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ABSTRACT: Ligand docking is a widely used tool for lead discovery and binding mode prediction based drug discovery. The
greatest challenges in docking occur when the receptor significantly reorganizes upon small molecule binding, thereby requiring
an induced fit docking (IFD) approach in which the receptor is allowed to move in order to bind to the ligand optimally. IFD
methods have had some success but suffer from a lack of reliability. Complementing IFD with all-atom molecular dynamics
(MD) is a straightforward solution in principle but not in practice due to the severe time scale limitations of MD. Here we
introduce a metadynamics plus IFD strategy for accurate and reliable prediction of the structures of protein−ligand complexes at
a practically useful computational cost. Our strategy allows treating this problem in full atomistic detail and in a computationally
efficient manner and enhances the predictive power of IFD methods. We significantly increase the accuracy of the underlying
IFD protocol across a large data set comprising 42 different ligand−receptor systems. We expect this approach to be of significant
value in computationally driven drug design.

■ INTRODUCTION
The problem of accurately and reliably predicting the structure
of protein−ligand complexes is a key challenge in computa-
tionally driven structure-based drug discovery projects. There
are many situations in which a novel, interesting active
compound is identified in a screening campaign, but a crystal
structure of the compound with the receptor is not available
(and may prove difficult to obtain, for various reasons). In lead
optimization efforts, modifications to the compound can result
in significant and unexpected changes in the binding mode,
which can cause problems in understanding structure−activity
relationships (SAR) until a high-resolution structure is
obtained. Finally, binding mode prediction has obvious utility
in the use of computational methods to facilitate the design of
new molecules which may bind more advantageously.
In a fraction of cases, binding mode prediction using rigid

receptor docking (RRD) (e.g., through the widely used Glide
program1) is successful, employing a receptor structure
obtained from cocrystallization with a ligand differing from
the one of interest. Computational experiments1,2 suggest that a

good pose (roughly speaking, one with a root mean squared
deviation (RMSD) from experiment of <2 Å) is obtained about
50% of the time when this approach is employed. However, the
most critical cases are those in which the effects of induced fit
on the receptor play a significant role. Rigid receptor docking
cannot address such effects, since the receptor is not allowed to
move in response to the presence of the ligand. When induced
fit effects exceed some key threshold in magnitude, one
typically observes steric clashes of the new ligand with the
available receptor conformation, resulting in a failure of RRD to
predict the correct binding mode. In some cases, protein side
chain movements are also required to make key binding
contacts with the ligand.
Induced fit docking (IFD) protocols have been developed to

address these cases, in which successful docking requires
nontrivial receptor movements. This is a challenging problem
which has been addressed by a number of research groups,
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using quite different approaches in each case.3−5 The
methodology that we have developed, described in several
previous publications,6,7 combines Glide docking with receptor
conformational search using a continuum solvent based
molecular mechanics model, available in the Prime protein
modeling package. As long as there are no large changes in the
protein structure (e.g., huge loop movements, such as a change
from a DFG-in to DFG-out conformation in a kinase activation
loop), this IFD methodology will usually locate a structure with
good accuracy within the top 5−10 results as ranked by a
combination of Prime and Glide energetics. However, it has
proven difficult to robustly ascertain the correct structure from
among this set of many possibilities. The uncertainty associated
with this final step significantly reduces the utility of Glide/
Prime IFD calculations in actual projects, where actionable drug
discovery efforts such as synthetic prioritization require a high
confidence in the predicted binding mode of the ligand. The
energy functions in both Glide and Prime contain uncontrolled
heuristic approximations, and even the IFD sampling protocol
has significant limitations (e.g., very limited backbone move-
ment). For these reasons, it has been very challenging to select
the correct pose from an IFD calculation by improving the
scoring function that can be constructed with these
technologies. A better scoring function, and a higher resolution
simulation, appears to be required.
If greater accuracy and more complete sampling is desired, an

