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The Born-Oppenheimer approximation is introduced into the path integral expression for the 
canonical partition function. It is difficult to apply this to simulations. We devise a new adiabatic 
expression which we call the free energy Born-Oppenheimer approximation which is much 
easier to simulate. It is shown that this approximation deviates from the exact path-integral 
expression by no more than does the standard Born-Oppenheimer approximation and we apply 
it to the problem of an excess electron dissolved in a polarizable fluid. 

I. INTRODUCTION 

Path integral techniques are very useful for exploring 
electron and proton solvation and electron transfer in po- 
larizable molecular fluids. * The solvated electron or proton 
is found to sustain energy excitations which are small com- 
pared to the energy spacing in the molecular electronic 
energy levels. This means that the dipolar fluctuations in 
the molecules, the source of molecular polarizability, are 
rapid compared to the motions of the solvated electron 
with a concomitant separation in time scales. These sys- 
tems can thus be treated in the Born-Oppenheimer (BO) 
approximation. In this paper we introduce what to our 
knowledge is a new path integral method for treating the 
above problems which we call the free energy Born- 
Oppenheimer (FEBO) approximation. 

In a dynamical system with slow and fast degrees of 
freedom the Born-Oppenheimer approximation consists of 
solving for the energy eigenvalues and corresponding en- 
ergy eigenfunctions keeping the slow degrees of freedom 
fixed. This yields energy eigenvalues and eigenfunctions 
which are parametrically dependent on the slow degrees of 
freedom and are called adiabatic states and energy sur- 
faces. The slow degrees of freedom move on these adiabatic 
energy surfaces and one solves the Schriidinger equation 
for this motion. In the path integral formalism one then 
has to perform a separate path integral calculation for each 
of these adiabatic surfaces. This approach does not readily 
lend itself to Monte Carlo simulations or to analytical the- 
ories using path integrals. In this paper we derive an alter- 
native formulation which does not require separate calcu- 
lations for each potential energy surface. This formulation 
is shown to be as accurate as the full Born-Oppenheimer 
approximation. We apply it to the problem of electron sol- 
vation in polarizable fluids but we expect it to be quite 
useful in other applications. 

A useful model for describing polarizable systems is 
the Drude oscillator model.“” The solvation of an excess 
electron in a fluid of Drude oscillators is due in large part 
to the many-body polarization energy. The usual approach 
is to calculate a pseudopotential describing the electron- 
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atom interaction.“‘12 The pseudopotential consists of a 
short-range part due to overlap and exchange and a long- 
range part due to interaction between the electron and the 
atom. This later term is often taken as a charge-induced 
dipole interaction -cre2S,(r)/r4 where (Y is the atomic 
polarizability and S,(r) is a switching function. The 
switching function turns off this polarization interaction at 
short distance to avoid a divergence. In a fluid it is then 
necessary to calculate the electrostatic part self- 
consistently because the field at any given atom is the su- 
perposition of the fields due to all the induced dipoles plus 
the bare field of the electron. We have already treated this 
problem by full Monte Carlo simulations in the dipole ap- 
proximation, and by a self-consistent theory due to 
Lekner,t3 but these treatments are not general. Here we 
address the problem from a fresh point of view using the 
FEBO approximation. 

In this paper we give a heuristic argument for the new 
FEBO method and then show that it is as accurate as the 
original method. We then derive a screening function the- 
ory for electron solvation in a fluid of Drude oscillators. 
Using the FEBO approximation and a normal modes path 
integral Monte Carlo technique we compare the predic- 
tions of this screening function theory to full simulations of 
electron solvation. 

II. THE FREE ENERGY BORN-OPPENHEIMER 
APPROXIMATION: DERIVATION OF FEBO FROM THE 
BORN-OPPENHEIMER APPROXIMATION 

The Hamiltonian of a system in which x and y are, 
respectively, the coordinates of the fast and slow degrees of 
freedom can be written as 

H=H,+Hy+ V(w), (2.1) 

where H, and H,, are the corresponding Hamiltonian op- 
erators of the uncoupled subsystems and V(x,y) is the cou- 
pling potential. In the BO approximation, we follow the 
standard procedure:14 

(a) First diagonalize the Hamiltonian H,+ V(x,y) for 
fixed values of y 

[Hx+ W,Y) l$k+) =ibM+ (2.2) 
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(b) Now solve for the slow variable 
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in which G’= L’F,t G. Obviously, by neglecting the last 
two terms in the exponent of the right-hand side of the 
above equation, we can reduce the Born-Oppenheimer ap- 
proximation to the more convenient path integral form 

[H,+Ez(Y) lxr&) =h,rx(~L (2.3) 

where the eigenvalues El(y) from Eq. (2.2) serve as the 
potential for the slow motion. 

The canonical partition function for the whole system 
in the BO can thus be expressed as a path integral15 

zBO= z exP( -#$rn) 

= 7 j- du s’ DY(u) 
Y 

( I 

1 
Xexp -P 

0 
~~CHy+41r(~>l~ , 1 (2.4) 

where u measures the Euclidean time t=i@?~. This differs 
from the usual expression because there is a sum over the 
states Z, moreover, it is not particularly convenient to apply 
because it requires diagonalization of the fast Hamiltonian. 
Of course if none of the excited states of the fast motion are 
thermally excited, Eq. (2.4) will reduce to a simple expres- 
sion involving only the motion of y on the ground state 
potential energy surface Eo(y). 

Intuitively, factorizing the exponential operators and 
summing over the states “P’ in Eq. (2.4) will lead to a 
much simpler expression. However, this reduction must be 
exercised with caution because Hy and E,(y) do not com- 
mute. For any two linear operators A and B, we introduce 
the well-known identities16117 

Z FEBO = I dy r [Dy(u) lexp( 4 Jb’ duCH,[~(u) 1 
Y 

+F,[Y(u) II 3 (2.11) 

an expression that does not involve an explicit sum over 1. 
The path integral for Z,(y) in Eq. (2.9) 

ZAY)= s dx r [~d~)lexp( --BJol WJxb>l x 

e--B(A+B)=e-8A/2e--BCe--BA/2 

and 

(2.5) 

,-BA/2,-BBe-~AA/2=,-B(A+C) f (2.6) 
where operators C and C’ are defined by C= B + 2 B and 
C’=B+~‘B=(l+~)-‘B, respectively, where i and i’ 
are defined to make Eqs. (2.5) and (2.6) exact identities. 

Consider the Hamiltonian in Eq. (2.3) and identify Hy 
as A in Eq. (2.5) and EI as B in Eq. (2.6), so that 

ZBO= T Trexp[-$(H,+E~) 1 

+ ~[~(~LYlW 1 
(2.12) 

is first evaluated in order to obtain the free energy of the 
fast variable F,(y) for Eq. (2.11). We call Eq. (2.11) the 
free energy Born-Oppenheimer (FEBO) approximation or 
the free energy adiabatic approximation as it requires the 
evaluation of the free energy of the fast variable (2.9) in- 
stead of the summation over 1 in the standard Born- 
Oppenheimer approximation (2.4). It should be noted that 
the action in Eq. (2.11) is purely local in the imaginary 
time variable U. In the discretized expression, beads at dif- 
ferent time slices will not interact through FJy(u>]. 

