
Reversible multiple time scale molecular dynamics 
M. Tuckermar?) and B. J. Berne 
Department of Chemistry, Columbia University, New York, New York 10027 

G. J. Martyna 
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 

(Received 13 January 1992; accepted 17 March 1992) 

The Trotter factorization of the Liouville propagator is used to generate new reversible 
molecular dynamics integrators. This strategy is applied to derive reversible reference system 
propagator algorithms (RESPA) that greatly accelerate simulations of systems with a 
separation of time scales or with long range forces. The new algorithms have all of the 
advantages of previous RESPA integrators but are reversible, and more stable than those 
methods. These methods are applied to a set of paradigmatic systems and are shown to be 
superior to earlier methods. It is shown how the new RESPA methods are related to predictor- 
corrector integrators. Finally, we show how these methods can be used to accelerate the 
integration of the equations of motion of systems with Nose thermostats. 

1. INTRODUCTION 
Recently we have devised reference system algorithms 

for treating problems with separation in time scales (stiff 
oscillators in soft fluids,’ disparate masses’ ) and/or forces 
that can be separated into short and long range compo- 
nents3 ). These algorithms run at much faster speeds than do 
the standard algorithms; sometimes with speedup factors on 
the order of 20 to 30. Some of these reference system meth- 
ods are not reversible in time, and thus may exhibit numeri- 
cal instabilities after very long times. Moreover, they can not 
be used in conjunction with hybrid Monte Carlo methods 
because these require strictly reversible molecular dynamics 
in order to satisfy detailed balance.4 

In this paper we show how to make these reference sys- 
tem algorithms reversible in time. The starting point is the 
Trotter expansion of the classical Liouville propagate?’ 
and the reversable Trotter expansion.” From this we derive 
several new integrators for solving Newton’s equations of 
motion. These new integration schemes involve the same 
number of force evaluations as the methods previously intro- 
duced, and therefore require no more CPU time in their ex- 
ecution. Furthermore, we find that making these methods 
reversible in time increases their stability over the RESPA 
and NAPA methods previously introduced. 

In Sec. II we present a necessary review of the Liouville 
operator formalism. Trotter factorizations of the classical 
propagator can be used to derive simple integrators. In Sec. 
II A the velocity Verlet integrator as well as a new integra- 
tor, the position Verlet integrator is derived. In Sec. II C 
generalized Trotter factorizations are introduced. In Sec. III 
we treat the long range force problem and apply it to a partic- 
ular example. In Sec. IV we treat the multiple time scale 
problem and apply it to the disparate mass mixtures in Sec. 
IV A and to systems with stiff oscillators in soft baths in Sec. 
IV B. In Sec. V we show how to combine these methods to 
treat problems with separation of time scales and long and 
short range forces. In Sec. VI we relate the Trotter expansion 
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method to the more conventional predictor-corrector’ 
methods. These methods are then extended in Sec. VII to 
treat constant temperature molecular dynamics simulations 
based on a Nose heat bath. 

II. THE TROTTER EXPANSION OF THE LIOUVILLE 
PROPAGATOR 

The Liouville operator L for a system off degrees of 
freedom is defined in Cartesian coordinates as 

/ 
iL={--. ,Hl= C ~L,F~L , 

j=l axj Pj 1 (2.1) 

where IY = {xj,pj} are the position and conjugate momenta 
of the system, Fj is the force on thejth degree of freedom, and 
c *-* -**) is the Poisson bracket of the system. L is a linear 
Hermitian operator on the space of square integrable func- 
tions of F. The classical propagator is then 

U(t) = e”’ (2.2) 
and the state of the system at time t is given by 

r(t) = wt)r(o), (2.3) 
and U(t) is a unitary operator; i.e., U( - t) = U - ‘( f). In 
the following we will decompose the Liouville operator L 
into two parts such that 

iL=iL, +iL,. (2.4) 
For this decomposition the Trotter theorem’ yields 

e i(L, + L,)f = [ei(L,+L2)f/P]P 

= [e’ rL,(Ar/2)eiL,AreiL,(Ar/2) P 1 
+ at 3/P2), (2.5) 

where At = t/P. From this we define the discrete time pro- 
pagator as 

=e LL,(Ar/Z)ei~Ar~iL,(Af/2) 
(2.6) 
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Because the three factors in G( At) are separately unitary it is 
easy to show that G(t) is unitary, and therefore that 
G - ’ (t) = G +(t) = G( - t) . This means that any integra- 
tor based on this Trotter factorization will be reversible. 

The formal solution for any decomposition of the Liou- 
villian can be generated as follows: Let us define 

r,[Acr(o)] = U,(At)r(O) (2.7) 
and 

r,[Acr(o)] = u,(At)r(o) (2.8) 
to be, respectively, the state at time At when the system is 
propagated by U, (At) or U, (At) starting from the state 
JY (0). Then by applying the operators in Eq. (2.6) serially to 
r(0) gives 

r(At) = u, (9) rz [Atg+$(o)]], (2.10) 

r(At) =rl (+-,(At,r, [+(o)]]). (2.11) 

To generate this solution on a computer: 
(a) Start with the initial state r(O) and generate the 

motion under the propagator eiLIAt”. This gives the state 
r, [At/2;r(o)]. 

(b) Use the state just generated as the initial state and 
generate the motion using the propagator eiL2Ar. This gives 
thestate r,{At;r, [Ar/2;r(O)]). 

(c) Start with state generated in (b) as the initial condi- 
tion and generate the motion using eiL1”“. This gives the 
final state T(At) specified in Eq. (2.11). 
The solution for a more complicated breakup proceeds anal- 
ogously. 

We note in passing that the Trotter expansion carried 
out to higher orders will yield higher order integrators. For 
example, to obtain an integrator good to 0( At 4, one would 
start with the Trotter expansion 

e i(L, -t- L,)At 
z-e 

iL,(At/2)eiL,(At/2)e _ iC(At’/24) 

Xei~'A'/2'eiL,'A'"' 
, 

where 

(2.12) 

-iC= [(iL, +2iL,),[iL,,iL,]]. (2.13) 

Here [*.*;** ] denotes the Lie bracket or commutator. The 
disadvantage of using such a higher order integrator is that 
the commutator will bring in derivatives of the force with 
respect to position which may be dithcult to calculate. 

