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New path integral molecular dynamics (PIMD) and path integral hybrid Monte Carlo 
(PIHMC) algorithms are developed. It is shown that the use of a simple noncanonical change 
of variables that naturally divides the quadratic part of the action into long and short wavelength \ 
modes and multiple time scale integration techniques results in very efficient algorithms. The \ 
PIMD method also employs a constant temperature MD technique that has been shown to give 
canonical averages even for stiff systems. The new methods are applied to the simple quantum 
mechanical harmonic oscillator and to electron solvation in fluid helium and xenon. 
Comparisons are made with PIMC and the more basic PIMD and PIHMC methods. 

1. INTRODUCTION 

Monte Carlo (MC) and molecular dynamics (MD) 
methods are often used to evaluate discretized Euclidean 
time path integrals.i4 In their simplest forms, these meth- 
ods converge slowly because the harmonic part of the ac- 
tion arising from the kinetic energy of the quantum parti- 
cles is stiff. In MC, this permits only small moves of the 
“beads” representing the imaginary time slices.’ In MD, 
this stiff part of the action leads to the use of small time 
steps. It also leads to nonergodic dynamics characteristic 
of the KAM regime where time averages are not equal to 
phase space averages5 This second condition has generally 
been alleviated by employing periodic velocity refreshes.6 
Efficient MC schemes overcome the difficulty caused by 
the stiff action through the use of a good choice of condi- 
tional probability distribution function within the Metrop- 
olis MC algorithm.2 Two new and comparably efficient 
MD methods are developed in this paper. This is important 
because MD programs can be structured to achieve high 
performance on parallel, vector as well as simple serial 
computer architectures. In addition, MD schemes can 
straightforwardly handle the partially rigid classical de- 
grees of freedom that occur in many systems of interest. 

The new MD methods are based on the combination of 
reversible multiple time scale integration methods7 and the 
staging ansatz. 2*8 The multiple t ime scale methods are used 
to treat the stiff harmonic forces present in the problem. 
The staging ansatz, orginally develped for use in MC algo- 
rithms, is used here to narrow the frequency range present 
in the problem and thus decrease the time it takes to cover 
phase space. In the staging ansatz, one derives a noncanon- 
ical transformation from the Cartesian bead variables to a 
new set of “staging” variables. This transformation natu- 
rally divides the long and short wavelength modes present 
in the system and partially or completely diagonalizes the 
harmonic part of the action. Therefore, all the short wave- 

- 
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length modes can be placed on the same time scale by 
simply adjusting the mass of their associated momenta. 
The advantage of the staging variables over the natural 
normal mode coordinates (which have been previously 
used in path integral MC calculations’) is that the staging 
transformation has lower computational overhead. The re- 
lated’ Fourier path integral Monte Carlo methodmi7” can be 
similarly adapted to form an efficient MD scheme’i but is 
not treated here. 

The presence of stiff harmonic forces in path integral 
molecular dynamics (PIMD) requires that an ergodic ca- 
nonical dynamics method be employed. Two different ca- 
nonical schemes based on MD are considered, the Nose- 
Hoover chain continuous-dynamics method and the 
stochastic hybrid Monte Carlo (HMC) method. The 
Nose-Hoover chain method12 is a new variant of the Nose- 
Hoover extended system canonical dynamics algo- 
rithm.13*14 It has been shown to be ergodic for the type of 
stiff potential surface derived from the path integral ac- 
tion.i2 This is not the case for the simple No&Hoover 
scheme.14 HMCi5 grew out of early attempts to induce 
ergodic behavior6’16 in MD simulations by periodically re- 
sampling the particle velocities. This method also yields 
the canonical distribution (constant NVT) .17,** HMC uses 
the following procedure: (a) a new configuration is ob- 
tained from an old one by advancing the system with MD 
using a reversible integrator and a large time step; (b) the 
new configuration is accepted or rejected according the 
usual Metropolis procedure; (c) if the new configuration is 
rejected, the momenta of the old configuration are resam- 
pled; (d) the process is repeated.15 

In this paper, two new PIMD simulation methods, one 
based on the Nose-Hoover chain method and the other on 
HMC, are developed utilizing the multiple time scale 
scheme and the noncanonical staging transformation de- 
scribed above. The methods are tested on a three dimen- 
sional quantum harmonic oscillator and an excess electron ..~ 
in flu% helium and xenon. The new approaches are found 
to give convergence rates comparable to those achieved by 
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current PIMC algorithms and much greater than those 
achieved by the standard PIMD19 and/or standard 
PIHMC methods. l5 

II. METHODS 

A. The staging method 

The quantum mechanical partition function can be 
written as the trace of the density matrix20-23 

Q(P) = J dx* pb, ,x1 ,P> 

= &q--- 
s 

dx, P(x~,x~,P/P)...P(xP,x~,~/P), 

(2.1) 

where 

p(x,x’,7)=(xIeBTHlx’), (2.2) 

p= l/kT, and we have chosen to work in one dimension 
for simplicity. This expression is obtained using the idem- 
potent property of the density matrix. The primitive high 
temperature density matrix approximation EV(Xi) 

P(Xi9Xi+l;E) =exp -2 1 1 PO(Xi9Xi+l;E) 

where 

(2.3) 

pOCxf sxi+ 1 F) = (sImeXP[ -$ (Xi-Xi+l)l] 

(2.4) 

can be substituted into Eq. (2.1) to yield 

Xexp -P i mP (XfaXi+*)2+iV(Xi) 
( 1 i=* S@ I) . 

(2.5) 

Here, m is the mass of the quantum particle, V(x) is the 
potential energy, xp+ ,=x1 and E=+/P. Also, a distinction 
is made between the approximate partition function Qp(p) 
and the exact partition function Q(p). The two agree for- 
mally in the limit that P goes to infinity, however, for large 
but finite P, agreement is found to be very good.‘p4*21-23 
Therefore, the index P will be suppressed in the future to 
avoid confusion. 