The difference of the two related but distinct approxi- 
mations (2.4) and (2.11) depends on G+ G’. As the above 
demonstration is quite formal, we now estimate G+G’. 
Recognizing that to lowest order in /3,r8 

~~=$IW)14+~~l+W‘? (2.13) 

and J%‘= -i to the same order, one obtains the explicit 
expressions for G and G’ to O(@), 

=Tr e-pHi2( F e-ficf)e-PHu/2, 
n 

(2.7) 

G= &% exp ( --PEI) 
XI exp( -PEJ (2.14) 

and 

G’= -iF,. (2.15) 

Expansion of the commutator [Eq. (2.13)] to the leading 
order of 0( l/m,,> gives 

where C,=E,+ LEl. Summation over the levels I gives 
(2.16) 

7 ewBcf=exp [ --PV’,+ G) I, (2.8) 

where Fx is the free energy of the fast variable at fixed y 
given by 

ZxcV)=ex~[--PFx(~)l = F exp[ -#El(~)1 (2.9) 
and G is the correction due to the difference between EI 
and C’, Equation (2.6) can be used to recombine the prod- 
uct to give 

where a, is the spatial derivative with respect to the slow 
variable. Substitution of the above expression into Eqs. 
(2.14) and (2.15) leads to 

G+G’=g [((V,B~)2)-O’,&)21, (2.17) 

where the angular bracket ( f) denotes the average defined 
by 

(2.10) 
(f) 2-fe;A-;Ey . (2.18) 
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This is the thermal average of the fast variable, while the 
slow variable is held fixed. 

From the final expression (2.17), it can be concluded 
that the difference between the two approximations will be 
very small if one of the following conditions is satisfied: 

(a) The mass of the slow variable mv is large compared 
to the mass m, of the fast variable. Path integral simula- 
tions based on this have been applied widely to mixed 
quantum and classical systems. 

(b) The ground state of the fast variable dominates. 
This is the low-temperature limit. For the simulations of 
electron solvation in polarizable solvents, the Drude oscil- 
lators representing the intramolecular electronic degrees of 
freedom are ground state dominant so that the solvation 
energy is simply the polarization energy. 

(c) The interaction potential is smooth, so that the 
fluctuation of the force is small. 

In contrast to the foregoing, the exact partition func- 
tion corresponding to Eq. (2.1) involves the summation of 
x,y paths simultaneously, and after summing over the 
paths of the fast subsystem, can be cast in the form 

Z= dy 
s s y [=@Y(~)lZJY(~)l ~~ 

Y 

i s 
1 

Xexp -P ~,[y(u) ldu 3 
I 

(2.19) 
0 

where Z&(u)] is the influence functional defined by8 

Z,[Y(U> I= s dx r [=@du) lexp( 4 Ji WJh) 1 x 

+ V[x(u>,y(u) IW . ) (2.20) 

As is well known, the influence functional will give rise to 
interaction between different time slices of the slow vari- 
able y and thus the dynamics of y will be nonlocal in time. 
Comparison of Eq. (2.12) with Eq. (2.20) indicates that 
the FEBO approximation [cf. Eq. (2.11)] is equivalent to 
replacing the influence functional by the simple expression 

ZAy(u> 1 =exp[ -P s,’ F.&(u) Mu), (2.21) 

so that F,(y) acts as an effective potential for the slow 
variable y which becomes local in time. We are able to 
verify this assumption for quadratic potentials under adi- 
abatic conditions where the separation of time scales of the 
slow and fast variables is large. Furthermore, we show that 
the leading nonadiabatic correction is of the form of 
J du J du’V(u) V(u’), a term which is shown in Appen- 
dix B to give a relative error proportional to the ratio of the 
time scales. 

In Appendix B, a cumulant expansion is used to eval- 
uate the deviation of the FEBO approximation (2.11) from 
the exact path integral (2.19), and demonstrate that the 
error is O(q), where v is the ratio of the time scales of the 
slow and fast variables, thus demonstrating that the FEBO 
is an excellent approximation when there is a wide separa- 
tion in time scales. 

To illustrate the way in which it gives rise to purely 
local dynamics, we present in Appendix A a simple appli- 
cation of FEBO to a quadratic potential. 

III. THE NORMAL-MODE PATH INTEGRAL MONTE 
CARLO METHOD (NMPIMC) 

The free-energy adiabatic approximation we intro- 
duced in the last section is applicable to the study of elec- 
tron solvation in polarizable fluids. However, to apply the 
adiabatic approximation (2.11)) it is necessary to evaluate 
Z,(y) of Eq. (2.12) accurately, and this naturally requires 
an efficient path integral simulation algorithm. 

Normal modes have proven useful in the evaluation of 
path integrals.15 They have been employed in the study of 
liquids consisting of quantum Drude oscillators,6’7V’g in the 
RISM-polaron theory of electron solvation,12Y20 and in the 
derivation of the low-temperature variational approxima- 
tion for the imaginary time quantum propagator.21’22 The 
Fourier path integral (FOURPI) method is based on a 
normal-mode transformation of the kinetic energy contri- 
bution to the action.23’24 It is a simple matter to develop a 
normal mode path integral Monte Carlo method 
(NMPIMC) for the simulation of systems with quadratic 
actions.25 This is summarized in this section, and it is ap- 
plied to calculate the ground energy shift of a model po- 
tential for the interaction between an electron and polariz- 
able solvent molecules. 

A. The discretized normal-mode transformation 

The canonical partition function for a one-dimensional 
quantum particle is’ 

Z(p) = lim Z(p,P) 
P-m 

(3.1) 

where P is the number of discretization, /z is the thermal 
wavelength defined as 

,2=!!? 
m’ (3.2) 

and S(xJ is the imaginary time (or Euclidean) action 
given by 

p P 
2fip S(xJ= jzl F$ by-Xi-l) +p jz* wi)~ (3.3) 

where x,=x,. The underlying idea of the staging 
method,26 the Fourier coefficient method,24 and also the 
normal-mode method is to generate the configurations 
from the quantum kinetic energy part of the Euclidean 
action, i.e., the first term in Eq. (3.3), so that the stiff 
polymer chain can be sampled much more efficiently with 
the improved methods than with the primitive method. 
The configuration thus generated is accepted or rejected 
according to the Metroplis importance sampling of the po- 
tential energy part of the Euclidean action, i.e., the second 
term in Eq. (3.3 ) . 

The normal-mode transformation is defined as 
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Xj= ii 

i2rjn 
a,exp -- 

It=1 ( 1 
P ’ (3.4) 

where a,, is the normal-mode coordinate. Using the ortho- 
normal relation ~~_lexp{[t~~m(l-n)]/P3=PS,I, we are 
able to diagonalize the kinetic part of the imaginary time 
action 

p P p 2p2[1-cos(2rn/P)] 
jzl 9 (xj-xj-l)2= ;zl a2 l429 

(3.5) 
where the set of Gaussians 1 a,, 1 2 can be easily generated by 
the box Muller technique. To shorten the computer time to 
perform the transformation (3.3), we take P=2n and make 
use of the fast Fourier transformation technique. If the 
action is purely quadratic, 

p P @mm2 2 
s(xf)’ C 2 (xjmXj-1)2+FXj, j=l 2/2 (3.6) 

where o is the intrinsic frequency of the linear harmonic 
oscillator. The transformation (3.4) leads to 

’ IanI SW= El 2;11’ 
Ii 

(3.7) 

where ni is expressed as 

(3.8) 

in which the parameter b=%& measures the effect of 
quantum mechanics. Notice Eqs. (3.7) and (3.8) take the 
same form as Eq. (3.5) except for the introduction of pa- 
rameter b. This implies that the Monte Carlo sampling 
method is the same as for the free particle propagator (3.5) 
after we redefined the Gaussian width according to Eq. 
(3.8). 

The fact that {Xi> are real requires that the complex 
variables {a, = a; + ia,“) satisfy the following constraints: 
a: = apWfi and a$ = a p, so that there are P independent 
degrees of freedom. Thus, we can rewrite Eq. (3.5) as 

’ IanI SW= Xl 2/22 n 
P/2-1 

(ah12+ (a112 (a&2)2 (ail2 = 
z[ II=1 2 1 ~ - 

+ 2’1;,2 + 2il; 1 1 ’ (3.9) 
where /2, is the thermal wavelength of the nth normal 
mode given by Eq. (3.8). It is obvious from Eq. (3.9) that 
the Gaussian widths for the real part a; and imaginary part 
a: for the first P/2- 1 modes are /2,, whereas apI is real 
with Gaussian width v’Z~.~,~, and ap is real with Gaussian 
width v%,. The variables from P/2+ 1 to P- 1 can be 
obtained by taking the complex conjugate of the first 
P/2 - 1 variables according to a,* = ap+ . 

