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Abstract: A methodology for large scale molecular dynamics simulation of a solvated polarizable

protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed

charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin

inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M

Ewald method which includes point dipoles in addition to point charge sites. The electrostatic

configuration is propagated along with the nuclei during the course of the simulation using an

extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives

only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45)

per time step of simulation. The models employ a newly developed polarizable dipole force

field for the protein1 with two commonly used water models TIP4P-FQ and RPOL. Performed

at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations

show excellent energy conservation and run stably for their 2 ns duration. To characterize the

accuracy of the solvation models the protein structure is analyzed. The simulated structures

remain within 1 Å of the experimental crystal structure for the duration of the simulation in line

with the nonpolarizable OPLS-AA model.

I. Introduction
The goal in force field development for biomolecular systems
is to retain chemical accuracy while taking advantage of
computational expediency by employing the simplest po-
tential function. Expressing the electrostatic potential energy
using a system of fixed point charges interacting via
Coulomb’s law is certainly simple and is the approach taken
for the most popular models used in biomolecular force field
simulation.2-4 However, such nonpolarizable force fields do
not reflect the dependence of a molecules electronic structure
on its environment. This dependency is clearly manifest in
water where the magnitude of the average dipole moment is
approximately 40% larger in the liquid compared to the gas
phase. For homogeneous systems, such as neat fluids, the
exclusion of polarization to model the electrostatic energy

may be sufficient for some purposes. However, the electro-
static environments found in solvated biomolecules range
from nonpolar near hydrophobic residues to highly polar in
the vicinity of hydrophilic and charged residues to a nearly
bulk water like environment far from the protein. A rescaling
of the partial charges to reflect the mean field response is
one way to deal with the average effects of condensed phase
environments; however, inhomogeneous systems with spa-
tially varying fields necessitate the explicit inclusion of
polarization to properly treat the electrostatic potential.

How best to incorporate polarization in a simple manner
is an ongoing quest. The distributed polarizability analysis
of Stone5 is an approach that incorporates highly distributed
inducible sites occupied by high order point multipoles. The
main drawback to such an approach is the additional
complexity of the potential function and the corresponding
increase in computational cost. Recently the particle mesh
Ewald method has been extended to include multipole
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interactions up to hexadecapole-hexadecapole.6 Although
providing a considerable improvement in efficiency relative
to regular multipole Ewald,7 the algorithm is still a factor of
8.5 slower than simply using point charges alone.

The most common approach to including polarization in
a simple force field describes the electrostatic configuration
using a system of fixed point charges/dipoles and inducible
dipoles.8-18 Another approach, referred to as fluctuating
charges (FQ), uses variable charge magnitudes to model
polarization and has been growing in popularity due to the
ease of its implementation and related computational
speed.19-24 Recent successful efforts have led to parametrized
models for small molecules that use a combination of fixed
charges/dipoles, fluctuating charges, and inducible dipoles
using techniques for deriving electrostatic parameters from
ab initio electronic structure calculations.25,26Using this QM
technique, Kaminski et al.1 have now developed a complete
polarizable dipole model for proteins that has shown good
accuracy in gas-phase experiments.

Before the Kaminski model can be used as a predictive
tool, it will be necessary to validate and refine the model
for simulation in liquid water. To do so it is critical to
develop an efficient formalism for simulating polarizable
condensed phase biomolecular systems. It is the long range
electrostatic interactions in biomolecular systems which make
these simulations computationally intensive. To minimize
surface effects we use periodic boundary conditions. Spheri-
cal or minimum image truncation of the long-range electro-
static forces is a method that reduces the computational cost
of the simulation but gives rise to unphysical effects.27,28The
Ewald sum29 provides a tractable solution to the accurate
evaluation of the electrostatic forces but has a computational
complexity ofO(N3/2). For system sizes between 104 < N <
105, that are necessary to simulate solvated proteins, mesh
based Ewald methods such as SPME30 and P3M Ewald31-33

have been shown to be particularly effective. These algo-
rithms have favorableO(NlogN) scaling and lead to ap-
proximately an order of magnitude improvement in the
computational cost of evaluating the electrostatic forces for
systems the size of 20 000 atoms (the relative merits and
similarities of the SPME vs P3M Ewald methodology have
been discussed at length elsewhere32,34). Further computa-
tional gains may be realized by using multiple time scale
integration algorithms that allow for the evaluation of the
expensive long range electrostatic interactions less frequently
than in standard Verlet integration schemes.33,35 The result
of these advances is a formalism for atom-detail nonpolar-
izable potential functions that allows for the MD simulation
of solvated proteins on nanosecond time scales using
reasonable computational resources.