In order to derive a MD and/or HMC algorithm, the 
configurational integral in Eq. (2.5) is written in the form 
of a phase space integral by introducing P momenta with 
mass, mc,3p6 conjugate to the coordinates. This mass is 
arbitrary and need not be equal to the true mass because 
thermodynamic averages do not depend on this quantity. 
Introducing the momenta, the partition function becomes 

Q(B)=f(m,m,,P,P) ~dxI*-.dxp~dpI.--dpp 

P 

Xexp 
( 1 

-p C &+ mP i=l 2m, m (xi-xi+*)2 

(2.6) 

where the function f (m,m,$,P) represents the overall 
normalization. The partition function in Eq. (2.6) looks 
like the classical partition function for a system of P inter- 
acting particles with Hamiltonian 

moi(xi-xi+l)2+i V(xi) , 1 (2.7) 

where 

(2.8) 

This is the Hamiltonian used in the primitive PIMD/ 
PIHMC algorithm and is isomorphic to the Hamiltonian 
of a classical polymer chain with harmonic bonds between 
nearest neighbor beads in an external field, V(X).~ 

The partition function need not be written or simulated 
in Cartesian coordinates. In fact, the nearest neighbor har- 
monic couplings that appear in Eq. (2.7) suggest that it 
may be inefficient to do so. In order to define a better 
coordinate system, the following identity taken from 
p1~~:2,*24 

where 

l/2 

exp 

(k--1)Xk+l+Xl xff= 
k 

and 

1 -+ (x,q+l)2], (2.9) 

is used. This identity is proved by first using Eq. (2.4) to 
show that 

po[xl,Xk;(k-1)ElPo(Xk,Xk+l;E) 
Po(xlJk+l;kd I 

( ) 
/3&0$ 112e-~,2mp;bk-xr)i =- 

2n- 

and then converting the product of Eq. (2.9) to a product 
of terms similar to Eq. (2.12). The partition function can 
be rewritten in terms of iV “segments” of chain length j 
using iV such identities. The iV( j - 1) intermediate beads 
(beads 2***j,j+2***2j,***) are referred to as the staging 
beads; the others (beads l,j+1,2j+l;**) as “end point” 
beads. The staging beads have masses defined by Eq. 
(2.11) which are called the staging musses, while the end 
point beads have masses equal to the actual particle mass, 
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m. Let the set of staging and endpoint masses be denoted 
{mi}. The parameters N and j must be chosen such that 

Nj=P. (2.13) 

Substitution of the N identities into the partition function 
yields 

Qu3,=(gyx2 (*)Ni2Jdxl...dxp 

N-l 

Xexp - C ~mw,~(xs.j+l-x~s+l,.j+l)2 
1 s=o 

- go B : 
mkw3X~- j+k-Xz. j+J2 I 

.I 

Xexp 
I 

(2.14) 

where 

and 

x~ j+k= 
(k-l)XSmj+k+l+X~-j+l 

k 

(2.15) 

(2.16) 

A linear transformation is delined, 
72 Sej+l=xs. j+l, 

* 
‘S.j+k’xs,j+k-Xs.j+k 

with inverse 

(2.17) 

x s'j+k= (2.18) 

The inverse can also be expressed as a recursion 
k-l 1 

X,.j+k’Us.j+k+kX,+k+l+kX,.j+l. (2.19) 

A change of variables from x to u plus the introduction of 
momenta conjugate to the u’s yields 

Q(P)=fhm’,P,P) ~dul--*d~p~dpl~-$pp 

siO $2 ; mkWhz. j+k 

(2.20) 

where the function f (m,m’,p,P) contains the normaliza- 
tion constant. The Jacobian for the transformation is unity. 
The following Hamiltonian which we call the staging 
Hamiltonian can be derived from the partition function, 
Eq. (2.20): 

The staging coordinates have advantages over both the 
usual Cartesian coordinates and the natural normal mode 
coordinates which are also sometimes used in path integral 
calculations.’ Within the staging ansatz it is easy to adjust 
the masses of the beads (the {mf)), such that all the stag- 
ing beads or modes in the chain have the same frequency. 
This will clearly increase the convergence of time averages 
as all these modes will be sampled at the same rate. In 
general, it is not desirable to have all modes move on the 
same time scale. In a rapidly varying external potential, 
fast fluctuations of the long wavelength modes will require 
a small MD time step for stable integration. The staging 
method handles this *problem by introduction of the vari- 
able j, which naturally classifies the modes and allows only 
those with wavelength smaller than some cutoff to fluctu- 
ate rapidly. Such a division of time scales based on wave- 
length can also be constructed using the normal modes. 
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+ sso ki2 ~Fk@%i.j+k+~ i$l Uxi(u)l* (2.21) 

The possibility that the fictitious masses {mf} are different 
from the actual bead masses {mi} has been taken into ac- 
count. In the limit j =P, N= 1, the nearest neighbor cou- 
pling is completely diagonalized, so that the chain reduces 
to a collection of independent harmonic oscillators coupled 
only through the external potential. Note that the deriva- 
tive of the potential energy with respect to the staging 
variables can be expressed in terms of the primitive forces 
(Fj= -aV/aXi) as 

av av & j-Z+1 aV 

aus.i+l=G~+ Ik, j ax,. j+r 

+ z$2,yax( Yr.j+z’ 

av .& z-1 ai 
-= 14, zzdx,i+.[ aus- j+k 

(2.22) 

or recursively as 

---+ i av av . av 
%.j+l axz.j+l 1=2 %-u.j+z 

j-l av av -- 
j 1 aU(S+l).j-a%-i).j ’ 1 

av av k-2 av - - 
ausi+k=dXs. j+k+k- 1 au,. j+,&l ’ 

(2.23) 

where x-j+l=x(N-l).j+l, XN. j+l"xl and X,=X,. 
The staging Hamiltonian Eq. (2.21) is different from 

the primitive Hamiltonian, Eq. (2.7). The fact that only 
configurational averages are desired has been used to con- 
struct a new Hamiltonian with no canonical transforma- 
tion relating it to the primitive Hamiltonian. The two 
Hamiltonians will thus yield different trajectories when 
used in MD or HMC calculations and hence give different 
convergence rates for various averages. 
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The principal advantage of the staging coordinates over the 
natural normal modes is that the staging transformations, 
u +x and x + u as well as the transformation of the forces 
have simple recursive forms. This is not the case for the 
natural normal modes of a cyclic polymer chain. 