Further development can be achieved by taking advan- 
tage of the fact that the exact propagator of the quantum 
linear harmonic oscillator is known. A harmonic reference 
system can thus be employed in umbrella sampling. The 
idea is to separate the full potential V into a reference 

potential V. and a residue potential V’ = V- V,. After 
substituting the exact propagator for the reference LHO 
potential, the quantum partition function for the full 
Hamiltonian is 

f: ZWJ? =Fz ( &)p’2 bj J dxj e-so(xj) 

where the thermal wavelength ;1’ is defined by ;112 
=[(fi2/3)/m]([sinh(R)]/R) in which R = b/P, and the 
imaginary time action for the reference LHO is 

P 

So(Xj>= C 4 [(x~+X~_~)cOSh(R)--2xjxj_~]. 
j=l 21’ 

(3.11) 

Notice that in the limit where R + b/P becomes infinitesi- 
mally small, the action reduces to Eq. (3.6). 

If we introduce a new set of parameters 1 and 
b’=b{[sinh(R/2)]/[(R/2)]3, the imaginary time action 
SeofEq. (3.11) reducestoSo(a,) = Z~=1(lan12/2;1~2) as 
in Eq. (3.7) with n; defined by 

a ,2 
j+ 

2-* -- (3.12) 

The normal-mode configurations are generated by P Gaus- 
sians defined by their Gaussian widths [Eq. (3.12)], and 
transformed back to the real coordinates through Eq. 
(3.4). Then, the residue potential V’ is evaluated and used 
as the criterion of the Metroplis importance sampling. In 
Appendix D, we will give the virial estimator for Eq. 
(3.10). 

B. The evaluation of convergence 

Since the action in Eq. (3.11) is exact for the LHO 
potential, convergence of the partition function when 
V’ =0 will be independent of P. In order to estimate and 
compare the rate of convergence for the free particle prop- 
agator (3.3) with the exact LHO propagator (3.11), we 
take the example of a solvable model V’=gx2. By defining 
the frequency for the full potential as 

d 2g 
w=w l+- 

mu2 ’ 

we readily obtain the energy expectation value for the 
primitive propagator Eq. (3.1) 

sim 1 f’+ 1 
E(fiyP) =y m fP- 1 ’ (3.14) 

where R=b/P and f = 1 + g/2 + R,/m. 
A close examination of the imaginary time action with 

the exact LHO action 
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PRcosh(R)-1 gP 
Z sinh(R) +P x;Y 1 (3.15) 

leads us to define 

R2= [2 sinh(R/2)12+ 
2ga2fl sinh (R > 

p2R (3.16) 

and x=A’. With these changes of parameters, the energy 
expectation value is expressed as 

EW’)=&~ (;$)a (3.17) 

As an example, we take b= 10.0 and g/(mw2) =O.l 
and calculate the energies which we plot as a function of 
the number of beads (P) in Fig. 1. The dotted curve is the 
exact energy; the solid curve is the energy of the primitive 
propagator evaluated from Eqs. (3.13) and (3.14)) and the 
bold curve is the energy of the LHO reference propagator 
evaluated from Eq. (3.17). This example clearly shows 
that the LHO reference propagator is superior to the prim- 
itive propagator. 

IV. SOLVATION ENERGY OF AN ELECTRON IN A 
POLARIZABLE FLUID 

Polarizable fluids pose a difficult problem in many- 
body physics. It is becoming increasingly clear that elec- 
trical induction has an important effect in fluids such as 
water, where the induced dipoles can be 50% as large as 
the permanent dipoles. 27928 The electronic charge distribu- 
tion in a real molecule or atom is continually fluctuating. 
This electronic motion is often modeled by a harmonic 
oscillator with a frequency oo, mass p, charge q, and in- 
stantaneous dipole p. If the electrostatic interaction is ap- 
proximated by the dipolar interaction, the problem reduces 
to a matrix problem.2g Usually w. is assumed to be high 
compared to the characteristic time scale of the nuclear 
motion, so that the varying dipole can quickly respond to 
the changing environment, and a Born-Oppenheimer ap- 
proximation is valid. 

When an excess electron is inserted in the polarizable 
system, the charge-dipole interactions lead to electron sol- 
vation. Both the Drude dispersion oscillators and the ex- 
cess electron must be treated quantum mechanically, 
whereas the motions of the heavy nuclei can usually be 
treated classically. The task of calculating the polarization 
energy is definitely beyond the current capability of simu- 
lations. The problem is simplified enormously by the fol- 
lowing procedure: 

(a) The fact that the excitation energy of the solvated 
electron is small compared to the excitation energy of the 
Drude oscillator”20’30 suggests that FEBO can be applied 
with the solvated electron treated as the slow system and 
the Drude oscillators treated as the fast system. F, of Eq. 
(2.2 1) is then the solvation free energy of a classical elec- 

tron in the polarizable fluid. 

6 , I I 1 I I I 1 I I 
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FIG. 1. The dependence of the mean energy on the number beads P. (a) 
The dotted curve is the exact energy from Eq. (3.13); (b) the solid curve 
is the energy of the primitive propagator evaluated from Eqs. (3.13) and 
(3.14); (c) the bold curve is the energy of the LHO reference urooagator 
evaluated from Eq. (3.17). 

. I_ 

(b) The calculation of the full Coulombic free energy 
of a classical electron interacting with a fluid of polarizable 
molecules is difficult. For simplicity, we tlrst calculate the 
Coulomb interaction energy of a classical electron with a 
single quantum Drude oscillator using NMPIMC method 
outlined in Sec. IV A. 

(c) The solvation energy of a classical electron dis- 
solved in a fluid of polarizable spheres is calculated by 
introducing a screening function”‘13 which incorporates 
many-body interactions based on the full Coulomb inter- 
action between the electron and a single Drude oscillator 
contribution determined in step (b) . 

A. Application of the FEBO to polarizable systems 

An excess electron interacting with a polarizable fluid 
can be exactly treated in the dipole approximation by ma- 
trix techniques. 2g The Hamiltonian for the system consists 
of kinetic energy terms, intramolecular polarization energy 
terms corresponding to the energy required to distort the 
drude oscillators, dipole-dipole interaction energy terms 
for the interactions between the spontaneous dipoles on all 
of the Drude oscillators, and finally the interactions be- 
tween the Dmde oscillators and the excess electron. These 
interactions give rise to the following partition function 
which we shall show can be reduced to the form of Eq. 
(2.21). 

Zqm [ W 1 

The imaginary time path integral representation of the 
quantum partition function of the Drude oscillator system 
in the electric field of the electron is 

= s ~p(~)ew( -DJo* du[ 7 & [%I’ 
+ c P;(u) 

i 2a TE isPiC”) *7fj-Pj(u) 

- F E,(u) *pi(u) I), (4.1) 
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where indices i and j stand for particles and 7 is the 
dipolar matrix defined as 

in which R, is the vector connecting particle i and particle 
j. Equation (4.1) is the Drude oscillator part of quantum 
partition function we introduced in the previous paper. 
Transformation to the normal-mode coordinates 

?I=* 
pi(U) = C jTf,ne+2rnu 

II=-02 
(4.3) 

diagonalizes the kinetic and quadratic potential terms al- 
lowing immediate integration of each mode independently. 
The quantum partition function takes the form of a prod- 
uct of classical partition functions for the individual 
modesI 

zqm[(Ri>l= i z~~lI(Ri>l, (4.?) 
ll=-CO 

where the partition function for a particular mode is 

Xexp ffi C anE$ (&n)Z$o~i,n 
1 1 (4.5) 

in which Ei,, is the normal-mode transformation of the 
electrostatic field at particle i, a,, is the generalization of 
the classical static polarizability 

-.-$d [ ($)2+1], 
and JZ?, is defined as 

(4.6) 

.c4,=N-an.7. (4.7) 

Obviously, for n = 0, a, reduces to the classical polarizabil- 
ity a. 