Explicit inclusion of polarizability in a simple potential
function adds additional computational complexity which
must be solved in order to realize size scales that are currently
accessible to nonpolarizable molecular models. The ad-
ditional computational burden is 3-fold: (1) Use of inducible
point dipole sites in addition to fixed or variable charges
requires additional charge-dipole and dipole-dipole interac-
tions. (2) Resolving the electrostatic configuration and
therefore the field at each molecular dynamics time step

necessitates the self-consistent solution to a system of
coupled linear equations. (3) A transparent application of a
multiple time scale algorithm in a fashion similar to that
applied to nonpolarizable potential models is not straight-
forward. Recent developments have laid the groundwork for
efficient large scale simulations of polarizable systems. In
this article we focus on addressing the first two points in
constructing an efficient simulation methodology. Work on
the problem of combining multiple time scale integration
schemes with polarizable potential functions is ongoing in
our lab.

In a following study66 we will be interested in studying
the dynamic properties of water solvent in the vicinity of
the protein. To ensure an accurate evaluation of these
properties our simulations are conducted at constant energy
and constant volume free of artificial perturbations necessary
to simulate in the isothermal/isobaric ensemble.57,58

The article is organized as follows. In section 2.1 we
introduce the polarizable models based on the inducible
dipole model of Kaminski et al.1 for the protein. We choose
two solvent models for comparison, a fluctuating charge
water model, TIP4P-FQ,19 and an inducible dipole water
model, RPOL.8 To efficiently evaluate the electrostatic
potential for a system of charges and dipoles we have
generalized the P3M Ewald method in a fashion similar to
the methodology developed by Toukmaji et al.36 To ef-
ficiently resolve the electrostatic configuration and therefore
the nuclear forces at each molecular dynamics time step, an
extended Lagrangian method19,37combined with the general-
ized P3M Ewald method is used to dynamically propagate
the electrostatic variables during the course of the simulation.
This is discussed in sections 2.2.1 and 2.2.2. In section 3
we apply this technology to the simulation of bovine
pancreatic trypsin inhibitor in water. The computational
complexity and simulation accuracy is discussed in sections
3.2.1 and 3.2.2. As an initial study of the quality of the
polarizable protein model and the proposed solvation models,
the structure of the protein is compared with the experimental
structures in section 3.2.3.

II. Methodology
A. Model. The approach taken to include polarization in the
force fields applied in this study replaces the usual fixed
point charge representation for the electrostatic energy with
a combination of fixed and variable point charges and dipoles
that respond to perturbations in the electric field according
to a parametrized potential energy. The charges and dipoles
are located relative to the atomic positions of the molecules,
either coincident with the atom position or on off-atom virtual
sites.

Adding inducible point dipoles to a system of fixed charges
is the most common method for introducing explicit polar-
izability into a molecular force field. The energy for an
induced dipole moment on sitei is

whereγi and the component of the polarizability tensor of
the dipole site,Ri, are treated as fitting parameters. The

Eµi
) γi‚µi + 1

2
µi‚Ri

-1‚µi (1)
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parameterγi is a means of introducing a permanent dipole
moment on the isolated sitei. Through a simple transforma-
tion eq 1 can be expressed as the familiar self-energy of the
induced dipole relative to the isolated site.