B. Method of integration 

The use of the MD or HMC method to calculate path 
integrals has proved to be troublesome for two reasons. 
First, for systems in which quantum mechanical effects are 
important, a large value of P will be needed to converge the 
partition function. As Eqs. (2.7) and (2.21) suggest, the 
harmonic contribution to the total force increases linearly 
with P, while the external force decreases as l/P. The in- 
crease in force constant relative to the external force with 
P means that a smaller time step must be used, and thus, 
more time is required for the stable integration of the har- 
monic motion as the system becomes more quantum me- 
chanical. That is, the time step must be reduced only to 
integrate the uninteresting harmonic part of the action. In 
addition, in PIMD simulations equipartitioning will be 
slow and it will be extremely difficult to insure that canon- 
ical ensemble averages are obtained.6 

Nose-Hoover dynamics can, in principle, generate tra- 
jectories whose time average will give the canonical ensem- 
ble average. 13J14*25 However, the method fails for systems 
such as the one dimensional harmonic oscillator.‘4 This is 
an important point, as the one dimensional quantum me- 
chanical free particle can be written as P- 1 uncoupled 
oscillators and one classical free particle. However, it has 
recently been shown that a variant of the method can be 
used alleviate this difficulty.” In this new method, the 
Nose-Hoover chain method, the usual Nose-Hoover equa- 
tions of motion are supplemented by a set of thermostats 
which successively thermostat each other 

g, 

P=- 
aw h 

aq -Pelt 

+P$, 

P2 
1 I 

h 
Pql= ,--kT -P,,, 3, 

(2.24) 

Here M is the number thermostats included and the opti- 
mal choice for thermostat mass is Q=kT/w2 where o is 
some representative frequency of the potential V(q). The 
dynamics, Eqs. (2.24), has the conserved energylike quan- 
tity 

- H’=&+V(q)+ ;l [$+kTvi], (2.25) 

where H’ is not a proper Hamiltonian for the system. For 
values as small as M=2, the canonical ensemble is ob- 
tained for a one dimensional harmonic oscillator. There- 
fore, to insure that canonical averages will be generated in 
the path integral simulations, each bead in the path inte- 
gral polymer will be given its own independent Nose- 
Hoover chain. Indeed, for the three dimensional systems 
studied in this paper, each degree of freedom of the beads 
will be given a No&Hoover chain, for a total 3P chains. 
While this may seem like a very large number of degrees of 
freedom, the time required to evaluate the Nose forces is a 
negligible fraction of the total simulation time. The prim- 
itive or staging PIMD algorithms are then generated by 
substituting the primitive/staging forces into the multidi- 
mensional analog of Fqs. (2.24). The conserved quantity is 
then that which corresponds to Eq. (2.25). In HMC sim- 
ulations, Nose-Hoover chains are not used, but rather just 
the straightforward Newtonian dynamics derived from Eq. 
(2.7) or Eq. (2.21). 

The reversible reference system propagator algorithm 
(RESPA)7 can be used to eliminate the time scale prob- 
lems associated with the harmonic bonds. This method is 
based on a Trotter expansion of the classical propagator, 
exp (iLt) . Consider the Liouville operator (in the absence 
of any Nose thermostats) 

iL=l -g+ [Fh(X) +LU7(x) I$ , (2.26) 

where F,,(x) represents the harmonic force and AF(x) the 
force due to the true external potential V(x). The system is 
evolved for time step At by applying the classical propaga- 
tor, exp( iLAt), to ?an initial state. A multiple time scale 
algorithm is obtained by applying the Trotter expansion of 
the evolution operator 

a At 
AF(x) -- exp(iL,At) 

ap 2 1 
U(x) -$$ +@(A?), 1 (2.27) 

to thestate {x( O),a?( 0)). The following equations of mo- 
tion are obtained: 

-x(At) =xh Acx(O),l(O) +& AF[x(O)] , 
1 I 

k(At) =lh Acx(O),l(O) +; AF[x(O) ] 
I I 

+& @[x(At) I, (2.28) 

where {xh ,3ih) refers to the position and velocity generated 
under the action of exp(iLhAt). The action of exp(iL,At) 
on the initial state is determined numerically to order A?/ 
n2 by writing this operator as [exp(iLhAt/n)]” and apply- 
ing the velocity Verlet algorithm with time step St= At/n, 
n times.7’26 Therefore, as the harmonic frequency increases, 
the parameter n can be increased with At held constant to 
yield the same level of energy conservation. There is some 
overhead associated with an increased number of harmonic 
force evaluations as n is increased, but this is more than 
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offset by the cost of evaluating the external force. In this 
manner, the stiff harmonic forces in path integrals can be 
handled efficiently. The algorithm can be directly applied 
to the HMC method which uses the Newtonian equations 
of motion. In Appendix A, the algorithm is modified for 
use with systems undergoing Nose-Hoover chain dynam- 
ics. 

This effectively eliminates the harmonic bonds from the 
problem (i.e., they have been directly sampled.) Note, the 
first end point bead is chosen at random and the second 
determined by j and the periodicity of the polymer chain. 
The parameter j is chosen so that the acceptance proba- 
bility is 40%. A staging PIMC pass is defined as P/( j - 1) 
moves of (j- 1) beads. 

C. Definition of parameters E. Path integral hybrid Monte Carlo 

In order to fully define the staging PIMD and/or 
PIHMC algorithms as described above, several parameters 
must be specified. These parameters include the masses of 
the Nose-Hoover thermostats (MD is defined to refer to 
Nose-Hoover chains dynamics), the value of j, the RE- 
SPA parameters At and n, and the masses of the path 
integral beads themselves, the {mf). The staging thermo- 
stat mass, the mass of the thermostat on the staging beads, 
is taken to be Qstase- - kT/w& while the mass of the ther- 
mostat on the end point beads, is taken to be the smallest 
value that does not degrade energy conservation for given 
j. A good first guess is j * Qstage . The parameter j is chosen 
to be the largest value that does not degrade energy con- 
servation in staging PIMD. In staging PIHMC, j is chosen 
to give the most rapid convergence. Though this procedure 
sounds time consuming, it is actually fairly straightforward 
to implement. In staging PIMD, as j is increased from an 
initial value there is a well defined cutoff where energy 
conservation will begin to break down. Once this value is 
obtained, Qend can be reduced from j * Qstase. The adjust- 
ment of the RESPA parameters At and n is also fairly 
straightforward. For j less than its cutoff, At determines 
the energy conservation for n greater than another cutoff 
value. Thus n is set to the smallest value possible that 
maintains energy conservation. In HMC, n is chosen so 
that the acceptance probability is solely determined by At. 
Again, there is a well defined cutoff value. The last param- 
eter that must be fixed is the choice of the path integral 
mass. If there is no motion other than that of the path 
integral itself, {mf} = {mi} is a good choice. In the pres- 
ence of other motion, classical solvent degrees of freedom 
for example, the masses should be taken to be {mf} 
= {CmJ where C is the largest possible value that does not 
degrade energy conservation or in HMC the acceptance 
probability. In practice, it should make At equal to the 
time step for the solvent. Again, despite the seemingly 
large number of parameters, it only takes a few short runs 
to determine them. In addition, once the parameters are 
chosen, if the number of beads is increased, everything 
scales accordingly so that the adjustment procedure is only 
performed once. 