A. Examples of simple reversible integrators 
Consider the propagator generated by the subdivision, 

a iL, =G?-; 
dX 

iL, = F(x) a. 
JP 

This leads to the propagator 
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G(At) = e (Aht/2)F(x)d/dpeAr*d/d~e(Ar/2)F(x)d/d~ (2.15) 

Operating with this factorization on {x( 0) ,p( 0) ] and using 
the explicit property of any operator of the form eca’aq that 

ecd’dY~q) =f(q + ~1, (2.16) 

where c is independent of q, it is a routine matter to derive the 
integrator (expressed in terms of positions and velocities), 

x(At)=x(O) + Ark(O) +~F'x(o)l , 
m 

i(At) =i(O) +e{F[x(O,] +F[x(At)]}. (2.17) 

This is identical to the velocity Verlet algorithms.1o Because 
G( - t) = G - l(t), it follows that this integrator is exactly 
time reversible. This guarantees stability of this integrator 
and also allows it to be used in the hybrid Monte Carlo algo- 
&hrn.4.‘.’ 1 

Another way to write this integrator is 

=2(O) +~F[x(OH, 

x(At)=x(O)+ Ad 

i(At) =f -$- +&F[x(At)]. ( > (2.18) 

Starting from the initial condition {x(O),p( 0) } one com- 
putes the velocity at the half-step, then the position at the full 
step, and finishes by calculating the velocity at the full step. 
This looks like leapfrog, but in practice it is different. In the 
leapfrog method one initiates the process differently, does 
not calculate the velocities at the full steps, and only in some 
cases calculates the last velocity at the full step. 

It seems that the most common integrator used in simu- 
lations, the Verlet algorithm, cannot be derived using this 
formalism. However, it can be shown that standard Verlet 
gives exactly the same trajectory as velocity Verlet. The stan- 
dard Verlet equations of motion are 

x(At)=2x(O)-x( -At)+ +bWl, 

f(O) = x(At) -XC - At) 
2At ’ 

(2.19) 

If the initial condition is assumed to be 

x(0)-x( -At)=i(O) - At2 2mFb(0)l, (2.20) 

then it can be shown by induction that the solution obtained 
by iterating these equations to time t, {x(t) ,i (t - At)} will 
be equal to that obtained from the velocity Verlet algorithm 
with initial conditions {x (0) ,i (0)). Equivalently, the stan- 
dard Verlet equations of motion can be obtained from those 
of velocity Verlet using time reversal symmetry and elimi- 
nating the velocities. However, Eq. (2.20) is much more 
useful as it can be used to convert all the algorithms derived 
in this paper to the standard Verlet form, as is demonstrated 
in the Appendix. A similar analysis is possible for leapfrog 
Verlet, but this is much less widely used and we omit it. 
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Interestingly, we can generate another reversible algo- 
rithm by taking 

a iL, =.k-; 
C3X 

iL, = F(x) a. 
ap 

(2.21) 

Applying Eq. (2.11) with this subdivision to lY( 0) gives 

f(At) =2(O) + ArF 
[ 
x(0) +$5(O) , 

I 

x(At) =x(O) + -$ [f(O) +k(At)]. (2.22) 

This is an entirely new reversible integrator which we name 
the position Verlet integrator. We will compare it to the ve- 
locity Verlet integrator later. 

It should be clear from the foregoing that both of these 
algorithms are of order At 3 and that the Trotter factoriza- 
tion is an excellent method for inventing new algorithms. 
Higher order factorizations should generate higher order re- 
versible algorithms.6 

B. Numerical comparison of the velocity and position 
Verlet integrators 

To compare the velocity and position Verlet integrators 
of Eqs. (2.17) and (2.22), respectively, we choose a pure 
Lennard-Jones ( 12-6) fluidFith 864 particles. The reduced 
temperature of the system is T = 2.0 and the reduced density 
is po 3 = 1.0. The potential is cutoff at r, = 3~. The com- 
parison is made by studying the energy conservation as a 
function of time step At for a run whose real time is NAt. This 
energy conservation is defined to be 

A& At) = -$ $, / E(kA;(; =(‘) / . (2.23) 

A value of NAt = 1.0 is chosen and kept the same for all 
runs. Thus for the two integrators, we solve the classical 
equations of motion and measure the energy conservation as 
a gnction of time step. In Fig. 1, we plot the dependence of 
hE on At for the two integrators. The result is very interest- 
ing. The curve shows that the velocity Verlet integrator is 
better at small time steps, but that it becomes unstable more 
quickly than the position Verlet integrator. For energy con- 
servation tolerances acceptable for typical molecular dy- 
namics calculations, it seems that the velocity Verlet integra- 
tor is superior. However, for stability at large time steps, the 
position Verlet seems better and would thus be a suitable 
integrator for hybrid Monte Carlo calculations. 

C. Reversible algorithms based on generalized Trotter 
factorizations 

It is well known that the Trotter factorization can be 
generalized to a sum of operators. If the Liouvillian takes the 
form 

iL = i iL, 
k=l 

(2.24) 

then the propagator can be expressed as 
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FIG. 1. Comparison of the energy conservation dependence on time step as 
given by Eq. (2.1) for the velocity Verlet (dashed line) and position Verlet 
(bold line) integrators for the LJ( 12-6) potential. 

I 1 I I I 

where U, (h) = eiLkh and At = t/P. Let us define 
n-l 
l-J U,(At/2) U,(At) 

k=l 1 
n-l 
k& U,,-,(ht/2) . 1 (2.26) 

It is a simple matter to show that G( At) gives rise to a rever- 
sible algorithm given that for each U, (At) 

Ut, (At) = U, ‘(At) = U, ( - At) (2.27) 

(i.e., each L, isHermitian). Thus G(At)G( - At) = 1, and 
G( At) generates reversible dynamics. 