The fluctuating charge model19 introduces variable charges
that respond to fluctuations in the electrostatic potential
according to the principle of electronegativity equalization.
By this principle the charges will distribute so that the
electronegativity on each variable charge site is the same
subject to appropriate charge constraints.19 The energy of
creating a fluctuating charge is

where the Mulliken electronegativity,øi andJi
0 are treated

as fitting parameters. The parameterJi
0 is twice the hardness

of the electronegativity of the isolated site.19

The electrostatic potential energy in an interacting system
relative to a system of isolated molecules can be expressed
as

whereEgp is the system energy in the gas phase andEelec is
the electrostatic energy resulting from the interaction of
different sites:

If the electrostatic sites are well separated, the coupling
terms can be expressed as Coulomb interactions,J(rij) )
1/(rij), Sij ) r ij /(rij

3), and the tensorT ij ) 1/(rij
3) - 3r ij r ij /(rij

5).
At short distances the point multipole approximation for the
electron charge distribution breaks down, and the above
Coulombic potential diverges. Where deemed necessary
screening functions are used at close intermolecular site
distances.26 Intramolecular electrostatic interaction between
neighbors (1,2 interactions) and one neighbor removed (1,3)
are omitted in the model for the polarizable protein. For
water, the (1,2) and (1,3) distances are fixed, and the
Coulombic interactions are treated as either additional fitted
electrostatic parameters19 or omitted.8

The equilibrium charge/dipole configuration is determined
at each set of nuclear coordinates by minimizing the potential
energy with respect to the electrostatic variables subject to
a charge conservation constraint:

In the models presented in this report the charges are
constrained to give charge neutral molecules

whereNâ is the number of charges in moleculeâ. One can
equivalently express the charge constraint implicitly by
transforming to a set of generalized charge coordinates.21

The polarizable model used for the polypeptide (PFF)
comes from the work of Kaminski et al.1 The model places
fixed partial charges on all atomic positions and on massless
virtual sites representing the lone pairs of the oxygen and
sulfur atoms. The electrostatic parameters are fit from gas-
phase electronic structure calculations25 using density-
functional theory (DFT) with the B3LYP method38,39 and
the cc-pVTZ(-f) basis set. The choice of basis set, which
does not include diffuse functions, is based on evidence that
including contributions from such functions in gas-phase
DFT calculations results in an overpolarization of the
parametrized model in the condensed phase.26,40,41The effect
is likely a result of an energetic cost, hindering polarization,
that results from Pauli repulsion between neighboring
molecules in the condensed phase.42 The polarizabilities of
the atomic sites are parametrized by a series of electrostatic
perturbations, using dipolar probes applied to the target
molecule. The resulting change in the electrostatic potential
is measured at a set of grid points outside the van der Waals
surface of the molecule. Polarizabilities (Ri) are chosen to
minimize deviations from the DFT calculation. The fixed
charges and the parametersγi are chosen to best approximate
the electrostatic potential from the unperturbed DFT calcula-
tion.

Stretching and bending energies for PFF are retained from
the OPLS-AA force field,3 while the torsional energy is
reparametrized.1 Further details can be found in the respective
references. The electrostatic energy consists of a system of
fixed point charges and point polarizable dipoles described
by eq 3. The (1,2) and (1,3) interactions are omitted owing
to the breakdown of the bare Coulomb potential at such short
intersite distances. No intermolecular screening of the
Coulomb potential is included in the original model formula-
tion. Short-range repulsion and dispersion is represented by
a Lennard-Jones function

where we apply the geometric sum rule (σij ) (σiσj)1/2 and
εij ) (εiεj)1/2) for the interaction between particlei and j.
The functionfij is a scaling factor equal to zero for particles
connected by a valence bond or angle, set to 0.5 for
intramolecular 1,4 interactions and is 1.0 for all other pairs.
The Lennard-Jones parameters are derived from ab initio
dimer energies of organic compound analogues of the
residues and from the OPLS-AA force field.

We employ three commonly used water models to solvate
the polypeptide. A fixed charge TIP4P43 model (for the fixed
charge OPLS-AA protein3,44) and two polarizable water
models, TIP4P-FQ19 fluctuating charge model and an induc-
ible point dipole model, RPOL.8 All three models employ
an interacting Lennard-Jones site placed on the oxygen atom.