D. Staging path integral Monte Carlo 

The staging PIMC method incorporates the staging 
ansatz described above into MC. Here (j - 1) beads are 
directly sampled between fixed end points according to the 
free particle action using the staging transformations de- 
fined above [cf. Eq. (2.17)]. The move is accepted or re- 

jected according to the usual Metropolis procedure.2*27 

Hybrid Monte Carlo (HMC) is a combined MD-MC 
method that can be used to obtain the canonical distribu- 
tion.15 The method g enerates a new configuration from an 
old configuration by integrating the Newtonian equations 
of motion with a reversible numerical integrator and a large 
time step. The move is than accepted or rejected according 
the usual Metropolis procedure2s based on emp”, where 
AJY is the change in the total energy as a result of the 
move. The integrator must be reversible in order to satisfy 
the microscopic reversibility requirement of the Metropolis 
MC method.28 If a move is rejected, then new momenta are 
then directly sampled from the Boltzman distribution. The 
procedure is repeated many times to cover phase space. 

The HMC method can be used with any Hamiltonian 
and can thus be applied to either the staging or the prim- 
itive path integral ansatz [i.e., Eq. (2.20) or Eq. (2.7)]. 
HMC simply replaces No&Hoover dynamics as the 
method used to generate the canonical distribution. In both 
the primitive and staging PIHMC, the reversible multiple 
time step integrator, RESPA may be used. A small time 
step is chosen to integrate the harmonic piece of the action 
accurately and the large step is chosen such that 40% of 
the moves are accepted. Larger acceptance probabilities are 
found to be less efficient. However, when RESPA is not 
used, higher acceptance probabilities ( -90%) are found 
to give most rapid coverage of phase space. 

In staging PIHMC, a modification of the standard 
method is necessary, to achieve maximum efficiency. At 
each step an integer random number between zero and 
(j - 1) is chosen and the Cartesian coordinate labels (the 
x’s) are reassigned by rotating the coordinate labels 
around the cyclic polymer chain by this amount (Xi-*Xi+r 
where x~+~- , -x.). This move does not change the action 
and is accepted with probability one. New staging coordi- 
nates (the u’s) are then calculated using the rotated Car- 
tesian coordinate labels [cf. Eq. (2.17)]. This reassigning of 
the coordinate lables has the effect of periodically changing 
the frequency scale of a given bead. If a bead was initially 
an end point, after reassignment it is likely to become a 
staging bead, thus insuring that no single bead remains a 
fast or slow bead permanently. This helps- each bead to 
sample its available phase space more efficiently. The reas- 
signment scheme was also tested in staging PIMD simula- 
tions under Nose-Hoover dynamics but was found to have 
no effect on the convergence of statistical averages. 

Ill. MODEL PROBLEMS 

Several model problems were considered to thoroughly 
test the new methods, the 3D quantum mechanical har- 
monic oscillator, an excess electron in fluid helium and an 
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excess electron in fluid xenon. The oscillator is studied 
because it is a simple, computationally inexpensive model 
uncomplicated by a large number of parameters. It nonthe- 
less has all the problems associated with path integral sim- 
ulations, stiff harmonic bonds, nonergodic behavior, etc. It 
is used to demonstrate the new methods and in particular 
to show the importance of using multiple time scale inte- 
gration and the staging variable transformation. Electrons 
in fluid helium and xenon are realistic systems that involve 
the motion of additional classical degrees of freedom (sol- 
vent). Both helium and xenon are studied in order to com- 
pare the methods in contrasting environments; in helium, 
the electron is localized in a cavity devoid of solvent while 
in xenon it extended throughout the fluid. Solvent motion 
plays an important part in both systems. Therefore, the 
efficiency of the path integral methods are compared for 
both frozen equilibrated solvent configurations as well as 
for the full problem. In addition, the ability of HMC, MD, 
and MC to sample the pure solvent degrees of freedom is 
examined. 

The parameters of the oscillator were taken to be P& 
= 15.8, mo/fi=0.03, P=400 which defines a quantum me- 
chanical ground state dominated system.” The excess elec- 
tron in liquid helium, another quantum mechanical ground 
state dominated system, was studied using a system of 
N=256 helium atoms and a single excess electron in a 
periodic cubic box. The same number of atoms was used to 
study an electron in liquid xenon. The solvent atoms inter- 
act through Lennard-Jones potentials with ene= 10.22 K, 
omc2.556 A, ex,=229.15 K and 0x~=4.332 A, respec- 
tively. The temperature and the density of the both systems 
was taken to be T=309 K and ~03 =0.5.27 The electron 
interacts with the helium and xenon atoms via a pseudo- 
potential” 

(3.1) 

with AHe=0.665, I?,,=89 099.0, CH,= 12 608.0, A,, 
= 12.59, B,,=4920, and Cx,=3793 all in atomic units.27 
The electron was discretized with P=990 beads and energy 
conservation in PIMD is monitored by the formula’ 

(3.2) 

where NT is the total number of time steps. 
The staging PIMD simulations of the harmonic oscil- 

lator were integrated with a big time step of At=O.l9w, 
and a small time step &=At/5, respectively. The other 
parameters are taken to be j = 100 and &se= kT/w& Qend 
= 5OQs,, 5 M=2. For PIMD simulations based on the 
primitive algorithm, we set At=0.380,, St=At/lO and 
Q= kT/&., M=2. In both staging PIMD and primitive 
PIMD simulations, the energy conservation, as measured 
by Eq. (3.2) was set to 1 X 10m4. The staging PIMC sim- 
ulations used j=SO. The PIHMC studies of three dimen- 
sional oscillator employed time steps of At=O.glw,, At 
= 19.0wp for staging PIHMC (with j= 100) and the 
primitive PIHMC, respectively. The inner or small time 
step was fixed at St=O.O38w, as in the staging PIMD sim- 

ulations. Simulations using primitive PIHMC without 
multiple time step integration utilized a time step of At 
=0.36wp. 