Ill. REVERSIBLE REFERENCE SYSTEM PROPAGATOR 
ALGORITHM (RESPA) FOR SYSTEMS WITH SHORT 
AND LONG RANGE FORCES 

We have previously introduced RESPA3,” for acceler- 
ating the integration of the equations of motion for systems 
with forces, F(x), that can be decomposed into short, F, (x) , 
and long range forces Fl (x) according to 

F(x) =F;(x) +F,(x). (3.1) 

The short range force then determines the time step St. In 
standard methods the full force must be recomputed at the 
end of each time step. In the RESPA method, however, the 
short range force is computed after each time step and the 
long range force is computed every n time steps. This reduces 
the number of forces calculated and thereby reduces the 
CPU time. The decomposition of the forces is accomplished 
by introducing a switching function S(x) that switches from 
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1 to 0 at some interatomic distance chosen to minimize the 
CPU time. Then 

F(x) = S(xV’Cc) + [ 1 -S(x) l.F(x) (3.2) 

and we make the identification 

F, (xl = WV’(x), 
F,(x) = [ 1 -S(x)]F(x). (3.3) 

In our original formulation we took the reference sys- 
tem to be the dynamical system with only short range forces 
F,(x). This was solved numerically for n time steps 
St~ht /n. The equations of motion for the deviations of the 
reference system from the real system was then solved only 
once for the time step At. This algorithm is not reversible in 
time. The Trotter factorization allows us to make this strate- 
gy reversible. 

The basic idea is to define the short range force F, (x) as 
a reference system force and to rewrite the Liouville operator 
as 

iL =i-$+Fs(x) a+Fl(x) ?- 
JP JP 

=iL, +F,(x)a. 
aP 

The propagator eiLAr can now be factorized as, 

Gls, (A0 = e 
(At/Z)F,(x)d/dpeiL~te(A~/Z)F,(x)d/dp 

(3.5) 

The middle propagator generates motion using the short 
range forces. Using the Trotter factorization 

e iL& = [e 
(6r/2)F,(x)d/dped,d/d~e(dt/2)F,oa/d~ n 1 , (3.6) 

where St = At/n and n is chosen to guarantee stable dynam- 
ics. This gives a good approximation to the middle propaga- 
tor. The propagators on each end of Eq. (3.5) involve the 
slowly varying long range force and thus will be well ap- 
proximated as shown with large time step At = nSt. 

These factorizations give the overall propagator 

G,,, (At) = e (Ar/Z)F,(x)d/dp 
[e 

(df/Z)F,(x)d/dp 

Xedr*d/dxe(dl/2)F.(x)d/dp ne(Af/2)F,Wd/dp 1 
(3.7) 

Examination of Eq. (3.7) reveals that because the long range 
force propogators correct only the velocities, the long range 
force as well as the short range force from the previous step 
carry over as input to the next step. Thus one long range 
force evaluation and n short range force evaluations will be 
required in a large time step At. There is therefore no more 
work required for this reversible propogator than for the 
corresponding nonreversible RESPA method previously in- 
troduced.3 When applied to the initial state {x(O),p(O)}, 
this propagator generates the solution (expressed in terms of 
positions and velocities) 

x(At) =x, Ar;x(O),i(O) 

k(At) =.ks At;x(O),i(O) 

++F,[x(At)] . (3.8) 

In these equations x,{h~x(O),k(O) + (At/2m)F, [x(O)]} 
and .ic,CAt;x(O),i(O) + (At /2m)I;; [x(O)]} denote the so- 
lutions of the short range force subject to the initial condi- 
tions{x(O),f(O) + (At/2m)F~[x(O)]}.Thefullfactoriza- 
tion above dictates that x, and jc, are to be determined 
numerically using the velocity Verlet integrator [see Eq. 
(2.17) ] iteratively for n small time steps of size St subject to 
the initial conditions {x(O),k(O) + (At/2m)Fl[x(0)]}. 

The factorization in Eq. (3.7) is implemented as fol- 
lows: 

(a) Starting with the initial state {x(O),p(O)} generate 
the motion using the propagator ecAt’2’F”dp. This gives the 
state {x(OLpW + (At/2)F,[x(O) I}. 

(b) Using the final state of step (a) as the initial state, 
generate the motion using the middle propagator in Eq. 
(3.7). This is equivalent to using the velocity Verlet integra- 
tor iteratively n times on the system with only short range 
forces Fs. 

(c) Starting with state generated in (b) as the initial 
state, generate the motion using e(Ar’2)F”dp. This gives the 
final state Eq. (2.11). 

In Appendix A, we show to convert this scheme to one 
which is based on standard Verlet. In Appendix B, we show a 
few lines of FORTRAN code to illustrate how the algorithm of 
Eq. ( 3.8 ) is implemented in a typical program. 

The same treatment can be applied to the factorization 
given by Eq. (3.8) 

Gs,s (At) = eiL~(At/2)eArF~/d~eiL*(Ar/2), 
(3.9) 

but we shall not do so here because it leads to more computa- 
tional effort in calculating the potential energy at each step 
than does the previous factorization. In addition, the posi- 
tion Verlet integrator Eq. (2.22) could have been used in 
place of the velocity Verlet integrator. Thus there are eight 
possible factorizations, of which we only discuss one. 

A system with long and short range forces. To compare 
reversible RESPA with nonreversible RESPA, we look at a 
system studied in our previous work.3 The system is a 
LJ( 12-6) fluid with a cutoff at r, = 3a in,a box containing 
864 particles at a reduced temperature T= 1.0 and a re- 
duced density PCY 3 = 0.8. For the nonreversible RESPA as 
outlined in Ref. 3, we study only the reference systems given 
in Eq. (2.2) of Ref. 3. That is, we let the reference force be 
simply F, (x) . In all comparisons, we make use of switching 
function discussed in our previous publications,3s’2 with an 
inner cutoff of 1.90. For reversible RESPA, we use the inte- 
gration scheme of Eq. (3.8). These two methods are com- 
pared with each other and with ordinary velocity Verlet. We 
study the dependence of energy conservation on At accord- 
ing to Eq. (2.1) using NAt = 1.0 for all runs. St is fixed at 
1.0~ 10 - 3. In Fig. 2 we show the plot of A2 vs At for the 
three integration methods. We note that reversible RESPA 
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FIG. 2. Comparison of the energy conservation dependence on time step as 
given by Eq. (2.1) for straightforward velocity Verlet (dashed line), nonre- 
versible RESPA (double dashed line), and reversible RESPA of Eq. (3.7) 
(bold line) for the long range force breakup. 

and nonreversible RESPA agree well at small time steps, but 
that reversible RESPA is more stable at large time steps. 
This is to be contrasted with velocity Verlet for which the 
energy conservation degrades rapidly at large time steps. To 
quantify this, iz we wanted to conserve energy to within a 
tolerance of AE = 5 X 10 - 6, we see from the figure that a 
time step of 2 X 10 - 3 would be required for velocity Verlet, 
while nonreversible RESPA would use a time step of 
6 X 10 - ’ with n = 6, and for reversible RESPA, a time step 
larger than 8 X 10 - 3 with n around 8 could be used. From 
our previous work on long range forces,3 we predict that the 
CPU savings would be a factor of roughly 3 for nonreversible 
RESPA and around 4 for reversible RESPA. 