The prefactor in Eq. (4.5) [ (2raJfi) N/( det z?,) *‘2] 
gives the quantum many-body dispersion energy of the sys- 
tem which adds to the two-body repulsive energy given by 
the first term. In simulations, only the two-body part of the 
dispersion interaction is usually included by incorporating 
it into the simple pairwise potentials, but it should be rec- 
ognized that the above expression contains many-body ef- 
fects to all orders. In another paper,2g we reported simu- 
lation results on clusters and liquids when many-body 
dispersion forces are treated using the matrix formulation 
and the normal-mode transformation developed here. 

The exponential term gives the quantum polarization 
energy due to the interaction of the Drude oscillators with 
the bare Coulombic fields arising either from permanent 
monopoles or external fields. This quantum polarization 
energy is 

%Wl=-; ;t n- m a,,zEi,,,* (A,‘)ij-Ej,n, 
(4.8) 

where the electric field arising from a quantum particle like 
an electron is quantized and is given by E,,, the normal- 
mode transformation of the electronic field. Every term of 
the Taylor expansion of JZ!,, can be transformed back to the 
imaginary time space individually with a:+’ being con- 
verted to a correlation function. Then writing 

a,( 24) = C e-2Tnua~+1, 
n 

the polarization energy (4.8) can be expressed as 

* Ej(U’). (4.10) 

Let us investigate the first term in the expansion, the 
m=O term. As 

do(u) =ab 
cosh[ (b/2) -bu] 

2 sinh(W2) ’ 

in the extreme quantum limit b -+ CO, & reduces to 

(4.11) 

lim &0(u)=~[6(~)+6(l-u>], (4.12) 
b-m ~~ 

where the variable U, defined over the domain (0,l ), is 
periodic. Thus the leading term (m =O) in Eq. (4.10) is 

1 1 1 

To ss 0 du’=q 

1 

a(u-u’>E(u>E(u’>du s 0 
E2( u)du, 

(4.13) 

where the periodic property of the electrical field E(U) on 
(0,l) is implied. 

The next term (m = 1) involves two-body interactions. 
The summation can be carried out by contour integration 
giving 

I bcosh[(b/2)-bbu] 
&1(u)=a2 5 

b 
sinh (b/2) 1+ 2 tanh(b/2) 1 

-4 (l-2*) 
sinh[ (b/2) -bu] 

sinh( b/2) I ’ 
(4.14) 

Again, the above expression reduces to a delta function in 
the bd CO limit. 

In general, all (&,) reduce to delta functions in this 
limit because the electronic field correlation function 
changes very little in the interval G$. This follows when- 
ever the level spacings (&) of the harmonic oscillators are 
much larger than the level spacings of the solvated elec- 
tron. In this limit, there is an adiabatic separation in the 
time scales of the fast polarization fluctuations and the 
slow electron fluctuations. Then the polarization energy 
becomes 

@PI (Ri) I= -I J1 dU El(U) * dgl l Ej(U), (4.15) 
0 
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which can be viewed as the generalization of the FEBO 
[Eq. (2.11)] to many-body dipolar systems. 

Although Eq. (4.15) was derived in the dipolar ap- 
proximation, the conclusion is more general and is essen- 
tially the FEBO approximation applied to the many-body 
solvation problem. Equation (4.15) gives the polarization 
energy for a given electron path. Thus when the electron 
path is discretized, the quantum solvation energy is the 
average of the solvation energy of each individual electron 
bead 

~~m[ (Ri)] = 
s 

’ ~~[ (Ri),u]du. (4.16) 
0 

This is exactly the algorithm used by Berne et al. ” in their 
computer simulation of the many-body polarization effect 
of an electron solvated in water and liquid Xe. The above 
approximation can be generalized to simulate any compli- 
cated system with two different time scales. 

B. The ground state energy of an electron and a 
Drude oscillator 

We now study the simple problem of a highly quantum 
mechanical Drude oscillator of mass m, frequency w, and 
charge 4 with [w=O.534, m=0.245, and q= 1.38) (which 
are the parameters of Xe (Ref. 3 1 )] in the Coulomb field of 
an electron fixed in the space. We calculate the quantum 
ground state energy shift of the oscillator AE due to the 
electron. The positive charge of the Drude oscillator is 
placed at the origin (O,O,O), while the negative charge is 
oscillating under the linear harmonic potential. The elec- 
tron is placed at distance R on the x axis (R,O,O). The 
potential is then 

V(r) =i mw2r2-eq( t-k), 

where r is the displacement of the negative charge of the 
Drude oscillator. At room temperature ( T= 309 K), 
b=flti= 545, this oscillator is ground state dominated so 
that the ground state energy shift is the same as the solva- 
tion energy $! of Eq. (4.16) or equivalently F, of Eq. 
(2.11). 

The slow variable (the solvated electron) always 
moves on the ground state energy surface determined by 
the fast variable (the Drude oscillator), and hence the free 
energy adiabatic approximation and the ordinary adiabatic 
approximation are equivalent and can both give the exact 
result. For large p&, the free energy (2.9) and the ground 
state energy (2.3) will be the same. Thus the diffusion 
Monte Carlo (DMC) method can be used to obtain the 
ground state energy shift SE for comparison with the 
FEPIMC method (a quantum perturbation calculation is 
presented in Appendix D). Path integral simulations are 
usually used to study temperature-dependent properties 
and are generally not efficient for calculating ground state 
energies, nevertheless, we find that NMPIMC is at least as 
effective as the DMC for calculating the ground state en- 
ergy for the potential (4.17). 

The calculation of the ground energy shift caused by a 
small perturbation requires the simulation of a system with 
a large number of beads and requires very long runs be- 
cause an accurate determination of the difference between 
two large expectation values is required. One way to cir- 
cumvent this difficulty is to use the residue potential V’ = V 
- V. as a weighting function instead of a Metroplis impor- 
tance sampling function as in Eq. (3. lo), and V. is the 
quadratic reference potential given in Eq. (3.6). This gives 

Z’(p,P)= exp -% F V’(Xj> 
( 1 I) , 

where the average is taken over the configurations gener- 
ated by es0 of Eq. (3.11). In the limit of low temperature, 
Z’ yields the ground energy shift due to V 

AE= - lim lim In Z’ (p,P) . (4.19) 
p-+m P-m 

For the potential (4.17), if b)5 and P>26, the difference 
between the exact ground state energy and the average 
energy is beyond the resolution of single precision on the 
computer. 

The potential (4.17) has a singularity at r = R. In or- 
der to avoid the divergence, we have to include a higher 
order correction term in the action which is a short range 
repulsive force18 
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1 tip” 
V’= v’+z --& (vv’)2, (4.20) 

which is to be used in Eq. (4.18) instead of v’. The high 
order term vanishes at long range O( l/r4), but it speeds up 
the convergence. 

There are two additional advantages to the use of the 
NMPI Monte Carlo method: 

(a) We observe that the LHO reference potential is 
isotropic, but the interaction potential in Eq. (4.17) is dif- 
ferent in the perpendicular and parallel directions to the R 
axis; Therefore for each set of normal modes, there exist six 
arrangements which are the same configuration for the ref- 
erence LHO potential, but different configurations for the 
Coulombic interaction potential. This implies that for each 
configuration generated by the reference system eBso, we 
can obtain six statistically independent weights empv by 
permutation and reverse transformations. This saves com- 
putation time because the configuration generation and the 
normal-mode transformation is the most time-consuming 
part of the algorithms. 