The staging PIMD simulations of the excess electron 
in fluid helium and xenon were integrated using At= 1.25 
a.u., 6t=At/3, j=66, M=2, Qend=67.32, Qstas,=1.02. A 
single Nose-Hoover chain consisting of 4 thermostats was 
used to control the temperature of the solvent. The masses 
of these thermostats were set equal to Q, = 3NkT/a& and 
Qj= kT/& (i=2,3,4,) where ww is the frequency in the 
Lennard-Jones well, mn,w&= 8 x 10m5 for helium and 
mxe&=7X 10V4 for xenon in atomic units. The mass of 
the helium atom was set to 0.156 a.u. and the mass of the 
xenon atom was set equal to 0.33 a.u. These masses are the 
smallest possible that can be used without significantly de- 
grading the energy conservation for the choice of j de- 
scribed above. The energy conservation of the simulations 
as measured by Eq. (3.2) are then AE= 1 X 10m3 for he- 
lium and AE= 1 x low4 for xenon. The tolerance for used 
in the high temperature helium is a bit high but it is diffi- 
cult to achieve better results at such a high temperature 
and maintain a reasonable time step. 
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FIG. 1. The instantaneous fluctuations in the Virial estimator averaged 
over 20 steps obtained from simulations of the three dimensional har- 
monic oscillator using primitive PIMD (upper), staging PIMD (middle) 
staging PIMC (lower). 
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PIG. 2. The cumulative average of the Virial estimator obtained from 
simulations of the three dimensional harmonic oscillator using primitive 
PIMD (upper), staging PIMD (middle), staging PIMC (lower). 

The masses and values of the j parameters selected for 
PIMD are also used in the staging PIHMC simulations of 
electrons in helium and xenon. However, the time steps 
were taken to be At=-7.25 a.u., 6t=At/17 for helium and 
At=6.0 a.u., St=At/l4 for xenon. 

The staging PIMC simulations of excess electron in 
helium used moves of length j =55 beads to sample the 
electronic coordinate and a step of size of 4.5 a.u. to move 
the helium atoms. For xenon, the corresponding parame- 
ters are j = 59 and a step size of 3.44 a.u. 

In order to stuciy convergence of the methods, the in- 
stantaneous fluctuations of the virial estimato?3’30 was 
monitored. For a bound system such as a harmonic oscil- 
lator, the virial estimator is given by 

Ep=i ,i 
L-1 [ 

V(r,) +k ri- VfV(rJ 1 (3.3) 

while for open systems the formula becomes 
P 

Ep=f z.F v(ri) +$-$ (ri-I’,.) ’ ViV(ri) , 1 (3.4) 
i-1 
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FIG. 3. The error as a function of block size in the Viial estimator 
obtained from simulations of the three dimensional harmonic oscillator 
using primitive PIMD (upper), staging PIMD (middle) staging PIMC 
(lower). 

where r,= l/J@= iri is the path integral centroid. For all 
the examples, an initial configuration was equilibrated for 
2500 steps, and averages were computed for 10 000 steps. 

IV. RESULTS 

A. Harmonic oscillator 

Simulations were carried out on the three dimensional 
quantum mechanical harmonic oscillator using staging 
PIMD, primitive PIMD (including RESPA and the No&- 
Hoover chains) and staging PIMC. In Fig. 1, the instan- 
taneous fluctuations in the virial estimator (averaged over 
20 steps) obtained from the simulations are plotted. The 
primitive PIMD method shows fluctuations that are gen- 
erally larger and slower than those obtained using either 
the staging PIMD or the staging PIMC method. On the 
other hand, the staging PIMD and the staging PIMC 
methods exhibit comparable fluctuations in the estimator. 
In Fig. 2, the convergence of the cumulative average of the 
virial estimator is shown for the three methods. Again, it 
appears that the primitive PIMD method converges more 
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FIG. 4. The error as a function of block size in the Virial estimator 
obtained from simulations of the three dimensional harmonic oscillator 
using primitive PIHMC (upper), primitive PIHMC with multiple time 
step integration (middle), staging PIHMC (j= 100) with multiple time 
step integration (lower). 

slowly than either the staging PIMD or the staging PIMC 
method. In Fig. 3, the relative error in the mean [see Eq. 
(2.2) of Ref. 301 for the virial estimator as a function of 
block size is plotted for the three methods.31 This quantity 
gives a detailed measure of the efficiency of the algorithms 
(i.e., how many more configurations would have to be 
sampled in order to achieve the same degree of accuracy). 
Staging PIMD is about 1.6 times less efficient than staging 
PIMC while primitive PIMD is about a factor of 20 times 
less efficient than staging PIMC. Without RESPA, primi- 
tive PIMD would be a factor of 200 times less efficient than 
staging PIMC. It should be noted that replacing the No&- 
Hoover chain scheme with a stochastic heat bath algo- 
rithm6J’8 (the method of choice for typical primitive PIMD 
simulations) results in a much less efficient algorithm. 

The HMC methodi was also studied. In Fig. 4, the 
error bar as a function of block size is presented for prim- 
itive PIHMC without multiple time step integration, prim- 
itive PIHMC with multiple time step integration and stag- 
ing PIHMC (j = 100). Primitive PIHMC without multiple 
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FIG. 5. The error as a function of block size in the Virial estimator 
obtained from simulations of an excess electron in a frozen equilibrated 
helium configuration using staging PIMD (upper), staging PIMC (mid- 
dle) staging HMC (lower). 

time step integration is 150 times less efficient than staging 
PIMC. When multiple time integration is included the 
method becomes almost as efficient as PIMC. Staging in- 
creases the efficiency of the PIHMC method to equal that 
of PIMC. It also reduces the overhead due to the integra- 
tion of the reference system by a factor of 20. Interestingly, 
without the rotation move outlined in the methods section, 
staging PIHMC with multiple time step integration is 
slightly less efficient than the primitive method with mul- 
tiple time step integration. Despite these results, the HMC 
method remains somewhat limited. The method cannot be 
used to study systems that have constraints, as the usual 
integrators (shake or shake/rattle) are not reversible. 

