. Thus motion along the system 
coordinate q will have a large bound component orthogonal 
to the unbound mode, causing motion along q to be oscilla- 
tory. Below we examine the oscillatory behavior of the 
bound component of q for a = 100. This behavior is derived 
from the GLE equivalent Hamiltonian with system coor- 
dinate q and bath modes lx,), by following the work of Pol- 
lak, Grabert, and HHnggi.‘5*‘9 

The system coordinate q can be written as a linear com- 
bination of the normal coordinates, (p,bi}), of the GLE 
equivalent Hamiltonian used in PGH theory, i.e., 

q=%Jop+u,~, 
where 

(A161 

CT=+ U,Y,. (A17) 
I 

In the limit of very large coupling strengths uoo is very 
small-for a = 100 uoo = 0.016-and 

W8) 

Thus the spectral density of the bath normal modes 
WfW)l [Eq. (WI can be analyzed to understand the 
characteristic frequency of motion exhibited by the system 
coordinate q. At large coupling strengths, the spectral den- 
sity of the bath normal modes is dominated by the single 
frequency ss at which 

[ 
l+$ -as6 $D(++] =Q (A19) 

since 
1 Re[?(is,)] =-e + (l/2,4& 

au& 
, (A201 

which, while still finite, is extremely large. For a = 100, 
s6 = 2.64, in agreement with the observed frequency of oscil- 
lation of the trajectories q(t) (Fig. 10) an< in agreement 
with the caging analysis. The spectrum Re[ K( is) ] is shown 
in Fig. 14 for a = 100. Although it is conceptually more 
straightforward to introduce the GLE equivalent Hamilto- 
nian for the above analysis, it is not necessary. The normal 
mode analysis can be performed directly from the GLE by 
following Graham,55 and the characteristic frequency of the 
system coordinate is recovered. 

It is instructive to consider the effective two degree of 
freedom (conservative) Hamiltonian used in the PVTST 
theory [ Eq. (25) 1, and to see whether it can be used to pre- 
dict the caging frequency. For a = 100, the saddle point re- 
gion of this Hamiltonian is shown in Fig. 15. The coordinate 
q is represented by the dashed line. A trajectory on the two 
degree of freedom potential started at the saddle point with 
momentum along q will oscillate repeatedly with a frequency 
fl as it slowly moves away from the saddle point along the 
very low frequency unbound mode p. While trajectories on 
this effective reduced dimensionality potential undergo the 
correct qualitative behavior, they oscillate with a frequency 
which is not observed in the simulations. For example, for 
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FIG. 14. The spectral density of the bath normal modes [E& ( 19) ] for 
CY = 100, rl, = 10. Note that the maximum of the sharp high frequency 
peak is off scale at exp[ + 353.21. All quantities are in reduced units, see the 
text. 

a = 100 the frequency R = 0.92, which is much smaller 
than the observed frequency s, = 2.64. Why is this? The col- 
lective bath mode frequency R [ Eq. (26) ] is in fact an aver- 
age of all of the frequencies of the bath normal modes bj>. 
The spectral density of the bath normal modes (Fig. 14) is 
composed of ( 1) a continuum of low frequency modes which 
arises from the component of (T which comes from the origi- 
nal low frequency bath modes {xi 1, and ( 2 ) the sharp impu- 
rity peak at s,, which arises from the q component of u. The 
average frequency Q overemphasizes the effect of the low 
frequency modes, at least at very large coupling strengths. 

APPENDIX B: ESTIMATE OFTHE NEGLECTED ENERGY 
TRANSFER CONTRIBUTION TO THE pVTST RATE 
CONSTANT 

In order to address the possibility that in the intermedi- 
ate coupling regime the agreement between the PVTST 

a = 100.0 

(r 0.0 

-1 .o 
-5.0 0.0 5.0 

P  

FIG. 15. Contour plot of the barrier region of the reduced two degree of 
freedom effective Hamiltonian [ Eq. (25) ] for the cubic potential [ Eq. ( 3) ] 
with a Gaussian friction kernel [Eq. (4) 1. The dashed line is the system 
coordinate q [ JSq. (A16) 1. The decay time constant is rD = 10 and static 
friction coefficient is (z = 100. Contours are at energies 0.074,0.079,0.10, 
and 0.125. All quantities are given in reduced units, see the text. 