(b) The distance R in Eq. (4.17) only appears in the 
interaction potential V’, whereas the LHO reference po- 
tential is independent of R, so that the same configuration 
generated from the reference potential can be used to cal- 
culate the interaction potential at all the separations. It is 
thus possible to obtain 6E as a function of the separation R 
by performing a single Monte Carlo simulation. 

We perform NMPIMC simulations at b= 5 and P= 64. 
lo6 independent configurations are sampled. The energy 
correction function c(R) is defined as 
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FIG. 2. The correction function C(I) defined by E!,q. (4.21). (a) T’he bold 
curve is the NMPIMC results [cf. Eq. (4.19)]; (b) the solid curve is the 
results of the quantum perturbation calculation (D15) (cf. Appendix E); 
(c) the results of diffusion Monte Carlo calculations are given by “x”. 

AE 
c(r) =- , 

ud 
(4.21) 

where AEd= -at?/2R4 is the energy shift if only the di- 
pole interaction is included. 

In Fig. 2, c(R) thus obtained is plotted from R=0.5 to 
R = 15.0 (the bold curve). For the sake of comparison, we 
also plot the results of a quantum perturbation calculation 
[Eq. (E15)] (cf. Appendix E) and the results of a diffusion 
Monte Carlo calculation32 for the same potential Eq. 
(4.17). 

C. Screening function theory for electron solvation 
in polarizable fluids 

In this section, we derive the screening function for the 
solvated electron in polarizable fluids. We start by consid- 
ering only charge-dipole and dipole-dipole interactions. 
Then the electron-Drude oscillator interacting is 

Vint=- C pi*&, 
i 

(4.22) 

in which Ei= -er/$ is the bare electric field at Drude 
oscillator i due to the electron at the origin. The polariza- 
tion energy for a given configuration of Drude oscillators 
in the adiabatic approximation [cf. Eq. (4.15)] is then 

@p=-$ CaEi*(N-aY-)jT1*Ej=-i sE,*E:, 
V 

’ (4.23) 

where Yij is the dipolar prtipagator. Ef in Eq. (4.23) is 
the total field at atom i given by 

Ei= Ei+ ac.Tij. E: (4.24) 

or 

E:= C (N-aY-)i/‘*Ej, 
i 

(4.25) 

so that in a simulation, {El9 can be determined by inter- 
action or by matrix inversion (usually used for small sam- 
plers and clusters). 
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cj(r)k(r) =-z G(r-ri)Ei, 
I 

(4.26) 

where j?(r) =XJ(r-rJ is the instantaneous number den- 
sity. This allows us to express the field equation as 

$(r)ef(r) =jti(r)il(r) 

+a -A. 
dr’b(r)j?(r’).T(R) l &(r’), (4.27) 

where R=r -r’ and 7 is the dipolar propagator defined 
by Eq. (4.4). 

A mean field approximation can be invoked by taking 

@(r)j%r)) =p(r)Ef(rh (4.28) 

where p(r) and E’( r ) is the configuration averaged density 
and the field at r given that the electron is at the origin. 
Averaging Eq. (4.27) over fluid configurations gives 

p(r)E’(r) =p(r)E(r) +a s dr’p2W) 
X [Y(R) *E’(f) I, (4.29) 

where we assumed (Gus’) =p2(r,r’)Ef(r’), 
where p2 is the distribution function of one solvent particle 
at r and another at r’, 

p2bN = ilCj Q--riXVr’-rj) . 
( > 

(4.30) 

A further approximation is to invoke the Kirkwood super- 
imposition approximation 

p2h’) =p(r)pWMR), (4.31) 

where g(R) is the solvent-solvent pair correlation function 
assuming the solvent structure is unperturbed by the elec- 
tron. 

In an isotropic fluid, the resulting average total field 
must be along the same direction as the original field. So 
we introduce a screening function f(r) as 

(4.32) 

which measures the screening effect due to the many-body 
polarization. Therefore after substitution of Eqs. (4.3 1) 
and (4.32), the average field equation (4.29) becomes the 
equation for the screening function 

f(r) = l+ap s dr’[n,.Y(R) l n,~lg(R)f(r’Mr’) $, 
(4.33) 

in which p is the density of the fluid, g(R) is the pair 
correlation function between solvent particles, and ge( r) is 
the pair correlation function between the solvent particle 
and the electron. 

The mean field equation approximates the average af- 
ter the integration which requires an exact many-body so- 
lution. In Eq. (4.33), only two-body correlation functions 
are involved and this suggests an approximation that all 
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the high-order many-body correlation functions are prod- 
ucts of two-body correlation functions. Nevertheless, as we 
shall see, Fq. (4.33) provides a reasonable approximation 
to the screening function and can be easily generalized to 
more complicated situations. 

Now we take into account the full Coulomb interac- 
tion between the electron and the Drude oscillator given in 
Eq. (4.17). It is extremely time consuming to calculate 
solvation energy between the classical electron and the 
quantum Drude fluid by any simulation method. More- 
over, the calculation must be repeated for every nuclear 
configuration and every electron chain configuration. For- 
tunately, we can incorporate the correction function calcu- 
lated for a single Drude oscillator and the mean field ap- 
proximation for the screening function (4.33) to obtain the 
solvation energy. There are two approaches. 

A relatively easy approach is to introduce an effective 
field Ee. Presumably the effective field accounts for the 
energy shift AE we calculated in last section, i.e., Ee 
= mE. Then th e f ormula (4.24) is still valid after a 
little modification-replacing E by E”. The polarization 
energy is 

~p=-(1/2)(r:CE2(rj)f(ri)c(ri> (4.34) 
i 

and the screening function f(r) is 

f(r)=l+ap J- dr’[n;Y(R) l n,,] 

(4.35) 

This equation can be solved by iteration. If g,(r) is set 
equal to unity and c(r) is replaced by a phenomenological 
switching function S,(r), this equation reduces to the 
mean field theory of Lekner,13 a screening theory that has 
been used in previous simulations. It has been shown that 
in fluids such as xenon, where the electron solvates in an 
extended state and therefore does not perturb the fluid 
structure, the Lekner theory agrees with a full simulation 
based on inclusion of full many-body electrical induction in 
the dipolar approximation to within 10%. Equation (4.35) 
is more general and allows for the possibility that the fluid 
structure is perturbed by the excess electron. It also in- 
cludes the correction factor c(r) which approximately con- 
verts the dipole interaction to one that includes the full 
Coulomb interaction. From this, it can be seen that the 
introduction of a switching function in the Lekner theory is 
equivalent to introducing this correction factor c(r). 

The second approach is to introduce an effective po- 
larizability. The electric field of the excess electron distorts 
the Drude oscillators, inducing not only a dipole, but also 
a quadrapole and other high order multipoles. We approx- 
imate these induced multipoles by introducing an effective 
polarizability tensor. Expanding the Coulomb interaction 
energy to the second order in the displacement of the 
Drude oscillator, we have 
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I?= g+ q g- 7 &ypi- c pi.“;ij.” 
ij 

- c pi*&, 
i 

(4.36) 

where Y introduces the effect of the electron on the fluc- 
tuation of the Drude oscillator. The tensor Y is given by 
Y= -a9, where a is the constant a=e/qR3 and 9 is the 
tensor g = 3nn -N. 

If we ignore the energy shift due to the frequency shift, 
the polarization energy can be expressed as 

@p=--(Y C Ei’L%i.Ef, (4.37) 
i 

and the total field E’ as 

E~=E~+(Y~~~.~~.E~, (4.38) 

where aaj serves as the effective polarizability tensor de- 
fined as 

.GiY = (X-aY)-‘. (4.39) 

We can express the tensor explicitly as 

l+b 
g=(1+2b)(l-b) 

in which b=aa. 
It should be noted that 

(4.41) 

is exactly the correction factor c(r) given by Eq. (E6). 
Therefore we can identify the factor 99 with the correction 
function c(r) . 