B. Excess electron in liquid helium and xenon 

Single excess electrons in fluid helium and xenon were 
also studied. In Fig. 5, the error bar for the virial estimator 
as a function of block size is shown for an excess electron 
in a frozen equilibrated helium configuration for the stag- 
ing PIMD, staging PIMC and staging PIHMC methods. 
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FIG. 6. The error as a function of block size in the Virial estimator 
obtained from simulations of an excess electron in a frozen equilibrated 
xenon configuration using staging PIMD (upper), staging PIMC (mid- 
die) , staging PIHMC (lower). 

An equilibrated configuration is obtained from a full stag- 
ing PIMD simulation of the combined system (i.e., both 
electron and fluid moving). The error bars are comparable 
for the three methods, although from the ratio of the 
square of the error bars, PIMC is about a factor of 1.6 
better than PIMD, similar to the oscillator case. In Fig. 6, 
the error bar as a function of block size for an excess 
electron in a frozen equilibrated xenon configuration is 
shown for the three methods. Again, the error bars are 
found to be roughly similar with PIMC about a factor of 
1.6 better than PIMD from the ratio of the square of the 
error bars. 

The ability of the three methods to treat the neat he- 
lium and xenon fluids at the conditions of interest is con- 
sidered next. In Fig. 7, the mean square displacement vs 
time step/pass produced by each of the three methods, 
HMC, MD, and MC is shown for helium at T*=30.23 
and p*=O.5 (see Sec. III). Here all references to molecu- 
lar dynamics (MD) indicate Nose-Hoover chain dynam- 
ics (see Sec. III). The results indicate that HMC is 

1 I I I 
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- - - - - - - Hybrid IIC (0.4 ace) 
--.--.--.- Hybrid NC (0.8 sac) 

---1 
0 1 2 3 4 5 

(pass/step)x10-3 

FIG. 7. The mean square displacement divided by the square of the 
Lennard-Jones o for helium as a function of time step/pass for MC, MD, 
HMC at 90% acceptance, and HMC at 40% acceptance for pure helium 
(T*=30.23 and p*=O.5). 

not competitive with either MD or standard MC. There- 
fore, HMC will not sample the available phase space as 
efficiently as either of the other two methods. Also, the 
mean square displacement of MD is less than that MC by 
a small but significant amount; the ratio of the per time 
step/pass diffusion constants is a factor of 1.4. It can there- 
fore be expected, that in a full simulation of an electron in 
fluid helium, the error bar for MC would be smaller than 
that of MD and much smaller than that of HMC. In Fig. 
8, the mean square displacement vs time step/pass pro- 
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FIG. 8. The mean square displacement divided by the square of the 
Lennard-Jones (r for xenon as a function of time step/pass for MC, MD, 
HMC at 90% acceptance, and HMC at 40% acceptance for pure xenon 
(T*= 1.4 and p*=O.5). 
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duced by each of the three methods, HMC, MD, and MC 
is shown for xenon at T* = 1.4 and p* = 0.5 (see Sec. III). 
In this case, MD and MC give essentially the same mean 
square displacement. Again, however, HMC does not give 
as large a mean square displacement as either MC or MD. 
In Appendix C, an explanation for the failure of HMC on 
the pure fluid is proposed. Given the poor performance of 
HMC in treating the pure solvent, it is not used in full 
simulations of the electron in helium and xenon discussed 
below. 

The results of the full simulations of the electron in 
liquid helium and liquid xenon are shown in Figs. 9 and 10, 
respectively. As expected, the error bar for the staging 
PIMC calculation of the electron in liquid helium is 
smaller than that calculated with staging PIMD. The 
square of the ratio of the error bar for staging PIMC to 
that of staging PIMD is roughly a factor of 1.6 indicating 
that staging PIMC is 1.6 times more efficient than staging 
PIMD, again, comparable to the oscillator case. In xenon, 
the square of the ratio of error bars of staging PIMD to 
staging PIMC is roughly a factor of 1.5 which again indi- 
cates that staging PIMC is 1.5 times more efficient than 
staging PIMD for this particular system. 

V. CONCLUSIONS 

A new PIMD algorithm (the staging PIMD method) 
has been developed. The method which employs the Nose- 
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FIG. 9. The error as a function of block size in the Virial estimator 
obtained from full simulations of an excess electron in liquid helium using 
staging PIMD (upper) staging PIMC (lower). 
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FIG. 10. The error as a function of block size in the Virial estimator 
obtained from full simulations of an excess electron in liquid xenon using 
staging PIMD (upper) staging PIMC (lower). 

Hoover chain dynamicsi and the multiple time scale inte- 
gration scheme RESPA’ is about as efficient (less efficient 
by about a factor of 1.6) as the best PIMC method and 
much more efficient (200X ) than the basic PIMD 
method. The new method is straightforward to implement 
and can be incorporated into existing codes with little dif- 
ficulty. 

A new PIHMC method is also developed. When mul- 
tiple time scale integration techniques are used, the method 
is as efficient as PIMC and the new staging PIMD algo- 
rithm. This method also requires the rotation of the coor- 
dinate labels as discussed in Sec. II E. This rotation of 
coordinate labels was also tested in the staging PIMD 
method with Nose-Hoover chains and was found to make 
no significant improvement in its efficiency. HMC appears 
to perform poorly on the pure Lennard-Jones fluids. There- 
fore, the method is not recommended for use in systems 
which include solvent motion without additional method- 
ological developments. Also, the HMC method cannot be 
used to study systems with constraints because usual 
shake/rattle procedure is not reversible. The new staging 
PIMD method does not suffer from this deficiency. 
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APPENDIX A 

Systems undergoing Nos&Hoover chain dynamics can 
also be integrated using RESPA. As in the standard Respa 
method, the operator that generates the dynamics of the 
system of interest is written as 

d At 

u~pt)=~uql~O)+~ [~Fql~O)+~*~pt) 

-uq,(0)uq2(O) II/[ l+stuCi-l)(,,) 
2 7)2 1 

U(q) -- exp(iLhNHcAt) 
ap 2 I 

Xew @$I)$-~ 
I 1 +-8(A?), (AlI with initial guess 

where iL = iLh+NHc + AF(q) (a/ap). Here the reference 
system is a harmonic oscillator undergoing Nose-Hoover 
chain dynamics [see Eqs. (2.24)]. The Nose-Hoover 
chains are included in the reference system because for the 
optimal choice of thermostat mass, Q= kT/w2, the ther- 
mostat coordinates evolve on the same time scale as the 
oscillator. As in the text, a further simplification of the 
reference system propagator can be made 

n 
eiLh+NHcAf= n eiLh+NHCSf 9 

i=l 
t-42) 

where St= At/n. The operator eiLh+h+NHcGt can be applied to 
an initial state to order B ( St3/n2) using a numerical inte- 
grator. It remains to specify an integrator for Nose- 
Hoover chain dynamics and to show how the operators 
containing the difference force modify the integrator to 
form a RESPA scheme. 