obvious approach is to use all atom, explicit solvent molecular
dynamics (MD) simulations to discriminate between the
relatively small number of top ranked poses produced by an
IFD calculation. However, it is far from clear how this task can
be accomplished. A straightforward attempt to equilibrate
populations between the different IFD structures will fail in
most cases, because there are typically large (≫kBT) free
energy barriers between the alternative poses. Another possible
approach is to investigate pose stability via unbiased molecular
dynamics; however, as we will discuss further below, incorrect
structures are in many cases metastable and cannot be readily
distinguished from the correct binding pose by a short MD
simulation. Very long (microsecond or more) MD simulations
on specialized computers have been shown to be successful in
predicting the binding pose in a few cases;8 the computational
effort for simulations of this type is more than 1000 times the
cost of an IFD simulation, thus limiting this approach to
extremely low throughput.
An alternative MD-based strategy is to devise an algorithm

based on enhanced sampling methods, which allow efficient
back-and-forth movement across large free energy barriers, and
therefore sampling of the relative stability of different poses
with practical computing resources, while still maintaining full
atomistic resolution. Though there are a number of such
methods available, in this work we choose metadynamics,9−13

since it requires minimal preknowledge of the system being
sampled, apart from the choice of collective variables (CV) for
biasing. These are slowly varying order parameters that are
expected to play a role in the motion of a metastable pose out
of its initial configuration. The key idea in the use of
metadynamics is to build a time-dependent bias as a function
of the chosen CV that samples the ligand movements in and
around its binding pose. As the correct IFD pose has (to the
extent that it reproduces key features of the native structure) a
stronger binding affinity, a properly calibrated metadynamics
bias should result in preferred displacement of incorrect poses,
while leaving the correct pose relatively stable. The end result

of a typical metadynamics simulation is an estimate of the
underlying Boltzmann probability distribution or equivalently
the potential of mean force, also called free energy.14 Previous
applications15,16 of metadynamics to complement docking have
shown encouraging results, though evidently not in a fashion
amenable to processing a large number of calculations, so
calculating the full free energy surface is not our aim here.
Instead our aim is to use a metadynamics approach to
determine only the relative stabilities of different binding poses.
One can anticipate that care is going to be required in

defining the CV and other biasing parameters in the
metadynamics protocol. While these requirements are typical
for effective use of metadynamics to address most interesting
problems in complex molecular systems,17 for the objective of
this work a balance must be struck between (i) a careful
refining of the choice of metadynamics parameters and (ii) the
need for a protocol that can be automated for high-throughput
screening of proposed binding modes. Therefore, our choice of
CV must be generic enough that it needs minimal system-
dependent fine-tuning. The real question then is whether a
robust, automated enhanced sampling MD-based protocol can
be defined that can be used in practical applications in drug
discovery projects.
In the present paper, we investigate a large suite of realistic

IFD test cases, comprising 42 different protein−ligand
complexes involving targets of pharmacological relevance, and
develop a standardized high throughput metadynamics-based
all-atom molecular dynamics method for carrying out the task
outlined above. The full set of initial poses tested is provided in
the Supporting Information. A surprisingly high rate of success
is achieved in selecting low RMSD poses from those generated
by initial IFD calculations. Given the success and widespread
popularity of IFD, we believe that the metadynamics-IFD
coupled approach reported here represents a significant step
forward in actionable screening of target ligands through
computer simulation.
The paper is organized as follows. In the section Methods,

we review our IFD methodology and then discuss the
optimized metadynamics algorithm that we use to select the
best structure from available IFD poses. In the section Data Set,
we introduce the data set assembled from Protein Data Bank
(PDB) structures used to test the methodology, and in Results
we present the results. In the Discussion, we analyze the results
in more depth considering their implications. Finally, in the
Conclusions, we summarize our findings and outline future
directions.

■ METHODS
The methodology developed and demonstrated in this work
has been summarized in Figure 1. We now provide descriptions
of the various components of the overall process.

Review of IFD Methodology. Our IFD methodology has
been described in detail in a number of previous publications.6,7