Averaging over fluid configurations, and assuming that 
the total field is parallel to n, the direction of the bare field 
QEf can be replaced by c( r)E’. Then the equation for the 
screening function f(r) is 

dr’[n,*Y(R) *n,] 

r%(r’) 
xgUW(r’kW) 1’2 

and the polarization energy is calculated using Fq. (4.34). 
The Hamiltonian in Eq. (4.36) is very much the same 

as the illustrative quadratic model [cf. Eq. (A4)] if we 
identify 9 as W in Eq. (A4) and B as C in Eq. (A8), 
except here Eq. (4.36) corresponds to a many-body sys- 
tem. The adiabatic expression (A22) includes contribu- 
tions from the frequency shift which we take into some 
account by introducing the correction function c(r) for a 
single Drude oscillator, thus ignoring the many-body quan- 
tum interference in the energy shift. 

In Fig. 3, screening functions calculated from Eqs. 
(4.35) and (4.42) are plotted for a hard sphere fluid of 
reduced density p* = pa3 =0.8 and reduced polarizability 
a*=a/a=0.06. a=0.767 A is the hard-sphere diame- 
ter of the solvent atoms (Xe) . The pair correlation func- 
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FIG. 3. Screening functions for an electron solvated in a hard sphere fluid 
of reduced density p*=O.S and reduced polarisability a*=O.O6. (a) The 
solid curve is calculated from Eq. (4.35); (b) the bold curve is calculated 
from E!q. (4.42). 

tion of solvent g(R) can be computed by solving the OZ 
equation subject to hard sphere closure.33 We assume that 
the fluid is unperturbed by the presence of the electron so 
that the electron-solvent pair correlation function g, is 
taken to be 1. It is of interest to determine whether the 
screening function will be sensitive to the assumption g, 
=l. 

We now take g, as a step function ge= e( r-d). In Fig. 
4, several screening functions calculated from Eq. (4.35) 
are plotted for different choices of d. Obviously if d is 
small, the solvent is less perturbed by the electron and thus 
the screening function is very similar to that for g,= 1. In 
the context of the FEBO approximation, ge is the electron 
bead-solvent particle pair correlation function, a quantity 
already determined for electron solvation in He and Xe 
liquids at several temperatures and densities in the pair 
polarization approximation.30 The inclusion of the many- 
body polarization energy [Eq. (4.34)] might alter g, and 
will thus affect the screening function. This suggests a self- 
consistent treatment in which g, already determined is used 
to calculate f(r) using Eq. (4.35) or Eq. (4.42) and the 
resulting f(r) is then used in the simulations to compute 
g,. This procedure is iterated to the final solution. How- 
ever, it is possible that such a procedure will be unneces- 
sary because of the following: 

(a) The solvent structure is determined mainly by the 
short-range repulsive potential. The effect of the polariza- 
tion energy on the screening functions is a second order 
effect. 

(b) From the previous simulation results,30 g, at high 
solvent densities is very close to a step function with a 
small interaction diameter d, smaller than the effective 
switching range of c(r). We can thus approximate it by 
g,= 1. 

The ground state energy E. as a function of solvent 
density can be computed based on the FEBO approxima- 
tion (2.11) and the mean field approximation of the polar- 
ization energy (4.34). Preliminary results indicate that 
Lekner’s mean field theory and the matrix inversion 
method agree within 10% and that the screening function 

I I 1 I 3 1 I I I I I 
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FIG. 4. Screening functions calculated from Eq. (4.35) for an electron 
solvated in a hard sphere fluid of reduced density p*=O.S and reduced 
polarizability a* = 0.06. The electron-solvent pair correlation functions 
are taken as a step function g,(r) =0( r-d). (a) The solid curve corre- 
sponds to d=O; (b) the very bold curve corresponds to d=0.2; (c) the 
bold curve corresponds to d=0.5. 

calculated from Eq. (4.42) results in a decrease in E. com- 
pared to E. calculated from Eq. (4.35). Details of the 
simulation results and relevant discussions will be pre- 
sented in a future paper. 

APPENDIX A 

1. A simple illustrative quadratic model of particles 
interacting with slow quantum field 

The canonical partition function for a quantum parti- 
cle moving in an external potential V(x) interacting with 
another quantum system is 

Z= dx 
s s 

[~~(U>lexpC--S[x(u)l), (Al) 

where u measures the Euclidean time t=i@u and S is the 
Euclidean action given by 

1 m 
s=p I( -i2+ V[x(u> I+ Vj,Jx(u),ul du, 

0 2p21i2 
(A21 

in which m is the mass of the particle. Our goal is to 
demonstrate that Eq. (Al) can be reduced to the form 
(2.21) under adiabatic conditions. 

We assume that V is a bounded potential much stron- 
ger than the interaction potential Vint, so that the energy 
levels are dominated by V. Taylor expansion of the poten- 
tial to quadratic order yields 

(-43) 
W(u) 

Vht=e(u> -f(u>x-- 2 x2+-**, 

where V,, V,, and mu2 are the zeroth, first, and second 
derivatives of the potential V, respectively, and e(u), 
--f(u), and - W(u) are the zeroth, first, and second de- 
rivatives of V&, respectively. Substitution of these expan- 
sions into the action (A2) gives 
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1 m J[ mw2 
s=p - 2ii+2+ 2 - x2+E(u) --F( u>x 

0 

W(u) 
--x2 du 2 1 (A4) 

where F(u) =f(u) - V,, E(u) =e(u) + V,. 
The normal-mode transformation defined by 

co , 
x(u) = C X, exp( -zi;lrnu) (A3 

n=--m 
allows Eq. (A4) to be expressed as 

s=p E,+ z $ 
I 

[ (T)‘+l] ,xn,2- ;F:Fn 

- c ;;kG], (A6) 
“t?l 

where the tilde denotes the corresponding normal-mode 
variables, and where b=@ia is the ratio of the energy level 
spliting of the quadratic potential V [defined in Eq. (A3)] 
to the thermal energy kT. 

Substitution of Eq. (A6) 

*n=--$ [ (q2+1]-‘, 

and the matrix 

(A7) 

G?z=4u?z--&~nm Ja,, (A81 

into Eq. (82) followed by explicit evaluation of the Gauss- 
ian integrals gives 

Z=Zo exp( -fi~o+l+J), C-49) 

where Zo=[2 tanh(b/2)]-’ is the partition function of a 
LHO of frequency w, and I and J are 

I= -f ln( C) (A101 

and 

,=G@z-* @ 
2 (All) 

When the quantum source giving rise to the interaction 
potential Vint is slow compared to the quantum variable x, 
I and J can be reduced to simple expressions. The identity 
In (det C) = Tr ln C and a Taylor expansion gives 

I= q II= T ATr( &w&)‘. (A121 

Transformation of I[ back to the imaginary time space then 
gives 

I[= i 1 
(I 1 

dui a(ul-u2> W(+)~(UZ-U~) 
i=l 0 

x mu,) ---dq-u1) W(u,), (A13) 

where a(u) is the transform of a,, 

a(u) =a0 sin;;;,2l cosh(b/2--bl u I 1, (A14) 

in which uo= l/ma2 is the Gaussian width of the zeroth 
mode in the classical limit. 