The Nose-Hoover chain equations of motion [see Eqs. 
(2.24)], which are generated by the action of eiLh+NncS* on 
an initial state can be integrated using an implicit method 
based on velocity Verlet.26 The positions are determined by 

St2 1 
4(W =9(O) +vqWt+~ ;Fh(o) --vqlmqw , 

I I 
St2 1 

rll(St)=rll(0)+vq1(0)6t+2~ ~~qltO)-~q2Kov,,m 
I 1 

, 

s12 1 
rlz(St) =rlz(O) +u,,(OMt+y- eF,(O) ) 

I 1 
where 

dvh(d 

(A3) 

Fh(O)=- aq , 
I q(O) 

F,,(O) =mu;(O> -kT, 

F,(O) =Qu;,(O) --kT, (-44) 

St is the time step and the number of thermostats in the 
chain is set equal to two. The velocities are determined 
from an iterative procedure 
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$‘@t> = u (0) +E~ LFh(O) +; F/J&) jF 2[m 

--~ql(0)~,(O) IPI 1 +!f p-l) (St) 1 2% ’ 

(0)+&p) 1 (A51 

dO’(St) =uql( - 
71 St > + 222 ;FqJO) -uq,(Obq2(0) , 

I I 

u(O)(St) ‘Uq2( -St> +2st bFq2(0) 
772 I 1 (Aa 

to a desired tolerance. The tolerance is taken to be largest 
possible value that results in stable integration (too large a 
tolerance results in a drift in the conserved quantity). This 
procedure is called implicit velocity Verlet integration. 

A RESPA algorithm based on implicit velocity Verlet 
integration can be constructed. The procedure is designed 
to reduce to implicit velocity Verlet integration of the full 
force in the limit that n = 1 and to the standard RESPA 
method if the coupling of the oscillator to the Nose- 
Hoover chains is eliminated. Again, RESPA breaks up a 
large time step, At, into n small time steps of length, St. 
The RESPA method differs from n straightforward appli- 
cations of implicit velocity Verlet algorithm only on the 
first and the nth small time steps where the n times the 
difference force, nAF, must be applied. In the first small 
time step, where the system is advanced from time zero to 
time St, the harmonic force, Fh(0), is replaced by the 
force, Fh(0)+nhF(O), in Eqs. (A3)-(A6). The integra- 
tion procedure is otherwise unchanged. In the nth small 
time step, where the system is advanced from time A-St 
to At, the harmonic force, Fh( At) is simply replaced by the 
force, Fh(At) +nAF(At), in Eqs. (A3)-(A6). Again, the 
inte-gration procedure is otherwise unchanged. As is the 
case in the standard velocity Verlet algorithm, the differ- 
ence-force at time At is precisely the difference force that 
must be used in the first step of the next application of the 
integrator. Therefore, only one difference force evaluation 
per large time step, At, is necessary. In Appendix B, For- 
tran code for this algorithm is given. 
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Here, some of the fortran code necessary to implement the staging PIMD algorithm is included. Continuation cards 
have been eliminated for clarity. 

SUBROUTINE INTEGRATE 
C HERE NP = P OF THE TEXT 
(’ NNOS = M OF THE TEXT 
C NRESP = n OF THE TEXT 
c DT = 3.t OF THE TEXT 
C DTI = 6t OF THE TEXT 
6 INITIALLY FXUHARM(1) = FXUHARM(I) 

t DBLE(NRESP)*FXUEXT(I) I =‘I;NP 

C THE RESPA LOOP 
RN = DBLE(NRESP) 
DTI = DT/RN 
DTI2 = DTI/P.DO 
TDTI = 2.DO’DTI 
DT122 = DTI*DTI/S.DO 
DO Ill IRESP = I .NRESP 

C INTEGRATE THE BEAD POSITIONS 
DO I= l.NP 

XU(I) = XlJ(1) + DTI*VXlI(I) 

ENDDO 
+ DTI21-(FXUHARM(I)-~XU(II*VXULOGS(I,I)) 

(: INTEGRATE THE NOSE-HOOVER VARrABLES 
DO I = I .NNOS*NP 

xuLocs(I.l) = xuLocs(l,ij t DTI’VXULOGS(I, l) 
+ DT122*FXULOGS(I,l) 

ENDDO 
C INTEGRATE THE VELOCITIES A HALF TIME STEP 

DO I = l ,NP 
VXUT(1) = VXU(I) 

ENDDO 
+ D’Tl’Y*(FXUHARM(I)-VXU(I)*VXlJLOGS(I,l)) 

DO I = l .NNOS’NP 
VXUTLOCS(I.I) = VXULOGS(I, l) 

ENDDO 
DO I = 1,NNOS‘NF’ DO I = 1,NNOS‘NF’ 

VXULOGS(I.1) = VXUOLOGS(I, l)  t TDTI*FXULOGS(I,l) VXULOGS(I.1) = VXUOLOGS(I, l)  t TDTI*FXULOGS(I,l) 
ENDDO ENDDO 
DO I = 1 NNOS’NP DO I = 1 NNOS’NP 

VXUOiOGS(I.1) = VXUTLOC:S(I,l) VXUOiOGS(I.1) = VXUTLOC:S(I,l) 
ENDDO ENDDO 
DO I = I .NNOS*NP DO I = I .NNOS*NP 

VXUTi.OGS(I,l) = VXUTLOGS(I,I) t DT12*FXULOGS(I,I) 
ENDDO 

(‘GET THE FORCES AT THE NEW POSITIONS 
CALL GETFXllHARM 
IF(IRESP.EQ.NRESP)THEN 

CALL CETX 
CALL GETFXEXT 
CALL CETFXUEXT 
DO I = l ,NP 

FXUHARM(1) = FXUHARM(1) t RN*FXUEXT(I) 
ENDDO 

ENDIF 
C ADD THESE FORCES TO THE VELOCITIES 

DO I = l ,NP 
VXlJT(1) = VXUT(1) + DTI’L’FXUHARM(I) 