Eqi
) øiqi + 1

2
qi

2Ji
0 (2)

Vel ) Eelec+ Eµ + Eq - Egp (3)

Eelec) ∑
i
∑
j*i

[12qiJ(rij)qj + qiSij‚µj +
1

2
µi‚T ij‚µj]

Eµ ) ∑
i

Eµi

Eq ) ∑
i

Eqi (4)

∂Vel

∂qi
) 0 (5)

∇µi
Vel ) 0 (6)

∑
i)1

Nâ

qiâ ) 0 (7)

Uij ) ∑
i*j

4εij[(σij

rij
)12

- (σij

rij
)6]fij (8)
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Intermolecular interactions between electrostatic sites is
described by the bare Coulomb potential (see eq 4). The
TIP4P-FQ model includes an intramolecular interaction
between the charges within the molecule that is parametrized
along with the other electrostatic parameters empirically. The
RPOL model places point polarizable dipoles on the oxygen
and hydrogen atoms and omits intramolecular electrostatic
coupling.

In practice using this energy function for the simulation
of the TIP4P-FQ model with the polarizable protein results
in a polarization catastrophe where the electrostatic variables
between an interacting molecular pair mutually enhance to
infinite polarization. The polarization catastrophe arose from
interactions between TIP4P-FQ water and specific residues
on the protein (see Table 1). This problem is a direct
consequence of the point charge/dipole approximation to the
electron charge distribution. For point polarizable models
the pair interaction energy diverges at intersite distances
proportional to the molecules’ polarizability1/3. A similar
phenomena is found in fluctuating charge and combined
fluctuating charge/polarizable dipole models. A simple
illustration is a pair of isotropic interacting point inducible
dipoles where the singularity occurs at45

Models that incorporate a large molecular polarizability by
variable point charges/dipoles may have values forrcritical

that approach physically relevant interaction distances. When
this is the case, it is necessary to replace the Coulomb
potential with a more accurate representation of the true
potential at small interaction distances. A scaling factor may
be applied to the Coulomb function, or more rigorously a
screening function46,26may be used to effectively smear the
point multipole and more accurately represent the potential
of an electron charge distribution.

One should note the difficulty in accurately modeling
polarization with a simple potential function may lead to an
exaggerated polarizability and therefore a largercritical.42,40It
is interesting to point out that the polarizable RPOL water
model did not result in a polarization catastrophe when used
to solvate the polarizable protein. A more detailed study is
necessary to definitively resolve whether the catastrophe in
the TIP4P-FQ solvation model is a product of an unrealisti-
cally large polarizability of the water and protein or the use
of the Coulombic coupling between the electrostatic sites.
Providing evidence for the former explanation, a recent
study47 has shown a significant overpolarization response for
hydrogen bonding configurations in the neat fluid using the

TIP4P-FQ model, which may result from exaggerated
components of the molecular polarizability along the mo-
lecular plane. Settling potential problems with the TIP4P-
FQ water model is a prerequisite to dealing with the source
of the polarization catastrophe in our solvated protein
simulation. This work is ongoing in our lab. In lieu of a
satisfactory resolution on the TIP4P-FQ water model, we
adopt measures to dampen the polarization response between
specific residues and TIP4P-FQ water by applying a screen-
ing function for close range intermolecular interactions. The
cubic splinef(x) is chosen such thatf (0) ) 1, f′(0) ) 0,
f (1) ) 1 andf′(1) ) - 1, - 2, - 3, correspond to the value
of the functions 1/x, 1/x2, 1/x3, respectively, atx ) 1.26 A
“screening radius” is applied to specific dipole sites on the
protein which affects the charge-dipole interactions. A
summary of the sites and the respective screening radii is
given in Table 1. The Coulomb potentialu(r) ) 1/r2 is
replaced with

when r < s ands is the sum of the screening radii on the
pair of interacting sites.

B. Polarization and MD. 1. P3M Ewald with Dipoles.
The models studied in this report include point dipoles in
addition to point charges to describe the polarizable system;
therefore, in addition to interactions between charges the
electrostatic potential needs to describe the interactions
between charge-dipole and dipole-dipole sites.