IV. REVERSIBLE REFERENCE SYSTEM PROPAGATOR 
ALGORITHM FOR SYSTEMS WITH MULTIPLE TIME 
SCALES 

We have previously introduced methods for accelerat- 
ing the integration of the equations of motion for systems 
with two or more time scales.‘,’ Examples are systems con- 
sisting of high frequency oscillators coupled to low frequen- 
cy oscillators or slow baths,’ and systems consisting of mas- 
sive (slow moving) particles interacting with light (fast 
moving) particles, the so-called disparate mass problem.2 
These methods are based on defining a reference system for 
the “fast subsystem,” solving this either analytically or nu- 
merically for a sequence of small time steps, deriving equa- 
tions of motions for the deviations from the exact trajectory, 
and then solving the equations of motion for this deviation 
and for the slow degrees of freedom numerically using a 
much larger time step. When the reference system is solved 
numerically the method is called RESPA (reference system 
propagator algorithm), whereas when it is solved analytical- 
ly the method is called NAPA (numerical analytical propa- 
gator algorithm). These methods reduce the number of 
forces that must be calculated and thus reduce the CPU 

time. As we shall see below these methods are not analytical- 
ly reversible. The Trotter factorization of the propagator al- 
lows us to make this strategy reversible and higher order in 
time. 

A. Disparate mass systems 

Consider the case where the degrees of freedom of the 
system can be subdivided into fast and slow degrees of free- 
dom labeled x and y, respectively. An example is2 that of a 
binary mixture in which one of the components consists of 
heavy particles (they subsystem) and the other component 
consists of light particles (the x subsystem). Then we can 
decompose the Liouvillian as 

iL = iL, + iL,, 

where 
(4.1) 

a a iL, =i---+F&,y) -, ax ah (4.2) 

iL, =ja+Fy(xy) d. 
aY ah 

(4.3) 

The propagator can thus be factorized as 
Gxyx (At) = ei~~(A’/2)ei~P’eiL~(A?/2~. 

(4.4) 
For this GX,,X factorization the end propagators involve the 
fast motion whereas the middle propagator involves the slow 
motion. Although is it not as obvious as in the long range 
force case [ Eq. (3.7) 1, these factorization involves the same 
number of force evaluations as does the nonreversible dispa- 
rate mass RESPA method previously introduced.2 This fol- 
lows from the fact that FXY = - Fyx, so that this part of the 
force need only be calculated while advancing the fast coor- 
dinate. The fast propagator can be further factorized 

e iL,(At/Z) = [e 
(s1/2)F~/ap,~s~~aaa~~(6f/2)F~/ap, nn 1 9 (4.5) 

where St = At/n. The middle propagator in GX,,X can also be 
factorized, but because it involves only the slow motion we 
can use 

e i=Ar = e(ht/2,F~/aP~eArLa/ayecar/2)F~/ap, (4.6) 

If these factorizations are used in Eq. (4.4) the fast degrees 
of freedom and their conjugate momenta {x,p,) are to be 
determined numerically using the velocity Verlet integrator 
[see Eq. (2.17) ] iteratively for n small time steps St subject 
to whatever the initial conditions might be, whereas the slow 
degrees of freedom are to be determined using the velocity 
Verlet integrator for only one large step At. 

We can summarize the numerical procedure that fol- 
lows from application of GXYX as follows: 

(a) Use the velocity Verlet integrator for n/2 time steps 
St = At /n to generate the state at time At /2 under the action 
of the the propagator eiLxAr” starting from the initial state 
{x(0)s(O),pX (O),pu(O)}. Note that during this step &p,} 
is unchanged. 

(b) Use the velocity Verlet integrator for one time step 
At to advance the system from the final state of step (a) 
using the slow propagator Eq. (4.6). 

(c) Use the velocity Verlet integrator for n/2 time steps 
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6t = At/n to generate the state at time At /2 under the action 
of the propagator eiLPrn , starting from the final state in (b). 
Note that during this step fj,pY} is again held fixed. The 
resulting state is F( At). 
In the foregoing the forces on the slow coordinates are recal- 
culated only once every time step, At = n&. If the dimen- 
sionality of the fast subsystem is small compared to the di- 
mensionality of the whole system, the forces on the slow 
coordinates will thus be calculated much less frequently 
than would be required in the standard methods. 

There are many variations on the above theme. For ex- 
ample, we could have adopted the Trotter factorization 

Gyxy =ei~,(Ar/2)eiLpfeiL,(Az/Z) (4.7) 
and then applied the velocity Verlet breakups. Alternatively, 
we could use the position Verlet integrator instead of the 
velocity Verlet factorizations of the different factors in GXYX 
or Gy.ry. There are eight possibilities in all. For the purposes 
of the subsequent discussion, we look only at GX,,X with the 
velocity Verlet [see Eq. (2.17) ] breakup applied to each of 
the factors in GX,,X. 

Numerical comparison for the disparate mass system. 
The comparison of reversible RESPA to nonreversible RE- 
SPA proceeds now on a system studied in our previous 
work.2 Again, we look at a sysf\em of LJ( 12-6) particles this 
time at reduced temperature T = 0.67 and reduced density 
pa 3 = 0.86, which correspond to the triple point. Again, the 
potential is cutoff at r, = 3~. The system is comprised of a 
mixture of 40 light (m = 1) particles and 824 heavy 
(M = 100) particles. The nonreversible RESPA simula- 
tions are carried out as described in Ref. 2 in which the refer- 
ence force is taken to be Fr (x) = FX [x,y( 0) 1, whereas the 
reversible RESPA simulations are done using the propaga- 
tor of Eq. (4.4). When this propagator is used the explicit 
algorithm for advancing the positions and velocities is given 
by 