ENDDO 
C ITERATE THE VELOCITIES TO COVERCENCE 
5 CONTINUE 

DO I = l ,NP 
VXUN(I) = VXUT(I)/(l.DO t DTiZ*VXULOGS(I,I)) 

ENDDO 
DO .I = l ,NNOS-1 ’ 
CALL GE’l?FXULOC:S(JI 
DOI=l,NP ” 

VXlJNLOGS(I,J) = (VXUTLOC:S(I,J) t DTI2*FXULOGS(I,.l)) 
/(l.DOtDT~~‘VXULOGS(I,J+l)) 

KE8 
CALL GETFXULOQS(NNOS) 
DO I = l ,NP 

VXUNLOGS(I,NNOS) = VXUTLOGS(I,NNOS) t DTI2*FX~.lLOGS(I,NNOs) 
ENDDO 
CALL GETTOLNOW 
DO I = l ,NP 

VXU(1) = VXUN(I) 
ENDDO 
DO I E 1 NNOS*NP 

vxULbGs(I.1, = VXUNLOGS(I.1) 
ENDDO 

IF(TOLNOW.LT.TOL)GOTO 5 
DO .I = l ,NNOS-I 

DO I = l ,NP 
FxULDGs(I,J) = FXULOGS(I,J)- vxULoGs(1,J)*VXULOGS(I..Jtl) 

ENDDO 
ENDDO 

10 CONTINUE 
SUBROUTINE GETX 

C TRANSFORM POSITIONS FROM XU TO X 
C HERE NSEG = N OF THE TEXT 
C AND NSTAGEtl = j OF THE TEXT 

: SET UP SOME USEFUL CONSTANTS 
DO I = 1,NSTAGE 

RATl(1) = DBLE(I)/DBLE(Itl) 
RATP(1) = I.ODO/DBLE(I+I) 

FNDDO 
CONST = DBLE(NSTAGE)/DBLE(NSTAGE+l) 
CONSTZ = l .ODO/DBLE(NSTAGEtl) 
DO K = 1,NSEG 

III(K) = (K-l)*(NSTACE+l) + 1 
J.JJ(K) = III(K) + (NSTAGE+I) 

ENDDO 
JJJ(NSEG) = 1 

C TRANSFORM THE POSITIONS 
DO I = l ,NP 

X(1) = XU(1) 
ENDDO 
DO K=l,NSEG 

X(NSTAGEtIII(K)) = X(NSTACEtIII(K)) 
t CONST*XU(JJJ(K))tXU(III(K))*CONST2 

DO I=NSTAGE-1,1,-l 
X(1+111(K)) = RATl(I)“X(ItII1(K)+l) 

ENDDO tXU(III(K))*~AT2(1)+ x(1+111(K)) 

ENDDQ 
SI:BROUTINE GETFXI’EXT 

(‘THANSF0R.M FORCES FROM FXEXT TO FXI:EXT II 
(’ SET I’P SOME I’SEFI’L (‘ONSTANTS 

DO 1 = l .NSTAC:E 
RAT:?(I) = DBLE(I-I)/DBLF;(I) 

ENDDO 
CONST = DBLE(NSTACE)/DBLE(?S~A~~E+l) 
DO K=l.NSEC: 

I  

III(K) = (ti-l)*(NSTAGEtI) t 1 
.JJJ(K) = K*(IUST.-\GE+l) 
KKK(li) = III(ti) 1 

ENDDO 
KKti(1) = NP 

C’TRANSFORM THE FORCES 
DO I F l.NP 

FXUEXT(1) = FXEXT(I) 
ENDDO 

C THE STAGING BEADS 
DO K=I,NSEG 

DO I=l,NrSTAGE 
FXUEXT(ItIII(K)) = RATS(I)-FXUEXT(I+III(K)-1) 

t FXI’EXT(I+III(K)) 
ENDDO 

ENDDO 
C THE END POINT BEADS 

DO K=l,NSEG 
FXUEXT(III(K)) = FXUEXT(III(K)) 

- CONST*(FxUExT(JJJ(K))-FXUEXT(KKK(K))) 

ENiD 
t DSUM(NSTAC:E,FXEXT(III(K)tl), l) 

DO I=I,NP 
FXIiEXT(1) = FXUEXT(I)/MASS(I) 

ENDDO 

APPENDIX C 

The results of the Sec. IV indicate that MD and HMC 
can be less efficient than ordinary MC in sampling solvent 
degrees of freedom. The behavior of HMC is particularly 
poor. This is may be due to the complete resampling of all 

the particle velocities that occurs when a move is rejected. 
A complete resampling causes the velocities to become un- 
correlated, and hence, if one were to measure the velocity 
autocorrelation function, one would find that it had a short 
decay time. Since the diffusion coefficient is proportional to 
this decay time, it will therefore be substantially decreased 
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by this resampling scheme, a fact which leads the mean 
square displacements presented in Figs. 7 and 8. Therefore, 
in the spirit of Andersen,” it may be more efficient to 
resample some fraction of the velocities, y and maximize 
the mean square displacement with respect to this param- 
eter. This would make the rejection step a less stochastic 
event and lead to better diffusion. The same result could 
perhaps be achieved if several time steps are made before a 
move is either accepted or rejected. However, the number 
of time steps selected must be less than the correlation time 
or the algorithm will be inefficient. 

MD is less efficient than MC in very high temperature 
helium (T*=30.23). At such temperatures, the particles 
behave like “hard spheres.” Collisions are extremely 
strong, even impulsive, at this temperature and density. 
Therefore, it is very ditlicult to integrate through the col- 
lisions continuously. This behavior could be improved by 
using the long range forces version of RESPA7 to accu- 
rately integrate the collisions. (This would also help 
HMC.) Nevertheless, even under very extreme conditions, 
MD still performs adequately. It is 1.6 times less efficient 
than ordinary MC under these conditions. 

The efficiencies discussed above are based on the rela- 
tive size of the single particle diffusion coefficient. While 
this is probably adequate for monatomic fluids, it is not, in 
general, the best measure. A better measure might be the 
diffusion coefficient in pair space or the decay of the energy 
autocorrelation function of each particle as this quantity 
serves as a true test of how well energy is equipartition- 
ing.32 However, the energy measure would clearly fail for a 
hard spheres system which helium at T*=30.23 begins to 
approximate. Mountain and Thirumalai have suggested 
more sophisticated measures of convergence in numerical 
simulation.33 
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