(L?” = 0) results and the simulation results is the fortuitous 
consequence of a cancellation of errors, an estimate of the 
neglected energy transfer contribution to the PVTST 
(9 = 0) rate constant is presented. The error in thepVTST 
(.L?’ = 0) result is incurred by using F,,, (Ef,3 = 0) [Eq. 
(31) ] instead of F,,, (E f) [IQ. (29) ] when evaluating 
k IrvTsT [ JZq. (28) 1. The error in the 9 = 0 approximation is 
evaluated simply by calculating kpVTST from the full flux 
F,, (E * ) , Eq. (29 ) . Although evaluating k P-T will always 
provide an upper bound to the rate constant, it will not nec- 
essarily provide a meaningful result if the chosen dividing 
surface is less than optimum. Here the pods is an optimum 
choice of dividing surface only for the 9 = 0 case, not for 
the full calculation. 

For a< 10.0, the pods is an exceedingly poor choice of 
dividing surface for the energy diffusion contribution. For 
each of these scale factors there is an energy region within 
which there are three pods at each energy, as illustrated in 
Fig. 16 for a = 7.0 (this is not unusual behavior, see Ref. 
54). The existence of three pods per energy does not cause a 
difliculty in defining a single dividing surface g(u,ES ). At 
each energy the pods which gives the m inimum flux is, by the 
variational principle, the appropriate pods to define the opti- 
mum dividing surface at that energy. In practice, this differ- 
entiation is not necessary for the LZ’ = 0 calculation. The 
pods at a given energy give very similar flux contributions, 
and not using the pods of m inimum flux does not effect the 
final rate constant within the accuracy quoted here. 

For the full calculation including the energy diffusion 
contribution this differentiation is critical because the flux 

PODS in Coordinate Space 
a = 7.0 

‘-Or----- 

b O-O- 

-1.+--- 
.a -0.4 0.0 

P 

FIG. 16. Pods in the three pods per energy region for a = 7.0. The solid 
lines are pods at energies E* = 0.077 15 and Et = 0.080 20, for which there 
exists only one pods. At each energy Ef =0.07846 (dotted lines), 
Et = 0.078 66 (dashed lines), and Et = 0.079 00 (dot-dash lines), three 
pods are shown. 
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P 

FIG. 17. A fixed sigma view of the pods as a function of energy. Dotted lines 
represent the continuation of the pods A and C branches beyond the divid- 
ing surface, and the dashed line is a schematic representation of a dividing 
surface defined to avoid a constant energy plateau. 

depends upon the derivative of the pods with respect to ener- 
gy, dg/dEx . In Fig. 16, for energies less than Et ~0.0786, the 
branch A pods give the lowest contribution to the flux and 
define the surface g(a,E* ). For Et 20.0786, the branch C 
pods give the lowest contribution to the flux and define the 
surface g(a,Ef ). At Et = 0.0786 the surface is given by a 
fixed energy plane (see Fig. 17). A bounded fixed energy 
region inp,a,E t space can not be written as a path g( a), and 
a more general formalism than that presented in Eq. (29) 
would be necessary to evaluate the flux [see Eq. ( 3 1) of Ref. 
181 through this surface. However, a planar fixed energy 
surface does not minimize the energy diffusion flux as re- 
quired by the variational principle, rather it maximizes the 
energy diffusion flux. Clearly using the pods to define 
g( a,E t ) in the full calculation will yield a gross overestimate 
of the energy diffusion contribution to the rate constant. 

In order to get a ballpark estimate (which is still an 
upper bound) to the effect of neglecting the energy diffusion 
contribution for a< 10.0, only the a = 10.0 case, for which 
the energy diffusion contribution should be largest, is con- 
sidered. For a = 10.0 the branch A pods and branch C pods 
are more similar than they are at lower values of the static 
friction coefficients. To avoid the complication of a planar 
dividing surface, an approximate dividing surface is defined, 
as shown schematically in Fig. 17, to connect the branch A 
pods surface and the branch C pods surface. Calculation of 
k PvTsT with this surface yields k pLVTST/k,T = 0.33 as com- 
pared to k PvTsT( % = 0)/k,, = 0.29. The estimated up- 
per bound to the energy diffusion contribution at a = 10.0 is 
thus 15%. 
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