x(At) =x, 
( 

At 
- ;xo A0 PYO 

2 > 
3 

i( At) = i:, 
( 

At 
- 30 20 aY0 2 > 

9 

y(At) =v,[k;yUWUko], 

i(At) =Y,[WUW(OL~~], 

where 

(4.8) 

x0 =x, -$ ;xmf(oLY(o)] , 
[ 

5zo = ir 
[ 
-$x(0),*(0)9(0)] ) (4.9) 

x, and y, refer to the evolution ofx and y under the actions of 
ei=*r and ei=Y(, respectively. The velocity Verlet breakup of 
Eq. (2.17) is applied to the propagators eiLXr and eiL9. In all 
simulations, the light (x) particles are integrated using 
6t = At / 10. The eneri-y conservation is measured as before 
using Eq. (2.1) an> T is chosen equal to 1.0. In Fig. 3, we 
show the plot of AE vs At. Figure 3 shows that while nonre- 
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FIG. 3. Comparison of the energy conservation dependence on time step as 
given by Eq. (2.1) for straightforward velocity Verlet (double dashed line), 
nonreversible RESPA (dashed line), and the disparate mass breakup of Eq. 
(4.4) (bold line). 

versible RESPA is consistently better than velocity Verlet, 
reversible RESPA is dramatically better and remains re- 
markably stable even at large time steps. While velocity Ver- 
let becomes unstable at At = 0.04, the energy conservation 
for reversible RESPA is better than 10 - 5, and for nonrever- 
sible RESPA it is better than 5 x 10 - 5. In Fig. 4, we plot the 

,^ 2 0 a I 
x ‘3 
a 0 P 

I 
I I I I 
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-2 11 , I I I I I 
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t 

FIG. 4. (a) The instantaneous fluctuations of the energy about E(0) for 
velocity Verlet in the disparate mass system at a time step At = 2~ lo-‘. 
(b) The same except for nonreversible RESPA. (c) The same except for 
reversible RESPA. 
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instantaneous fluctuations of the energy about the initial val- 
ue. That is, we plot 

AE(Q = E(t) -E(O) - 
E(O) 

(4.10) 

for each of the three integrators for a time step of 
At = 2 X 10 - *. In Fig. 3, this corresponds to an average en- 
ergy conservation of about 3 x 10 - ’ for velocity Verlet, 
1 X 10 - 5 for nonreversible RESPA, and 3 x 10 - 6 for rever- 
sible RESPA. From these plots, we can determine the maxi- 
mum of the fluctuations, and discern whether or not the 
system has a systematic drift. Although the behavior of the 
instantaneous fluctuations is different in each of the three 
cases, we see that they are all stable at this time step. 

Using this factorization of the propagator, the integration 
procedure generated in terms of positions and velocities is 

At;x(O),k(O) + $0, , 
I 

At;x(O),f(o) +$(o) +$(At) , I 
B. A stiff oscillator dissolved in a soft liquid 

Another kind of system of interest is that of a stiff oscil- 
lator with vibrational coordinate labeled x buried in a soft 
bath with coordinates labeled y. For convenience we will also 
consider the center of mass coordinate of the oscillator as 
well as its orientational coordinates as part of the bath. 

It is possible to break the force F, (xg) on the vibration- 
al degree of freedom into a strong, possibly analytically solv- 
able force, and a weak correction. The basic idea is to define a 
reference system force F,(x) and to rewrite the Liouville 
operator as 

iL =k-$-+F,,(x) d 
aPX 

+m,Y 1 a+Ld+F,(x,y) -% 
JP, av JPY 

(4.11) 

where&y) = F, (X,-Y) - F.,(x). f contains forces on x due 
to the solvent atoms. This allows us to subdivide the Liouvil- 
lian into parts 

v(At) =y(O) + A@(O) +2m y At2 F (0), 

L(At) =j(O) +& [Fy(0) + F,(At)]. (4.18) 

This particular factorization has the obvious simplicity that 
the solvent is integrated using velocity Verlet. This breakup 
is a generalization of the Trotter form as discussed in Sec. 
II C. The same treatment can be applied to the factorization 
given by Eq. (4.15) but we shall not do so here. 

iL, =is+F,(x) -!- 
JPX 

(4.12) 

and 

Numerical comparisons for a sti#oscillator in a soft& 
id. The comparison between reversible and nonreversible 
RESPA proceeds, as before, on a system considered in our 
previous work.’ We look at a system of 62 LJ( 12-6) parti- 
cles in which is imbedded a high frequency harmonic oscilla- 
t,“r. The reduced temperature and density of the liquid are 
T = 2.5 and pa 3 = 1.05. The frequency of the oscillator is 
taken to be w = 300. Since the peak of the spectral density of 
the neat liquid at this density and temperature is around 
w = 20, the oscillator frequency w = 300 is an extremely 
high frequency. Since the reference force F, (x) = - mw22 
is harmonic, we can evaluate the action of the reference sys- 
tem propagator analytically in the usual way as 

iL, =B$j+FyW) ~+~(x,JJ) -% 
JPY ap, 

The propagator eiLA* can now be factorized as 

Gy, tAtj = eiL~(At/2)eiLPt@iL~(d’R’ 

or 

(4.13) 

(4.14) 

e iL,At x = x cos oAt + * sin @At, 

e iL& . x = 2 cos wht - wx sin wht. (4.19) 

We follow the evolution of the system for 500 periods of 

G,(At) = e~,,cAt/2)e’LP’e’L”At/Z). (4.15) 

Factorization of the middle propagator in Eq. (4.14) as 

e iL$r = [e 
(b~/z)F~/ap~~g~jd,a~~(~f~)F?/ap, I”9 (4.16) 

where 6t = At/n. If the reference system can be solved ana- 
lytically (e.g., a harmonic, cubic, or Morse oscillator) then 
the above factorization is not necessary. A simple way to 
include the solvent effects into the full propagator yields the 
following result for GY,.,, (At) : 

the oscillator using ordinary velocity Verlet, NAPA, and 
reversible NAPA. The result of the comparison of the three 
integrators is shown in Fig. 5 in which is plotted the energy 
conservation vs At as in Eq. (2.1) . We see that the reversible 
NAPA as given by Eq. (4.18) is highly accurate at all time 
steps, while the nonreversible NAPA tends to become signif- 
icantly less accurate than reversible NAPA for time steps 
greater than about 10 - 3. This is due to the fact that nonre- 
versible NAPA, being less stable than reversible NAPA. 
However, since both NAPA methods are based on analyti- 
cally solvable stiff reference systems we expect them to agree 
well at smaller time steps, which they do. The extreme stiff- 
ness of the reference system illustrates the advantage of using 
a reference system algorithm over ordinary velocity Verlet 
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FIG. 5. Comparison of the energy conservation dependence on time step as 
given by Eq. (2.1) for straightforward velocity Verlet (double dashed line), 
nonreversible NAPA (dashed line), and the reversible NAPA scheme of 
Eq. (4.17) (bold line) for the stiff oscillator dissolved in a soft solvent. 

which is significantly less accurate than NAPA or reversible 
NAPA for reasonable energy conservation tolerances 
(10-3-10-40rbetter). 