When b is large, a(u) is a rapidly decaying function of 
u and W(u) will decay slowly compared to a(u). Then 
W(u) is essentially a constant, while a(u) varies over the 
range l/b and Eq. (A14) can be approximated by 

I/= j-i w’Wu[ i dup(ul)u(uz)...(+(uI--l) 

Xa(ul+u2+-*-+u[-*) . 1 (A15) 

The integration in the square bracket can be evaluated by 
transforming back to the normal mode space to give B,d, 
and then summing over the normal modes giving 

b 
I/=- C,(b) 2 s 

(aoW>‘du, (Al@ 

where Cl(b) is defined as 

1 

=-I 

1 I 

n I 1+(2rMb)2 =bC’(b)y 1 
and where 

lim Cl(b) = (2:2y:,)!! . 
b-tm . . 

(A17) 

C-418) 

Taylor expansion of J gives 

J= ; J/= I!0 ;,&( &W,/&@. (A19) 

Transforming each II back to the imaginary time space 
gives 

Jl=; j- ;fj dQ’(uMq--ud W(u,> 

Xa(u2-u3>**‘F(U~+2). (MO) 
The same arguments used to derive Eq. (A16) can be used 
to show that JI reduces to 

JI=; j-f(u) W’WfWdu 

X IS 
1+1 
lg dw(u,)----(u~+d , 1 (~421) 

where the integrations in the brackets are simply ( cro) ‘+ ‘. 
Substitution of Eqs. (A16) and (A21) into Eq. (A9) 

yields the quantum partition function 

Z=Zoexp -p 
( Jl 

~(u)-~P2(u)[l-uow(u)]-1 

- ; T Cl(b) [uoW(u> Ii]+, (~422) 

where ( 1 --a0 W) -I is the result of the summation over 1. 
Equation (A22) is significant because it is purely local 

in time and does not depend on time-correlation functions 
as is usually the case. For example, if a cumulant expan- 
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sion is made, one obtains terms such as 
J- du J du’V(u) V(u’) as well as higher orders. The expo- 
nential part of Eq. (A22) is simply the linear summation 
of the contributions from individual time slices. This con- 
firms the free energy adiabatic approximation we intro- 
duced in Eq. (2.21). It implies that in the discretized time 
expression, beads at different time slices do not interact. 

The problem can be easily translated into a real time 
formulation and the same conclusion holds. If the quantum 
source of Vi,t is very slow compared to the oscillators, the 
oscillators can respond to the field almost instantaneously. 

APPENDIX B: CUMULANT EXPANSION (I) 

The FEBO approximation given by Eq. (2.11) is in 
fact the first order approximation. Higher order terms can 
be included by using perturbation theory. Consider the 
Hamiltonian (2. l), where HX=ms2/2 and Hy=mgj2/2 
are the free particle Hamiltonians of the fast and slow 
variables, respectively. The slow and fast variables differ 
only in masses, so we expect that higher order corrections 
involve powers of 17 = m,/mu . 

First we put the slow variable aside and integrate the 
fast variable. Expressing the variable as x(u) =x0+6x(u), 
the action reads 

6x2m 
Sx=P gp+ V(xo-t-hu> du, 1 (Bl) 

where the potential depends on u in general. For the sake 
of simplicity, we omit the subscript x without causing any 

confusion and we will recover the subscript later on when 
the other variable y is present in the expression explicitly. 

We choose to use the centroid density p*(xo) (Ref. 
22) 

P”(Xoco) =&, V[xo+Wu),uldu I > 
= p&?-KIT 032) 

to confine the free-particle reference system, where &, 
= ,/M and th e average is defined in the free par- 
ticle reference system. 

The average of the exponential can be written as a 
cumulant expansion which leads to an expansion of the 
effective potential. The definitions of cumulants C, and mo- 
ments II, and their relations are given by Eqs. (2.15)- 
(2.19) in our previous paper. 22 After performing a normal 
mode expansion of the path and a Fourier expansion of the 
potential, the first moment becomes 

I,= s V(xe+Sx,u)exp(-6x2/2d)d6x du, 
.f exp ( -6x2/2&) dSx 

(B3) 

where the Gaussian with o is 

and the second moment becomes 

(B4) 

.f-.f V(~O+~~I,UI) V(xo+~x2,uz)P(~xI,Sx2,uI,u2)dSxI d6x2 
.I-./- V(xo+~x,,,u,) V(xo+Sx2,u2)d6xl dtix2 

dul du2 

in which the two-variable distribution function is found to 
be 

P(i3xI,Sx2,u1,u2) =exp - 1 o%x:+4sx~-2~6xisx2 
2(cJ4-a3 ’ 1 

036) 
where the Gaussian width of the cross term a, is a function 
of the imaginary time 

~(zJ,,z+)=~?[~-~v(~---v)], 

where u= ] ur-u2]. 

(B7) 

Under the adiabatic approximation, the Euclidean 
time dependence of the quantum potential V(u) is ignored 
so that the integration with respect to u in Eqs. (B3) and 
(BS) can be easily completed. In other words, we are solv- 
ing a problem of a quantum particle moving in a classical 
potential which varies with the slow variable y adiabati- 
cally [cf. Eq. (2.12)]. Expanding the moments in a power 

series in fi and substituting this into cumulant relations, we 
determine the expansion of the effective potential up to 
order of fi3, 

V-eff=iV 

=,+; VU)+; y(4)+; y16)-~2 (~(~1)~ 

and the centroid density can be approximated to the same 
order. The effective potential V,, results from the opera- 
tion L on V. 

Consider the full Hamiltonian of the system, the cu- 
mulant expansion shall be carried out twice, first with re- 
spect to the slow variable and second with respect to the 
fast variable. Under the adiabatic approximation, the two 
expansions are independent so that _the effective potential 
can be obtained by operating with L on V twice 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 



J. Cao and B. J. Berne: B-O approximation for path integrals 

+3&T~P~4)+a$7~0~69 -; [a$( v(2,0))2+a;( v(“*2))2] +0(P), W) 

where fl “,m’=ap;v(xo,yo>. 
Now we make the full quantum calculation (2.20) 

without the adiabatic approximation (2.12). The leading 
term in the second cumulant C2 is 

C,= dul 
I s 

du2&u) V(‘)(U~) V9u2) @lo) 

which vanishes under adiabatic approximation. However, 
V does depend on u implicitly through y(u). Thus this 
term in C2 shall be evaluated after further averaging over 
the y paths. Applying Eq. (B8) to obtain a cumulant ex- 
pansion with respect to the slow variable y, we have the 
leading term of the nonadiabatic correction 

SV,,: -;8( fi1p1))2 j- du, j- du20c,.xqv 

=-$3(v(1.1))20++ 0311) 

To estimate the error introduced by the adiabatic ap- 
proximation, we compare SV,, with the terms of the same 
order in Eq. (B9), thus defining the error as 

l (Xo,Yo> = 4 
2&J3a~yv)2 

o,(a,v>4+a;(ayv>4 - (3312) 

If the interaction potential only depends on the relative 
coordinate, the partial derivative terms of the potential in 
Eq. (B12) are the same, so that the error becomes 

(B13) 

where ~=m,/m,, . The error reaches a maximum when 
q = 1, and decreases as E+ 27 when rl& 1. If the masses are 
very different, the error introduced by the adiabatic ap- 
proximation is small and proportional to the mass ratio q. 

The nonadiabatic correction comes from the interfer- 
ence of the two quantum particles, whereas the adiabatic 
approximation treats the two quantum particles indepen- 
dently. In the limit of small mass ratio q-0, the error has 
the asymptotic form E= O( 7). Generally speaking, the adi- 
abatic approximation is best when the time scales of two 
subsystems are very different because then the subsystems 
are weakly coupled and the quantum interference is small. 

I 

APPENDIX c: CUMULANT EXPANSION (II) 

If the reference system is two uncoupled linear har- 
monic oscillators, the separation of time scales is given by 
the ratio of the frequencies q = wy/wX. We used to study a 
Drude oscillator system; the reference system based on the 
LHO is relevant. The full Hamiltonian is then given by Eq. 
(2.1) in which Hx=m.j2/2+i2~+mp~2/2, H,=m,$‘/ 
2(QI)2+mpv/2. Since the harmonic oscillator has a 
well defined partition function, we determine an effective 
potential for the partition function and will thus not treat 
thecentroid density as in the last section. 