The IFD protocol involves the use of both the Glide docking
program and the Prime protein structure modeling code. In
broad outline, Glide initially produces possible ligand poses,
each of which is refined by Prime using a continuum solvation
based molecular mechanics model, via rotamer-based library
optimizations of the protein side chain conformations. This
process is iterated to produce a list of final poses, rank ordered
by a combination of the Prime energy (molecular mechanics
force field in Variable-dielectric Surface Generalized Born
(VSGB) solvent) and the Glide SP empirical scoring function.
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The initial docking step requires modification of the receptor
model by softening the force field, as in an IFD calculation one
has to be able to deal with a situation in which the target ligand
will not fit into the available receptor conformation or
conformations, due to steric clashes. Additionally, in the
current IFD protocol, initial docking is performed in receptor
structures in which one or more side chains are mutated to
alanine. The list of side chains to mutate is determined by
combining information from various sources, e.g., X-ray B
factors of the side chain atoms. In the experience of the authors,
the present IFD algorithm succeeds in generating a reasonable
initial pose somewhere in the top ranked structures in a large
majority of cases. Improvements can likely be made in the
details of how this initial step is carried out, increasing this
success rate to 95% or more, and we are currently investigating
promising approaches to making such improvements. However,
we will not discuss the initial docking further in the present
paper, which is focused exclusively on cases where one or more
good initial poses are in fact generated.
A subset of poses are extracted from the initial Glide docking

runs and passed on to Prime. All mutated side chains are
restored to their original identity, and extensive sampling from
a high resolution library is used to search for possible side chain
conformations. The OPLS force field, and the VSGB
continuum solvent model, described in ref 18, are employed
to evaluate the free energies of the various conformations of the
complex that are generated. Promising configurations are
minimized with the OPLS force field, and the resulting
energies constitute one component of the scoring function.
Finally, the ligand is redocked into each of the new structures
and reminimized, and the final poses are rank ordered by the
scoring function given by a linear combination of the Prime
energy and GlideScore referred to as the IFDScore.7

The total single processor CPU time for a typical IFD job is
on the order of 10−20 CPU hours. The algorithm can easily be
parallelized to enable the different poses to run on different

processors, so the wall clock time using 20 processors is on the
order of 1 h. Thus, an IFD calculation can be completed on a
time scale compatible with effective use in practical drug
discovery projects. Our objective here is to improve the
accuracy with which the lowest RMSD pose may be selected
from the list of returned IFD structures without increasing the
computational cost of the IFD protocol beyond what would be
tolerable in a drug discovery campaign. The IFD algorithm is
tested by extracting two complexes A and B from the PDB (or
proprietary data sets) for a given receptor, each of which binds
a different ligand, and such that cross docking of ligand A into
receptor conformation B via rigid receptor docking (e.g., via
Glide XP or a similar program) fails to yield a pose that is
accurate compared to experiment (<2 Å). We currently
maintain a standard test set of 100 test cases of this type
taken from the PDB, which have been selected to also exclude
large changes in receptor structure (e.g., large loop movements
such as DFG-in to DFG-out for a kinase activation loop) so
that the IFD protocol, which is primarily focused on side chain
reorganization, has a chance to produce an appropriate protein
conformation. Of these, 42 cases were selected for metady-
namics investigation, based on having at least one pose in the
top 5 scoring distinct poses by IFDscore within 2.0 Å root-
mean-square displacement (RMSD) from the native structure
and at least one pose greater than 2.0 Å RMSD from the native
(calculated by aligning the receptor in the docked structure
with the crystal structure), with some additional triaging of very
large receptors to save CPU time. Versions of IFD that include
some ability to modify loop conformations, and other backbone
structures, are currently under development.

Metadynamics Theory and Methodology. Metadynam-
ics is a widely used enhanced sampling method that allows
sampling of complex free energy landscapes.10−13 By building a
time-dependent bias as a function of carefully chosen slowly
varying order parameters, called collective variables (CVs), the
system is coaxed to escape stable free energy minima where it
would normally be trapped. The end result of a metadynamics
simulation when fully converged, which is not the aim in this
work, is the underlying unbiased probability distribution (or
equivalently the free energy), either directly as a function of the
biased CV or through a reweighting procedure14 as a function
of any generic observable. The bias V(s, t) is typically
constructed in the form of periodically added repulsive
Gaussians, where s is the chosen CV which could be
multidimensional. At any time t, the free energy F(s) can be
obtained from the deposited bias V(s, t) as per the following
equation:11

= − + Δ +F s T T
T

V s t C t( ) ( , ) ( )
(1)

Here T is the simulation temperature (300 K), ΔT is the
tempering factor through which the amplitude of the bias
deposited at a point s in the collective variable space is tuned
down with the number of times the system visits a given point,
and C(t) is a time-dependent constant which is irrelevant for
the present work14 since we are interested only in normalized
probability distributions resulting from the free energy. Other
numerical parameters include the initial Gaussian hill height h,
bias deposition interval τ, and Gaussian width w. While a
generic metadynamics simulation shows some sensitivity to the
various parameters mentioned above, the most critical is the
choice of the biasing CV itself. The central requirements for a
CV to be useful for practical drug discovery applications are