V. SYSTEMS WITH SEPARATION OF TIME SCALES AND 
SHORT AND LONG RANGE FORCES 

In the foregoing we have treated systems in which forces 
can be subdivided into short and long range components. 
Reference system methods lead to a considerable saving in 
CPU time. We have also discussed systems in which there is 
a large separation in time scales such as stiff oscillators em- 
bedded in soft fluids or disparate mass systems. In systems 
with separation of time scales and with force fields that can 
be decomposed into short and long range forces it is possible 
to devise reference system methods that can accelerate the 
solution of the equations of motion. In a previous publica- 
tion we were able to apply a double reference system ap- 
proach (double RESPA) to greatly accelerate such systems. 
This method was not reversible. Here we show how one can 
generate reversible multiple RESPA procedures to handle 
systems like these. 

The propagator for the disparate mass system given in 
Eq. (4.4) can be expressed as 

G,,, (At) = GI;’ (5.1) 

where 

Gi$(At) = e (Af/2)F,(x.~)a/aP~~iL~f 

Xe (Ar/2)F,,kYv)a/ap, (5.2) 
and 

G$‘(At) = e (At/2)F~(~y)a/aP~~iL,~t 

Xe (At/2vy,w)a/apy (5.3) 

The middle propagator in Eq. (5.2) involves the fast degrees 
of freedom and the short range forces acting on them and can 
thus be further factorized as in Eq. (4.5), whereas the mid- 
dle propagator in Eq. (5.3) involves the slow degrees of free- 
dom propagating under the short range forces and can thus 
be factorized as in Eq. (4.6). The overall propagator then 
generates a reversible double RESPA algorithm which can 
lead to enormous savings in CPU times. The extension of 
this idea to the stiff oscillator problem is straightforward. 

VI. REVERSIBLE ALGORITHMS FROM PREDICTOR- 
CORRECTORINTEGRATORS 

The use of the Liouville operator formalism to derive 
integrators is a somewhat novel approach. It is, however, 
satisfying to know that even the standard integrators of mo- 
lecular dynamics can be obtained from a “first principles” 
approach. Nevertheless, it is useful to draw the connection 
between the Liouville operator formalism and the more con- 
ventional predictor-corrector scheme.8S’3 In this section we 
address this issue. 

The usual approach in a predictor-corrector scheme is 
to “predict” the state of the system based on the initial condi- 
tions for the current time step, and then to correct the predic- 
tion based on the forces evaluated at the predicted positions. 
We show that the Trotter breakup ofthe propagator is equiv- 
alent to a predictor-corrector scheme. Consider the Trotter 
breakup of Eq. (2.15) which yields the velocity Verlet 

e iLAf = e(At/2)F(x)a/apeArjia/ax~(A2/2)F(x)a/ap (6.1) 
Mathematically, this breakup is equivalent to the following 
set of equations 

$=iF(x), (6.2) 

dx 
dt = v, (6.3) 

$= +F(x), (6.4) 

with the prescription that Eq. (6.2) is solved for a half time 
step At /2, with initial conditions {x(O), v(O)} and holding 
x(O) fixed. This yields the predicted value 
v(At/2) = v(0) + (At/2m)F(x).ThenEq. (6.3) issolved 
for a full time step using the predicted value of v and x( 0) as 
the initial conditions. This yields the true position x(At). 
Finally, we correct the velocities using Eq. (6.4) with initial 
conditions x( At) and v( At /2). Following this procedure 
will yield the scheme of Eq. (2.18). Reversibility comes from 
having a symmetric set of equations. The middle step in 
which x is integrated can be thought of as a reference system 
integration done analytically, since eA*‘a’ax would be the 
propagator for a reference system with F, (x) = 0. With this 
in mind, we can easily extend this idea to reversible RESPA. 

Now consider the example of a system with long and 
short range force components. The Trotter expansion of the 
propagator takes the form given in Eq. (3.7) 

@At = e(ACn)Fl(X)a/aP=iLpre(ht/2)Fl(x,a/aP 
, 
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where iL, = ka /ax + Fs (x>a/ap. As above we can cast 
this into the equivalent form 

$=+F,(x), (6.5) 

dX 

dt=vs 

dv -=LF,(x), 
dt m 

(6.6) 

dv 
-=-l-F,(x). 
dt m 

(6.7) 

The scheme is now transparent. Eq. (6.5) is integrated for a 
half step At /2 with initial conditions x (0), v( 0). This yields 
the predicted value v(At/2) = v(0) + (At/2m)F,(O). 
Then Eqs. (6.6) are integrated for a full step At using the 
predicted value v(At /2) and x(O) as initial conditions. This 
yields a reference system trajectory in which the position is 
the true position x, (At) = x(At). Then the reference veloc- 
ity is corrected by Eq. (6.7) using as initial conditions x( At) 
and v( At /2). As before, reversibility comes from having a 
symmetric set of equations. It should now be clear how to 
generate predictor-corrector schemes for other systems 
with reference forces. 

VII. A REVERSIBLE ALGORITHM FOR NOSk DYNAMICS 

We now discuss integration of systems with multiple 
time scales obeying Nose dynamics.‘4P’5 Recall that Nose’s 
equations of motion for a system of N particles in virtual 
variables can be generated from the Hamiltonian 

H=E$ pf + V(x) +%+ (3Nf l)krlns. (7.1) 

The equations of motion derived from this Hamiltonian are 

+--H- 1~ 
ap -X7 

aH av p= -== .--$-... 