The Ewald sum for evaluating the Coulombic energy for
a system of point charges has been extended to a system of
multipoles by Smith.7 The electrostatic energy for a periodic
system of point charges and point dipoles is

The Ewald sum with the metallic boundary condition follows
from ref 7

whereL is the unit cell dimensions and the Ewald splitting
parameterη modulates the relative weight ofEr andEk to
the total potential energy. For excludedi,j pairs we subtract
1/rij which is equivalent to replacing erfc(ηrij)/rij in Er with
-erf(ηrij)/rij. Mesh based approximations to the regular
Ewald sum discretize space on a regular grid reducing the
Fourier series transforms inEk to finite Fourier transforms
which can be evaluated by fast Fourier transform (FFT)

Table 1: Screening Radius Applied to Selected Dipole
Sites on the Polarizable Peptide Molecule in Solvated
TIP4P-FQ Simulations (Å)

residue (*) site of screened dipole screening radius

glutamic acid -C*O-O 2.5
aspartic acid -C*O-O 2.5
aspartic acid -CO*-O* 1.8
methionine -S-C*H3 2.0
tyrosine -C*OH- 2.5

rcritical ) (4RiRj)
1/6 (9)

u(r) ) 1

s2
f(r/s) (10)

Eelec)
1

2
∑

n
∑

i
∑

j

′
(qi + µi‚∇i)(qj + µj‚∇j)

|r ij + n‚L |
(11)

Er )
1

2
∑

i
∑
j*1

(qi + µi‚∇i)(qj + µj‚∇j)
erfc(ηrij)

rij

(12)

Ek )
1

2
∑

i
∑

j
∑
k*0

1

V

4π

k2
(qi + µi‚∇i)(qj + µj‚∇j)e

-k2/4η2
e-ik‚r ij

(13)

Es ) -
η

xπ
∑

i
(qi

2 +
2η2

3
|µi|2) (14)
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algorithms.48,49The Fourier space portion of the electrostatic
energy is evaluated using a suitable extension of the P3M
Ewald (P3ME) method,33,32 as discussed below. As is the
case for a system of point charges the real space part and
self-energy remain unchanged when using this generalized
P3ME method.

Recently Toukmaji et al.36 have extended the SPME
method to include dipole-charge and dipole-dipole interac-
tions. We adopt a similar extension to the P3ME method
for the applications presented in this study. Following a
similar formalism to that used in ref 36 we define a charge
dipole array and follow the same four step procedure for
generating the forces outlined in refs 32 and 33 for a fixed
charge system:

We assign this array to a grid using the same spline
function (P is the order of the spline) applied to the fixed
charge system

wherer p are the positions of the grid sites andM denotes
the spatial grid. In a similar spirit to the “analytic” scheme
for evaluating the spatial gradients in the field calculation
discussed in ref 32 the dipole gradients are evaluated by
analytic differentiation of the spline function,WP, which can
be factorized into a product of its Cartesian components.31

The spline functions up to orderP ) 7 are tabulated in ref
32. After assignment we apply a forward FFT to get the
Fourier space charge/dipole density

and the reciprocal space potential is

where the wave vectors are periodic with valuesk ) 2πm/L
andm is an integer vector with values between-Np/2 e m
< Np/2 and Np is the number of grid points along each
Cartesian axis. We use the optimized functionĜ correspond-
ing to that derived for a system of point charges:31,33

The functionkn ) k + 2πn/h. The parameterVc is the
volume of the grid cell andh is the cell width. The function
D̂(kn) is the Fourier transform of the differential operator
and is ik in this study. The functionR̂(kn) is the Fourier
transform of the true reference force

In principle an optimized function,Ĝ, can be found that
corresponds specifically to charge-charge, charge-dipole,
and dipole-dipole interactions. However this is not a
practical solution for an efficient algorithm, and the possible
gains in accuracy are negligible. This is discussed further in
Appendix I.

Using an inverse FFT we get the potential on the real space
grid.

The polarizable models studied require the potential, field,
and force to propagate the fluctuating charges, polarizable
dipoles, and nuclei, respectively (see eq 26). To evaluate
the forces and the field it is necessary to interpolate the
potential back to the particles. This is done in a similar way
to the analytic differentiation method of ref 32. The resultant
equations are

This method requires only 2 FFT’s in order to evaluate the
forces.