Figure 1. Flowchart summarizing the various components of the
structure prediction process described in this work. See the main text
for details for the various steps.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00201
J. Chem. Theory Comput. 2016, 12, 2990−2998

2992

http://dx.doi.org/10.1021/acs.jctc.6b00201


that it should be (1) correlated to the pose stability and (2)
require minimal fine-tuning from system to system. With these
two requirements in mind, we define the biasing CV s as the
RMSD deviation from the starting pose (after equilibration in
short unbiased MD), measured over the atoms in a subset K of
the ligand−receptor system. This subset K comprises all heavy
atoms in the ligand, plus a few protein backbone atoms taken
from a well-conserved part of the receptor (see Figure 2). We
describe further details of this in the following subsection
Choice of Collective Variable.

At this point, we introduce a simple but key methodological
insight. As known through multiple previous studies,15,16

converging the full free energy landscape while feasible can
still be very time-consuming and will probably require system-
specific selection of CVs. Instead, in this work we perform
several independent short metadynamics simulations, through
which we calculate the average or thermodynamically most
favored RMSD deviation from the starting pose, calculated for
the subset K of the ligand−receptor system. Physically, this is
equivalent to doing a much longer unbiased MD run where the
starting pose can surmount local barriers and relax into a stable
structure. A higher estimate of the average or thermodynami-
cally preferred RMSD can then be considered a proxy for poor
stability of the pose initially generated in docking. The basic
idea is that the most stable pose is the best pose. This most
likely RMSD estimate is calculated as follows:

∫
∫

⟨ ⟩ =
−

−s
s

s

ds e

d e

F s k T

F s k T

( ( )/ )

( ( )/ )

B

B
(2)

after averaging over independent runs monitored for
convergence, where F(s) is the free energy as a function of
the CV (see eq 1) and kB is Boltzmann’s constant. In the
examples that follow, we will carefully examine the construction
of the set K as well as the choice of other parameters.
Choice of Collective Variable. As stated above, the choice

of CV is by far the most important requirement for attaining
efficient sampling of relevant states through metadynamics.
Here we are faced with the additional challenge of constructing
a CV that can be straightforwardly applied across a wide variety
of ligands and receptors in a manner suitable for high
throughput.

Depending on the nature of the specific compound involved,
an unstable binding pose can relax from its starting
configuration by various mechanisms, including internal
deformation and rigid rotation relative to the binding pocket.
A broadly applicable CV should be capable of biasing both
intraligand conformations and rigid rotations but minimize the
biasing of the center of mass displacement of the ligand from
the receptor pocket, as strong biasing of the center of mass
displacement of the ligand from the binding pocket can lead to
the ligand fully leaving the pocket. If the ligand exits the pocket,
then either very long simulation times8 or carefully designed
restraints19 will be needed to facilitate re-entry.
On the basis of these requirements, we choose as our

collective variable the aligned RMSD of the ligand heavy atoms
plus the set of heavy backbone atoms of a stable region of the
receptor away from the binding pocket (see representative
illustration in Figure 2). The aligned RMSD is calculated
relative to the equilibrated input structure. We term the set of
heavy backbone atoms included in the RMSD calculation as the
“anchor” atoms. Through this construction we allow both
internal and rigid rotational modes to be biased. In order to
minimize the biasing of the center of mass displacement mode,
we choose the anchor in a fashion that minimizes its alignment
with respect to the outward pointing binding pocket axis. This
selection criteria is straightforward to automate as part of a
high-throughput protocol. For each receptor−ligand case an
anchor region is determined from these criteria using the
highest ranked IFD pose, and the same anchor was used for all
5 IFD poses. We note that there are likely a variety of CV
choices that could be made that would provide biasing suitable
for pose stability. One such alternative CV found to give
comparable results is discussed in detail in the Supporting
Information, where a subset of the receptor atoms is first
aligned with the starting structure at each frame and the RMSD
is calculated over the ligand atoms from this alignment.
The starting hill height h is another parameter to which we