. aH Ps s=-.--=-, 
ap, e 

l)kT] . (7.2) 

By introducing the time scaling dt- dt /s and the change of 
variables p-p/s, p, -pJs, and introducing as a dynamical 
variable 77 = In s, one obtains Nose-Hoover equations16 

P jc=--, 
m 

p= -av-pq 
ax ePy 

‘j=p”, 
Q 

jj,, =C$- 3NkT. (7.3) 

Here we have chosen to use the variable ~7 = 1’s dt instead 
of c as introduced by Hoover in order to make the equation 
for 7 second order. 

In order to derive a reversible integrator for the Nose- 
Hoover equations, we recognize that these equations can be 
derived using the Liouville operator” 

iL=zi$+F,.(x)a+f(x)d 
ap ap 

-+&+&+F,(p) d, 
ap a7 a& 

where F,,(p) = Z(p2/m) - 3NkT or F,,(i) = Z(m5z2) 
- 3NkT. We have introduced the reference system force 

F,. (x) and the deviation of the true force from the reference 
force f(x) = F(x) - F,(x). It should be noted that al- 
though the conserved energy is 

H’=x I!-+ v(x) +&+ (3N+ l)kTvt (7.5) 

as can be verified by computing iLH’ using Eqs. (7.4) and 
(7.5), this energy is not a Hamiltonian, and the Liouville 
operator of Eq. (7.4) cannot be derived from it. However, it 
can be used in conjunction with Eq. (2.1) to measure how 
well the integration algorithm conserves the energy. Defin- 
ing the reference system propagator as 
iL, = S/ax + F,(x)a/ap, the propagator eiU* is factor- 
ized as 

G(At) = e (Af/2) F,wm, e (At/4)flx) a/ap e 
- (~t/2) *pa/ap 

X,cAt/4~fcx~a/apecAr/2~ ia/* efLPr 

Xec~t/2~f7a/*e (At/4)f(x)a/ap,-~t/z) *palap 

Xe 
(~t/4)fl~) a/ap e(Af/2) F,&P)a/h, (7.6) 

W-e act with this propagator on the initial state 
[SJJj,p(Oj<bj,p; (O)], and use the-fact that 

e - cAt/2ma/ap~(p) = 4cpe- cAt/z)i). (7.7) 
---. _. 

The above identity as well as Eq. (2.16) are special cases of 
the general identity for the function eca’a*c@f( q), 

ecammf(q) = ,caa3mfcg- 1 lgcq) 1) 

=fCg- lk(q) -I- cl II, (7.8) 

where c is independent of q. The result is a reversible integra- 
tor for Nose dynamics, 

x(At) =x,[Aht;x(O),f,], 

ItAt) = x,[At;x(O),x:,] + $f(At) 
I 

Xe - (Ar/2)+70 I ;; f(At), 

q(At) = ~(0) + At*(O) + $$Fq [f(O) I, 
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MAO = j1(0) + $-$ [ii-(O) I + Fv [i(At 

where 

(7.9) 

jr, = 
[ 
f(0) +LLf(o) e- cat’2)*Q + 1 $p 

rio =tw +$F,MoH. 

The simplicity of this integrator is that the bath is integrated 
with ordinary velocity Verlet, and the dissipative effect of 
the bath on the system is handled analytically in the 
e - (Ar’2)il, terms. We see that this factorization is of a gener- 
alized Trotter form as discussed in Sec. II C. In the Appen- 
dix, we show how to convert this algorithm to one based on 
the standard Verlet. Note that it is possible to incorporate 
the both variables 7 and P, into the reference system and 
define the Liouville operator as 

a iL =f(x) - + iLr,n, 
JP 

where the definition of iLr,n can be inferred from Eq. (7.4). 
The breakup of the propagator is then 

G(At) = e LAf/2)Rx)d/dpeiLr.nAI~(Af/2)flx)d/dp (7.12) 

Although this tends to be a slower algorithm, it proves to be 
more stable when multiple Nose baths are involved and can 
handle large fluctuations in 17 more stably. 

Numerical comparisons for No& dynamics. The integra- 
tor in Eq. (7.9) is compared to straight velocity Verlet on the 
system considered in Sec. III. That is, we consider a system 
of 864 LJ( 12-6) particles at a temperature 1.0 and density 
0.8 using the long range force breakup to define the reference 
system. The mass of the Nose particle is Q = 2.0 chosen ac- 
cording to the formula Q = 3NkTr 2, where 7 is some char- 
acteristic time in the system. Since the forces are velocity 
dependent, the straight velocity Verlet simulations must be 
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FIG. 6. Comparison of the energy conservation dependence on time step as 
given by Eq. (2.1) for straightforward velocity Verlet (dashed line), and 
the reversible RESPA scheme for Nos.6 dynamics of Eq. (7.6). 
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done by iterating the velocity integration step start- 
ing with the approximation &prox ( At) = i ( 0 ) 
+ At/m [F(O) - e(O)k(O) 1. Ten iterations ofthis approx- 

imation are used to obtain the final velocity 5 (At). Figure 6 
shows the comparison of energy conservation defined by Eq. 
(2.1). We see that the reversible RESPA method for Nose 
dynamics is a dramatic improvement over straight velocity 
Verlet and is remarkably stable at large time steps. 

VIII. CONCLUSION 

Dynamical systems with multiple time scales pose a ma- 
jor problem in simulations because the small time steps re- 
quired for stable integration of the fast motions lead to large 
numbers of time steps required for the observation of the 
slow degrees of freedom and thus to the need to compute a 
large number of forces. As we have shown in several pre- 
vious publications, reference system methods (RESPA) 
greatly reduce the CPU time for the simulation of such sys- 
tems. 1-3*12,18 In this paper we have used reversible forms of 
RESPA that are superior to the previous RESPA methods 
both with respect to the order and stability of the integrators. 
Moreover, because these are reversible they can also be used 
in the hybrid Monte Carlo methods.4,5 We have limited this 
discussion to a few obvious factorizations of the propagator 
based on the Trotter factorization, and we have shown how 
one can use a more general breakup. This procedure is put in 
the context of predictor-corrector methods and is applied to 
several different dynamical systems. It is shown how simple 
factorizations give rise to the velocity Verlet integrator and 
to a new integrator which we call the position Verlet integra- 
tor. It is shown how the problem with multiple time steps 
like the disparate mass problem and the problem of stiff os- 
cillators in soft baths can be treated. A very important class 
of problems in which the forces can be subdivided into short 
and long range forces is treated by these methods. It is shown 
how to combine these latter two classes of problems with 
very large speedups. Finally, we incorporate these RESPA 
methods in the treatment of systems interacting with a Nose 
heat bath for constant temperature molecular dynamics.The 
approach outlined here is easily generalizable to many more 
integration strategies. 
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APPENDIX A 

In this Appendix, we show how to obtain reference sys- 
tem integration schemes based on the standard Verlet algo- 
rithm. The strategy is the same as that employed in Eq. 
(2.20). Thus the starting point for these derivations is the 
velocity Verlet based integrators. 