2. Extended Lagrangian Formalism for Polarization. Eqs
5 and 6 lead to a set of coupled linear equations in the total
electric field and the total potential at sitei which can be
solved iteratively until self-consistency is achieved. Upward
of six iterative calculations of the electric field and potential
may be necessary at each step in the molecular dynamics
simulation in order to conserve energy.36 Considering that
the field calculation is the most expensive portion of a
molecular dynamics simulation, the calculation of polariza-
tion in this manner leads to at least a 6-fold increase in the
computational complexity. For polarizable force fields an
alternative to iteratively solving for the electric degrees of
freedom at each time step in the simulation is an approximate
method similar in spirit to the Car-Parrinello ab initio MD
method.10,19,37,50This method treats the electric degrees of
freedom as dynamical variables by defining an extended
Lagrangian for the equations of motion

where V is the total potential energy,λâ is a Lagrange
multiplier necessary to satisfy charge neutrality on each

Qi ) qi + µi‚∇i (15)

FM(rp) )
1

Vh
∑
i)1

N

∑
p)0

P

QiW
P(rp - r i)

)
1

Vh
∑
i)1

N

∑
p)0

P

(qiW
P(rp - r i) + µi‚∇iW

P(rp - r i)) (16)

F̂M(k) ) Vc∑
rpεM

FM(rp)e
-ik‚rp (17)

φ̂M
k (k) ) Ĝ(k)F̂M(k) (18)

Ĝopt(k) ) ∑nD̂(kn)‚R̂(kn)[Ŵ(kn)/Vc]
2

∑n[Ŵ(kn)/Vc]
2∑n|D̂(kn)|2[Ŵ(kn)/Vc]

2
(19)

R̂(k) ) -ik
4π
k2

e-k2/4η2
(20)

φM
k (rp) )

1

V
∑

m)-Np/2

Np/2-1

φ̂M
k (k)eik‚rp (21)

φ
k(r i) ) ∑

p)0

P

φM
k (rp)W

P(r i - rp) (22)

E(r i) ) -∇iφ
k(r i)

) - ∑
p)0

P

φM
k (rp)∇iW

P(r i - rp) (23)

F(r i) ) (qi + µi‚∇i)E(r i)

) - ∑
p)0

P

{qiφM
k (rp)∇iW

P(r i - rp) + φM
k (rp) µi‚∇i(∇iW

P

(r i - rp))} (24)

L )
1

2
∑

i

N

[mir̆i
2 + mqq̆i

2 + mµµ̆i
2] - V - ∑

â

λâ ∑
i)1

Nâ

qiâ (25)
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molecule, andNâ is the number of charge sites on molecule
â. The charge/dipole dynamics are fictitious and serve solely
to keep these variables near the minimum energy, in a
computationally efficient manner. The corresponding Lagran-
gian equations of motion are19,10

whereφj andEj are the electrostatic potential and total field
on site j respectively and∑i is over all fluctuating charge
sites on the molecule containing sitej.

The extended Lagrangian approximation requires that the
fictitious dynamics run approximately adiabatically for the
duration of the simulation. This is satisfied with an ap-
propriately small choice ofmq/µ. If the frequencyωq andωµ

of the electric variables is sufficiently larger than the fastest
nuclear frequency, the degree of thermal coupling between
the fictitious and real dynamics will be small. The weaker
this coupling, the longer the simulation will progress with
the variable charges and dipoles remaining near the minimum
energy surface. However, values for the fictitious frequency
that are very large require a time step in the simulation that
is proportionally small resulting in a computationally costly
simulation. It is necessary to strike a balance in the selection
of the fictitious frequency parameters between the degree
of thermal coupling to the nuclear dynamic bath and the
computational cost of the simulation. A typical time step
for integrating a biomolecular system is on the order of a
femtosecond. Simulations that require a time step signifi-
cantly smaller than this will be prohibitively slow. The
frequency for the electrostatic variables is approximatelyωq