find sensitivity in the simulations. In most cases, a large hill
height, 0.3 kcal/mol (around kBT/2) is found to provide the
best discrimination between poses. In a few cases this may
prove to be too strong and cause even native-like poses to exit
the binding pocket in the short metadynamics runs. Such cases
can be diagnosed as having all RMSD estimate values above a
cutoff threshold of 2.0 Å. For the small number of compounds
where all candidate poses are above this threshold, a rerun of
the metadynamics trials is performed with a smaller hill height
of 0.05 kcal/mol. The results from this weak rerun replace the
strong run for evaluating the poses. Other metadynamics
parameters were found to not have a very pronounced effect on
the protocol, and we report their suggested values in the
Supporting Information. In the Supporting Information, we
also report a different construction of the CV that gives similar
overall results. All MD and metadynamics runs were performed
with the OPLS force-field,18 see the Supporting Information for
further simulation parameters.

Hydrogen Bond Persistence Score. In a small number of
cases, non-native-like poses may not be able to fully leave their
initial metastable configuration in the short simulations and
therefore may not separate from the native-like pose(s) in a
very pronounced manner, if estimated solely by the RMSD
score. However, even in these cases, metadynamics itself is able
to weaken the contact network between the ligand and receptor
substantially for the non-native-like pose, even when the ligand
may not leave its initial pose. Thus, postprocessing assessment

Figure 2. Ligand and anchor atoms are shown for the example case of
the ligand from PDB structure 2c6m docked with the cdk2 receptor
from PDB structure 1pxj.
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of the persistence of the starting contact network can provide a
useful complementary metric that can predict instability of
poses in cases where the RMSD estimate has not fully captured
information about the instability.
In the data set included here, hydrogen bonds are by far the

dominant contacts in the binding modes of the ligand−receptor
systems. We therefore propose a simple hydrogen bond
persistence fraction metric with which to assess the stability
of the ligand contact network. The hydrogen bond persistence
(HBP) is defined as the fraction of the hydrogen bonds found
in the initial input pose, averaged over the last 2 ns of all 10
trials for each pose. Hydrogen bonds are identified by the
Maestro criteria (maximum distance 2.8 Å, donor angle 120°,
and acceptor angle 90°). For cases where other types of
interactions dominate, this can be readily extended to include
hydrophobic contacts, π−π interactions etc. and will be done in
future work. In the Supporting Information, we provide
detailed results demonstrating that the hydrogen bond
persistence patterns are converged with respect to the number
of trials we use in this work.
Metadynamics-IFD Combined Scoring Function. For a

final screening, we combine the RMSD stability and hydrogen
bond persistence measures, obtained from the metadynamics
trajectories into a scoring function whose parameters have been
optimized using the data from the 42 test cases discussed in the
Results section. This function is defined as follows.

σ σ= +S
D

D
H H

( )
2 ( )h

l (3)

where D is the RMSD estimate average from eq 2, H is the
hydrogen bond persistence score, and σh(D) = 1/[exp(10(D −
1.7))] and σl(H) = 1/[exp(−50(H − 0.3))] are cutoff functions
that reduce the weight of RMSD values exceeding 2.0 Å and
hydrogen bond persistence scores below 0.25, as these are
taken to be strong indicators of instability. The factor of 2
between the HBP and RMSD contributions makes the
weighting roughly equal, as an ideal RMSD estimate of 0.5 Å
and an ideal persistence score of 1 contribute equally to the
score. No optimization is performed on the relative weighting
of HBP. The width of the cutoff functions were postulated and
left fixed while the cutoff HBP and RMSD values were
optimized in the ranges 0.27−0.33 and 1.6−1.9 Å, respectively,
to give the highest fraction of the 42 cases predicted to have a
best pose below 2.0. This error function is flat over most of this
range, so we have taken the midpoint of both. If no cutoff
scheme were imposed, the overall result would be 83.3% sub-
2.0 Å structures. With the cutoff in the considered range
imposed, the lowest success rate is 85.7%. The number of top
scoring structures with RMSDs to native above 3.25 Å is not
affected by the choice of cutoff.