Consider, first, the case of the long range force integra- 
tor discussed in Sec. III. The velocity Verlet based algorithm 
gave the positions and velocities at each time step to be 

J. Chem. Phys., Vol. 97, No. 3, 1 August 1992 



2000 Tuckerman, Berne, and Martyna: Reversible multiple time scale MD 

x(At) =x, At;x(O),W) + $Jx(O)l] , i(O) = v(At) - vI( - At) 
2At ’ 

x(At) =xX At;x(O),f(O) +&F,[x(O)]] 
1 

++x(At)l. (Al) 

In standard Verlet, we start with the initial conditions 
{x(0),x( -St)), where St=At/n. Using the condition in 
Eq. (2.20), the standard V er e SC 1 t h eme is obtained as fol- 
lows: First, define 

FinaIly, to evolve the system coordinate x, we define 

x”( -At) =e - (AU~)+~C,VJ)~,~ -At> 

+[I--e - (At/2)ioVJ) 1 

x x(O) +z At2 F(0) 1 
from which, we obtain the position x( At) 

x(At) = 2x(O) - x” ( - At) + - At2 F(0). (-414) 
m x’( -St) =x( - St) - (Ar2)Ast) F, [x(O)] 

and 

(AZ) 

x’(St) =2x(O) -x’( -St) +$FJx(o)l. (‘43) 

Then, we compute the velocity x(0) from 

f(O) = x’(St) - x’( - 60 
2St I .I ” 

(-44) 

Then, by defining 

x”( -St) = x’( -St) - (A;;st) F,[x(O)], (AS) 

we obtain the positions at x( At - St) and x( At) 

x(At-St) =x,[At-St,x(O),x”( -St)], (A61 
x(At) =x,[At,x(O),x”( -St)], (-47) 

where x, (7) denotes the solution of the reference system 
using the standard Verlet algorithm for p steps where 
p = r/St subject to the initial conditions {x(0),x” ( - St)}. 
The need for both x(At - St) and x(At) is cIear from the 
initial conditions required to initiate each step. 

As a final example, we show how to obtain the standard 
Verlet scheme for Nose dynamics as discussed in Sec. VII. 
For simplicity, we consider the case of F,(x) = F(x) al- 
though generalization to a different reference force is 
straightforward. The initial conditions are given as 
{x(0),x( - At),v(O),v( - At)}. Again, using the condi- 
tion in Eq. (2.20), we define 

x’( -At) =e - (Ar/2)tio( - Ux( _ At) 

+ [l-e- (Ar/l)i~( -A0 1 
x x(0) + At2 ----HO) 

2m I 
and 

C-48) 

x’(At) = 2x(O) - x’( - At) + - At2 F(0). (-49) 
m 

The velocity x( 0) is then obtained from 

f(O) = x’(At) - x’( - At) ~-- 
2At = 

(AlO) 

The evolution of the bath coordinate is given by the usual 
Verlet scheme 

rl(At) = 2q~(O) - v7( -At) + +$Fv (01, (All) 

P-12) 

(Al3) 

In the above, v. is defined in Eq. (7.10). 

APPENDIX B 
The following is a piece of FORTRAN code which shows 

how to implement the integration algorithm expressed in Eq. 
(3.8). These lines of code assume that the long and short 
range force components are known from a previous integra- 
tion step. dt-long is the big time step At in Eq. (3.8), while 
dt-short corresponds to the small time step St with which 
the reference system is integrated. Ninner is the number of 
small time steps per big time step. 

DO i = l,Natoms 

VX(i) = VX(i) + OS*dt.Zong*FX-long(i) 

VY(i) = W(i) + OS*dt-Zong*FY-long(i) 
VZ( i) = VZ( i) + OS*dt. Zong*FZ- Zong( i) 

-ENDDO 
DO inner = 1, Ninner 
DO i = 1 ,Natoms 

X(i) = X(i) + dt-short * VX( i) + 0.5 

*dt 2-short *FX-short(i) 

Y(i) = Y(i) + dt-short *VY(i) + 0.5 

*dt 2-short *FY-short( i) 

Z(i) = Z(i) + dt-short * VZ( i) + 0.5 

*dt 2~short *FZ-short (i) 

VX( i) = VX( i) + 0.5*dt-short *FX-short(i) 

W(i) = W(i) + 0.5*dt-short *FY-short(i) 
KZ( i) = VZ( i) + 0.5*dt-short *FZ-short(i) 
ENDDO 

CALL FORCEs_short 
DO i = 1,Natoms 

VX(i) = VX(i) + 0.5*dt-short *FX-short(i) 

VY(i) = VY( i) + 0.5*dt-short *FY-short(i) 

m(i) = VZ(i) + 0.5*dt-short *FZ-short(i) 
ENDDO 
ENDDO 

CALL FORCEs_Zong 
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DO i = 1 ,Natoms 

V.(i) = VX(i) + 0.5*dt-Zong*FX-long(i) 

F’Y(i) = W(i) + 0.5*dt-Zong*FY-long(i) 

n(i) = vZ(i) + 0.5*dt-Zong*FaZong(i) 
ENDDO 

(Bl) 

In the above, the first loop uses the long range forces from 
the previous step to obtain the initial conditions on the veloc- 
ities for the current step. The middle loop runs over the num- 
ber of inner time steps and computes the reference system 
positions and velocities from the short range forces. The fi- 
nal loop corrects the velocities from the current values of the 
long range force. The routines FORCES-short and 
FORCES-Zong are assumed to update the short and long 
range components of the force, respectively, dt-short 
= dt- Zong/FLO-4 T( Ninner), and dt 2-short 
= (dtwshort)2. 
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