Following the same procedure described in last section, 
we first integrate the fast variable x, the action of which is 

-+ V[x(u),u] du. (Cl) 

Again, for the sake of simplicity, we omit the subscript x 
without causing any confusion. And the partition function 
for the fast variable reads 

z=zLHo( ew( -P s V[x(uLuldu] ) =Z,,,@~ff, 
((3) 

where the average is defined in the LHO reference system 
and where Z Luo=coth(b/2)/2 is the quantum partition 
function for the LHO (b = tip). 

The same cumulant expansion applies here. The gen- 
eral results in last section I, of Eq. (B3) and I2 of Eq. (B6) 
hold exactly for the LHO reference system except that the 
two Guassian widths are now 

‘=g tanhfb/2) 

and 

c73w2) =a2 
cosh( l/2--v)b 

cosh(b/2) * 

(C3) 

(C4) 

Now the adiabatic approximation allows us to ignore 
the u dependence of the potential V so that the integration 
of a, can be readily carried out 

%=Jj- 2 du, du2=tanhjp/2) I? 

and 
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1 +sinh(b)/b 4 
O: d”* d”2=2[cosh(b/2) 12 (T ’ ((33) 

Thus the effective potential up to f13 is 

&=v+; v(2)+; jA4’+$ fiQ_p; (p-U’>2 

$ +J 
-p-f (v’2’)2-Li_s W3)v(‘9 +om, (C7) 

in which values of the potential and its derivatives are 
taken at x=0. 

Next consider the full action; under the adiabatic ap- 
proximation (2.11) the full effectiveApotential can be ob- 
tained by applying the the operator L twice to get 

V&E z,LJL. * * -‘z p (~~,c++$,c) wyw+-* , 

((33) 
where only relevant terms which will be useful later are 
explicitly given. The leading nonadiabatic term takes the 
same form as Eq. (Bl 1 ), and the integration can be per- 
formed to give 

JJ 4,&4 du2 

,o2o2 2[b, tanh(bJ2) -b,, tanh(by/2)] 
XY - , cc91 

so that the correction to the effective potential is 

s veff= -flo$$ 
2[b, tanh(bJ2) -by tanh(b,J2)] 

6:-b; f (ClO) 

Comparing SV,, with the similar terms in VeB expan- 
sion, we have the error 

E= 
2[b, tanh(bJ2) -by tanh(b/2)]/(bi-b$) 

tanh(bJ2)/b,+tanh(b,./2)/by aayv)2. 

(Cl11 
In the low temperature limits b,>l and b,$l, we take 
tanh( bd2) and tanh( b/2) to be 1. Then the error be- 
comes 

&by 27l 
E=(bx+by)2=m’ ((32) 

which reaches its maximum l/2 at rl= 1 and decreases as 
~4277 at small 7j limit. 

From the results of these two appendices, we can draw 
the conclusion that the error of the FEBO approximation 
is asymptotically proportional to the ratio of the time 
scales, and this ratio of time scales is characterized by a 
parameter q, the ratio of masses for the molecules, or the 
ratio of frequencies for the Drude oscillator systems. 

APPENDIX D: THE VIRIAL ESTIMATOR FOR NMPIMC 

Here we derive the virial estimator for Eq. (3.10). As 
is known, energy can be deduced from the derivative of the 
partition function with respect to P, i.e., 

a 
E= -3 In zy 

which yields 

(Dl) 

R PR2cosh(R) 
2fi tanh(R)-2/2’2fi[sinh(R)]2 (xi-xi-1)2 

PR2[cosh(R) -11 
’ 2;/‘2P[sinh(R)]2 

U32) 
where (f) denotes the average over the P dimensional 
space with the weighting function e-s. The simple identity 
(Z~=lxj[(dS)/(dxj)]) =P leads to 

X[cosh(R)-l]]+;xjg . 
J I) (D3) 

Combining Eqs. (D2) and (D3) and rearranging the 
terms, we arrive at the virial estimator 

EW’) = 5 
R 

’ ( mo2x:+ V(Xj) +2 tanh R Xj g) 
j=l P i 

(D4) 
in which .the first term is obviously due to the LHO poten- 
tial and the second term is due to the residue potential. 

APPENDIX E: QUANTUM CALCULATION OF THE 
PROTOTYPE POTENTIAL 

Let us introduce (Y’ as 

(El) 

so that Eq. (4.17) can be written as V=mw2U, where U is 
given by 

WI 

First we locate the minimum of the potential V by 
taking the first order derivative of U with respect to the 
vector r, 

(E3) 

which vanishes at the equilibrium position rj given by 
, 

xyR(rx’)2, y’=O, z’=O. (Ml 

Therefore the leading order of the energy shift is the min- 
imum potential 

hEmin= V(.$). (E5) 

At large separation, we can approximately solve Eq. 
(E4) by expanding a’/(R --x’)~ to the second order in x’, 
and substitution of Y; into Eq. (E2) yields 
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a I2 1 
‘tin=-,,, ( 1+2a’/&) 9 ' (J33) 

which implies that the expansion is valid only if R3>a’. 
Obviously the first factor of the right-hand side of Eq. 
(E6) is the interaction energy AE, under the dipolar ap- 
proximation and the second factor is the correction func- 
tion c(R) defined in Eq. (4.21) However, comparison with 
the accurate results from simulations indicates that c(R) 
= l/( 1 +2a’/R3) does not give the right asymptotic be- 
havior because the simulated C(Y) approaches 1 from 
above. 

To obtain the leading order correction, we shall carry 
out the quantum expansion to the next order 

(E7) 

which defines the eigenfrequencies of the motion around 
the potential minimum. As an isolated Drude oscillator has 
the ground energy of 3&/2, the frequency shift gives the 
second order corrections as 

(E8) 

Now at large R limit, the leading order correction in the 
energy is 

and thus the asyptotic behavior of the correction function 
c(r) at large distance is 

lim~(r)=l+O(l/R~). (El01 
R-+oo 

Also applying Rqs. (E5)-( E8), we are able to predict that 
the energy shift at short distance R3<a’ is U,,, 
=- al/R, which indicates the correction function appro- 
achs the origin as 

lim c(r)=O(R2). (El11 
R-0 
To further improve the accuracy, we notice the poten- 

tial well at the minimum ri is not exact harmonic especially 
at small R where there is a large anharmonicity. To take 
account of this effect, we shall expand the potential (4.17) 
to the third order and evaluate its contribution by quantum 
perturbation theory. The unperturbed Hamiltonian is that 
of the harmonic oscillator whose frequencies are given by 
Rq. (D7), and the perturbation Hamiltonian is written as 

HP=; +C ~~dj&V(r’)Gr,Srj~k, 
* yk 

where the third order derivative is 

15R;R;R; 3 
R,7 -p (SijR;+SjkRf 

+&$j) , 1 (El3) 

in which R’ =R-r’. It is easy to observe that all the terms 
in Eq. (E13) vanish except terms with indices i= j=k= 1 
and i=l, j=k=2 or i=l, j=k=3 and corresponding 
permutation terms. Since H’ is odd order in Sr, the tirst 
nonvanishing perturbation term is 

(nIH’10)2 
AE,=- LB--E , 

n 0 n 
(El4) 

where n stands for the index of the eigenstates of the un- 
perturbed Hamiltonian and E. is the corresponding energy 
eigenvalue. Obviously, AE, further lower the energy and 
its leading contribution is of the order of 0( l/R”) at large 
separation R. 

Finally, the ground state energy shift is given by 

AE=AEti,+AE,+AE3. (El5) 

The correction function (4.21) thus calculated is plotted in 
Fig. 2. 
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