■ DATA SET
The test set is taken from the large set of IFD cross-docking
test cases maintained by Schrödinger. These cases have ligands
from one publicly available PDB structure docked with a
receptor from another PDB structure. Output IFD structures
from this set were filtered using the Structural Interaction
Fingerprints (SIFt) contact similarity scoring,20 as implemented
in the Schrödinger Suite to eliminate functionally redundant
poses. A pair of poses were considered functionally identical if
the Tanimoto distance between the contact networks was less
than 0.15. A total of 42 cases from the resulting set which

contained at least one structure under 2.0 Å and at least one
above 2.0 Å were taken for the metadynamics test set. IFD rank
alone gives a sub-2.0 Å pose as the top-ranked score in 64% of
these cases. The resulting set contains cases involving a total of
eight different receptors: aldose reductase (alr2), cyclin-
dependent kinase 2 (cdk2), checkpoint kinase 1 (chk1),
dipeptidyl peptidase-4 (dpp4), coagulation factor XA (fxa),
protein kinase A (pka), peroxisome proliferator-activated
receptor gamma (ppar), and thrombin (throm). As the
development of IFD is ongoing and the specific results for
some cross-docking cases may change, we have provided a full
set of the initial poses from IFD that were used as the input to
metadynamics in this study in the Supporting Information (zip
file).
To evaluate the suitability of the cases for induced fit

docking, the 42 cases that composed the metadynamics test set
were subjected to rigid receptor docking (RRD) using Glide
SP,1 with default settings as per the 2015-2 Schrodinger Suite
release. The poses were ranked by the Glide docking score. Of
the 42 cases, there are 36 cases that fail to produce anything
under a 2 Å RMSD in the top five poses. These cases
demonstrate a necessity for induced fit docking. A single case
produced at least one pose under 2 Å, although not as the top-
ranked pose. This case would be suitable for a Glide/
metadynamics workflow in order to select the correct sub-2
Å pose. And finally five cases where rigid-receptor docking
succeeded in returning the top-ranked pose as being under 2 Å.
These results are summarized in Table 1. The RMSDs for all of
the returned rigid-receptor docking Glide poses for each of the
42 cases is detailed in the Supporting Information.

■ RESULTS
Overall Results. For every test case, we performed 10

metadynamics runs for each of the 5 candidate poses as
described in previous sections, initially using a hill height of 0.3
(the “strong” perturbation case). The system was initially
relaxed through a series of short minimizations and restrained
MD stages. The metadynamics trial was then performed in the
NVT ensemble using a Berendsen thermostat and used a
RESPA integration scheme with a time step of 2.0 fs for bonded
and near atom pairs and 6.0 fs for far atom pairs. An anchor
fragment was chosen for the receptor based on the algorithm
discussed in the Choice of Collective Variable section. The
results were assessed for both pose stability based on the
RMSD of the ligand with respect to the anchor fragment and
the initial internal ligand coordinates and for the persistence of
hydrogen bonds (designated HBP in what follows) between the
ligand and the receptor. Each trial reported here was run using
Desmond on a single GPU card, with each trial for a typical
system taking 1−2 h per trial. Tests on 8 CPUs in parallel for a
small number were performed and show time scaling at least 10
times slower than on a single GPU. Plots for all 42 test cases are
available in the Supporting Information.

Table 1. Summary of RRD Results

RRD outcome no. of cases

no sub-2 Å pose found 36
incorrectly ranked sub-2 Å pose 1
correctly ranked sub-2 Å pose 5
total 42
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Table 1 in the Supporting Information summarizes the
overall score for each of the 5 candidate poses obtained from
this protocol, along with the RMSD and HBP values for all the
cases. The poses are rank ordered by score, and the best scoring
pose, listed first, is also indicated in boldface. It can be seen in
the great majority of cases (88%), a pose with an RMSD < 2.0
Å from the native structure is selected. A small number of cases
yield poses between 2 and 3 Å, which primarily differ from the
native structure in a tail region that is close to the solvent.
These structures are reasonable and, while not ideal, would in
our judgment still be useful in the context of a structure based
drug design project, as in many cases key contacts driving

potency are identified. In contrast, many of the poses with
RMSDs greater than 5 Å would be quite misleading if
employed to interpret structure−activity relationships or to
guide synthesis. Figure 3 shows the dramatic reduction in such
non-native-like poses from IFD scoring alone to metadynamics-
rescored IFD poses.

