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This is a response to the preceding comment by Tox- 
vaerd [J. Chem. Phys. 99, 2277 (1993)]. In the paper Re- 
versible multiple time scale molecular dynamics, reversible 
second order numerical integrators were derived by apply- 
ing operator expansion techniques (the Trotter expan- 
sion) ’ to the Liouville operator formulation of classical 
mechanics.2 It was shown that by using appropriate break- 
ups of the full classical propagator, integrators which effi- 
ciently handle problems involving disparate masses (light 
and heavy particles), long range forces and fast vibrational 
degrees of freedom can be obtained. As introductory ex- 
amples to the application of the formalism, two simple 
integrators were derived, the well known velocity Verlet 
(vv) integrator3 and the “new” position Verlet (pv) inte- 
grator. These integrators were derived from a first princi- 
ples approach. A less rigorous analysis which does not 
start from first principles can lead to the result that the 
integrators are related to the same leap-frog algorithm or 
Stoermer time center formula4 and thus all differences are 
a matter of notation. In this response, the relationship be- 
tween the trajectories of the two algorithms will be deter- 
mined and the relationship of the integrators to the leap- 
frog algorithm clarified. 

The classical propagator is defined by 

U(t) =-eiLc, 

where 

(1) 

iL={--*,a= k&+-F(X) -$I. [ (2) 

Of course, one cannot in general evaluate the action of the 
full Liouville operator on the positions and velocities, 
({x(t) =e”%(O), v(t) =e’%(O)}). In order to generate 
numerical integrators an operator expansion can be applied 

e iLt_ - [ eiLA*] 4 

,iLAt=,iLl(Af/2),iL,(ht/2)+~(~~), 

(3) 

-(4) 

where iL=iL,+iL, and At= t/P. Note that time slices 
smaller than At are not defined. Velocity Verlet is gener- 
ated by using iL1=F(x)a/ap and iL,=(p/m)a/ax and 
applying the resulting evolution operator 

x(At) =x(O) +Atv(O) +g F[x(O) I, 
(5) 

v(At) =v(O) +& @‘[x(O) I +F[x(At) I ). 

Position Verlet is generated using the same process but 
with the definitions iL1 and iL2 interchanged 

v(At) =v(O) +; F x(0) +; v(0) , 
I 1 

x(At) =x(O) +$ [v(O) +v(At)]. 

(6) 

The two integrators are derived directly from the evolution 
operator and both the positions and velocities are deter- 
mined at time, At. 

The version of the leap-frog algorithm which is exactly 
equivalent to velocity Verlet is given by 

v(t+At,2) =v(t-At,2) +; F[x(t)], 

x(t+At) =x(t) +Ahhr(t+At/2), 

with 

v(t)=4 [v(t+At/2)+u(t--t/2)] 

and the initial condition 

(7) 

(8) 

v(-At,2) =v(O) -&x(O)]. 

Similarly, the version of the leap-frog algorithm which is 
exactly equivalent to position Verlet is given by 

x(t+At/2)=x(t-At/2j+Atv(t), 
(10) 

v(t+At)=v(t)+;F[x(t+At,2)] 

with 

x(t) =; [x(t+At/2) +x(t-At/2)] 

and the initial condition 
(11) 

x( -At,2) =x(O) -; v(0). (12) 

It looks like the time origin of the integrators can be shifted 
by a factor of At/2 and interpolation formulas changed 
without loss~of generality making both position Verlet and 
velocity Verlet equivalent to the same leap-frog form. 
Again, however, half-time steps are not formally defined as 
pointed out in the more careful analysis based on the clas- 
sical propagator. 

Position Verlet and velocity Verlet generate different 
trajectories whose relationship is nontrivial. A numerical 
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TABLE I. The first five steps of a trajectory generated by the velocity 
Verlet and position Verlet integrators for a harmonic oscillator with 
Hamiltonian H= ($+1)/2 starting with initial conditions x(0) = 1.0 
and u(O) =0.5. 

Velocity Verlet Position Verlet 

Step x(t) u(t) x(t) v(t) 

1 1.004 950 047 0.489 915 2438 1.004 949 921 0.489 915 0054 
2 1.009 199 480 0.479 9014926 1.009 799 242 0.479 9010158 
3 1.014 548 063 0.469 779 7596 1.014 547 706 0.469 779 0146 
4 1.019 195 080 0.459 6110582 1.019 194 603 0.459 610 0450 
5 1.023 740 292 0.449 396 3718 1.023 739 576 0.449 395 1201 

example is provided in Table I in which the phase space 
points x(t), v(t) along single trajectories generated using 
the two integrators and the same initial conditions are tab- 
ulated (H= [v2+x2]/2). In addition, a general relationship 
between the two trajectories can be obtained. Let 
A=AtF(x)a/ap and B=At(p/m)d/dx. The evolution op- 
erators for the two integrators and their inverses are 

U,,(P) = [&‘2eBeA’2]P=e-A’2[eAeB]P&‘2, (13) 

U;‘(p) =emAj2 [e-Be-A]P&2 (14) 

and 

U,,(p) = [eE’2d’eE’2]P=eE’2[eAeBlPe-B/2, 

U;‘(p) =eB’2[e-Be-A]Pe-B’2. 

Therefore, 

U,(P) =e-A/2e-BB/2UpV(P)eB/2d1/2, 

(15) 

(16) 

(17) 

U,,(P) =eB’2eA’2U,,(P)e-A”e-B/2. (18) 

This demonstrates that simply using two sets of related 
initial conditions for the two methods will not lead to the 
same trajectories. However, it is also clear that the trajec- 
tories mirror each other, that is, despite being different, 
they do not diverge as a function of time, PAt. This occurs 
because the forces are evaluated at the same phase space 
points in the two integrators as pointed out in the Tox- 
vaerd comment. 

In conclusion, it has unambiguously been shown, both 
formally and numerically, that velocity Verlet and position 
Verlet generate different trajectories.‘These differences re- 
sult in the equivalence of velocity Verlet to the standard 
leap-frog algorithm and the equivalence of position Verlet 
to the time-displaced leap-frog algorithm, Eq. (10). It has 
also been shown that the trajectories of the two methods 
mirror each other and do not diverge in time. We did not 
explicitly point this out in-our original paper but present it 
now in response to the comment. The simpler analysis in 
Toxvaerd’s comment does not correctly define the relation- 
ship between the trajectories and Toxvaerd incorrectly im- 
plies that these trajectories are identical. 
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