Selected Example Cases. The case of the ligand from
PDB structure 2ath docked with the ppar receptor from the
2prg PDB structure provides a good example of where the
metadynamics clearly separates out a native-like pose (RMSD
from native 1.71 Å). This pose is fifth ranked by the IFD score,
and the top four scoring poses by IFD-score are all clearly non-

Figure 3. RMSD to native (crystallographically determined binding mode) for top-scoring pose by IFD score (red circles) shown compared to the
RMSD to native of the top-scoring pose with metadynamics rescoring (green squares) shows the significant reduction in non-native-like poses
detected by metadynamics rescoring. The x-axis is numbered in accordance with the structures in Table 1 in the Supporting Information.

Figure 4. Plots of RMSD estimate (left) and HBP metric (right) averaged over all 10 trials vs simulation time for the ligand from PDB structure 2ath
docked with the ppar receptor from PDB structure 2prg. In this and all subsequent plots, the legends can be interpreted as follows. The first column
of numbers is the RMSD difference between that particular structure and the correct experimental structure. The second column is the pose
numbering as per IFDScore. The third column provides the score as per RMSD (left figure) and HBP (right figure).
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native-like. Figure 4 shows the average RMSD estimate and
HBP metric vs simulation time for all 5 IFD poses. The HBP
metric also favors the 1.71 Å pose, and it is the only pose that
receives a score higher than 0.3.
The case of the ligand from PDB structure 1oit docked into

the cdk2 structure from PDB structure 1wcc provides an
example case where the inclusion of the HBP metric eliminates
poses that would otherwise be competitively stable. RMSD
estimate and HBP metric plots for these cases are shown in
Figure 5. Two non-native-like poses (IFD ranks 2 and 4) show
the lowest RMSD estimate in the 10 ns simulations, but their
starting hydrogen bond networks with the receptor are very
unstable (all end up with less than 20% stability at the end). In
contrast, the two native-like poses (RMSDs of 1.90 and 1.16 Å)
have both reasonable RMSD stability scores (≈ 1.1 Å) and
show strong persistence of their initial hydrogen bonding
network by the end of the metadynamics trials, allowing the
simple scoring system to identify them.
There remains one case where the simple scoring system

here picks out an unambiguously non-native-like structure, that

of the ligand from the 2b52 PDB structure docked into the
cdk2 receptor from the 1wcc PDB structure (see RMSD and
HBP metric plots in Figure 6). In this case, the most native-like
pose in the IFD predictions is missing a pair of prominent
hydrogen bonds between its backbone and the receptor, and
the competitive non-native-like pose has a more consistently
stable hydrogen bond network. The RMSD average estimate of
the native-like pose is actually lower, but the HBP metric
strongly favors the non-native-like pose. In the majority of
trials, these hydrogen bonds actually reform during the
simulations. Thus, while this case is a failure by the simple
scoring outlined here, the contradicting results of the two
metrics give some suggestion that this case could be correctly
determined with a more sophisticated fitting scheme, or
alternatively if an initial low RMSD pose with better hydrogen
bonding geometry was available from the original IFD
calculations (which is quite possible via improvement in the
IFD protocol). For the purposes of the initial test here we wish
to present the results with the simple weighted metric to show
how strong the raw signal in this data is.

Figure 5. Plots of RMSD estimate (left) and HBP metric (right) averaged over all 10 trials vs simulation time for the ligand from PDB structure 1oit
docked with the cdk2 receptor from PDB structure 1wcc. See Figure 4 for a description of the legends.

Figure 6. Plots of RMSD estimate (left) and HBP metric (right) averaged over all 10 trials vs simulation time for the ligand from PDB structure
2b52 docked with the cdk2 receptor from PDB structure 1wcc. See Figure 4 for a description of the legends.
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The remaining cases where poses above 2.0 Å RMSD from
native are chosen are 2−3.1 Å poses that mostly differ from the
native-like pose in a potentially solvent exposed tail region. If
the tail region in all poses ends up solvent-exposed in most of
the metadynamics trials, the initial pose with the most solvent
exposed tail region is chosen, as the tail region in the trials is
closest to the starting pose. Since the stable part of the
hydrogen bond network is essentially identical, the HBP metric
does not differentiate such cases. The case of the 2bts ligand
docked with the cdk2 receptor, shown in Figure 7 provides a
clear example of this.

■ DISCUSSION
The results presented above demonstrate that a properly
designed metadynamics strategy is capable of reliably
discriminating the correct, lowest free energy binding mode
of a protein−ligand complex from plausible alternatives
generated by induced fit docking. The IFD calculations, as
noted above, incorporate only limited sampling of many
relevant degrees of freedom (e.g., of the protein backbone) and
so cannot be expected to rank order binding poses with
complete fidelity. Metadynamics simulations allow simulta-
neous relaxation of all degrees of freedom at a rate that is
substantially accelerated as compared to unbiased molecular
dynamics, enabling a fair comparison of the alternative poses
with a reasonable amount of computational effort. With a
relatively modest investment in GPU hardware, or equivalent
access to GPU processing power via cloud computing, a project
team can obtain a useful structural prediction of the binding
mode of any ligand of interest within a few days. Binding mode
hypotheses generated in this fashion can then be used to
prioritize synthesis and the structure validated via experimental
structure−activity relationships.
In the present paper, we have considered cross docking cases

emerging from the IFD calculations with at least one low
RMSD structure in the top 5 ranked IFD poses. In our test set,
there are a subset of cases where the low RMSD pose is ranked
lower (typically in the top 10−15 poses), and a smaller number
of cases where no good poses is generated. The former cases
can be effectively addressed by the methods of this paper via
combination of more aggressive clustering (thus moving up the
ranking of the native-like pose) and running a larger number of
candidates. The latter requires improvement in the IFD
protocols themselves; preliminary results indicate that such
improvement is possible. We will present a report detailing
performance for a larger, more diverse test set, encompassing

the above augmentations of the current methodology in a
subsequent publication.
The approach proposed in this work can possibly be

improved in a range of different ways, some of which we
have already investigated (see the Supporting Information) and
some which we will be systematically exploring in future works.
For instance, the use of gaussians with variable widths that
adjusts on-the-fly21 could lead to even quicker estimates of the
quantities involved. Another avenue would be to use the
reweighting functionality14 of metadynamics, where we could
estimate unbiased averages of a variety of structural observables
without directly biasing them.
It is interesting to note that the appropriate degree of

metadynamics biasing needed to obtain a useful signal of pose
stability (large enough to significantly displace the ligand but
not so large as to completely eject it from the binding site)
appears to depend primarily upon the binding affinity of the
complex, as opposed to specifics of the receptor binding site
and binding mode of the ligand. It is this observation that
enables a single protocol to be used to investigate an arbitrary
protein−ligand complex with a good degree of confidence. As
an even larger set of test cases is investigated, some
modifications of the current protocol may be required;
however, we believe that the current test set is large and
diverse enough to suggest that a robust, widely applicable
protocol, albeit with additional sophistication, can be
formulated.

■ CONCLUSIONS
In this work we have introduced a metadynamics-IFD coupled
strategy for accurate and reliable prediction of the structures of
protein−ligand complexes in a computationally tractable
manner. IFD studies are now routinely used across drug design
programs to generate a suite of likely stable structures.
However, due to a variety of approximations, developing a
system to select the one best candidate from this set of
structures has been an extremely difficult task. Our strategy
allows treating this problem in full atomistic detail, significantly
enhancing the predictive power of IFD methods. Our approach
is validated across a data set comprising 42 diverse ligand−
receptor systems, with 5 candidate structures for each, with a
false positive rate on the order of 5−10% (depending upon
what is defined as an acceptable structural prediction).
For many years, molecular dynamics simulations have played

a very limited, although useful, role in structure based drug
discovery projects, primarily due to an inability to make

Figure 7. Pose with the exposed tail (left, 2.77 Å RMSD to native) chosen by both IFD and the metadynamics scoring for the cdk2 2bts-1wcc case is
shown with the native. The pose ranked second by metadynamics, a native-like pose (right, RMSD 0.69 Å to native and IFD rank 4) is not chosen
because the hydrogen bonds between the tail and the receptor are not stable in the metadynamics trials.
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accurate quantitative predictions concerning structures and
energies (as opposed to providing qualitatively interesting
snapshots of the system from dynamical trajectories). This
situation is now changing rapidly due to the advent of
inexpensive GPUs and better models and algorithms for
carrying out simulations. In conjunction with the continued
improvement in force-fields,18 we believe that studies such as
the present work and the recent free energy perturbation
study22 represent just the beginning of the vast potential in
using enhanced sampling molecular dynamics as enabling tools
in efficient drug design efforts.
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