) (J0/mq)1/2 for the fluctuating charges andωµ ) 1/(Rmµ)1/2

for the polarizable dipoles with an isotropic polarizability.
We choose a charge and dipole mass (mq, mµ) such thatωq

andωµ ) 53, 333 cm-1. By applying a stability analysis to
the leapfrog algorithm, Hockney and Eastwood31 have
derived that the relationship between the time step used in
the finite difference integration algorithm and the largest
frequency in the system isωmax∆tmax) 2. The charge/dipole
frequency used in this study (ωmax ) 53, 333 cm-1) gives a
∆tmax ) 1.25 fs. However, the motion of the charge/dipole
variables are coupled by the electric potential/field leading
to frequency modes in the system larger than 53, 333 cm-1.
In practice we found a system dependent time step ranging
between 0.75 fs and 1 fs was necessary for stable integration
of the equations of motion. The extended Lagrangian
temperature remained below 0.5 K for all the polarizable
model simulations indicating these degrees of freedom
remain near the minimum energy surface. Thus on the time
scale of the extended Lagrangian simulations (approximately
300 ps between iterative minimization of the electrostatic
configuration) there is no appreciable transfer of energy to
the fictitious degrees of freedom. For very long simulations
(much greater than 300 ps), not tested in this study, it may
be necessary to systematically minimize the charge/dipole
configuration in order to ensure a more accurate representa-

tion of the model system. Considering the infrequency that
such a minimization would be needed, the added computa-
tional cost is essentially zero. Previous studies have found
it necessary to apply thermostats and in some cases a
restraining potential, to keep the charge/dipole variables near
the minimum energy surface.20,24,40It is not clear how such
an approach affects the dynamics of the system. A faithful
representation of the nuclear dynamics requires that the
energy flow to the fictitious degrees of freedom is negligible.
This condition can be transparently satisfied when using a
constant NVE simulation with the extended Lagrangian
protocol applied in this report, by monitoring the extended
Lagrangian temperature as a function of simulation time.

III. Application: Water Solvated BPTI
Bovine pancreatic trypsin inhibitor (BPTI) has been used as
a benchmark for force field simulations for some time,51,52

and for this reason is our choice of protein for this study.
We compare equilibrium simulations of BPTI using a newly
developed polarizable force field for polypeptides1 (PFF),
solvated in TIP4P-FQ and RPOL water, to a fixed charge
representation of BPTI using the OPLS-AA force field with
fixed charge TIP4P water. Regarding the accuracy of their
model, Kaminski et al.1 make note that their model is a first
generation attempt at developing a quantitatively accurate
force field for biomolecular simulation which includes
polarization. Further development and testing in the con-
densed phase are prerequisites to refining the model.
Incorporating an efficient methodology for large-scale po-
larizable condensed phase simulation, as is applied in this
study, is a step toward that goal. As such we are interested
in a stable efficient simulation for long time scales and a
reasonable representation of native state stability.

A. Simulation Procedure. The simulation procedure is
as follows. The starting structure, obtained from the 4PTI
structure in the Brookhaven Protein Data Bank,53 included
a protein monomer and 60 water molecules. Hydrogen atoms
were added using the MAESTRO software package.54 Six
counter chloride ions were added using GENION,55 to
neutralize the system. BPTI was then solvated in a 60 Å
cubic unit cell of water generated from a preequilibrated box
of neat TIP4P. Removing water molecules that overlap with
the protein left 6377 water molecules in the system. The
equilibration and production simulations were performed
using the program SIM developed in our lab.56 The initial
equilibration procedure used nonpolarizable force fields and
proceeded as follows. Using the OPLS-AA force field and
keeping the protein structure fixed, the water solvent was
equilibrated at constant temperature (298 K) and pressure
(1 atm) for 20 ps using Nose-Hoover chain thermostats57

and Andersen-Hoover type barostats,58 giving a cubic unit
cell of length L ) 58.8 Å. To generate the starting
configurations for the polarizable model production simula-
tions, an additional 10 ps of simulation at constant volume
and constant temperature (NVT) with a fixed protein
preceded an additional 50 ps of simulation in NVT allowing
the protein and water to relax. The production simulations
were run in the microcanonical ensemble using the velocity
Verlet algorithm for 2 ns with a 1 fstime step (0.75 fs for

mqq̈j ) -
1

Nâ
∑
i)1

Nâ

(φj - φi)

mµµ̈j ) -Rj
-1‚µj + Ej (26)
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PFF/TIP4P-FQ). A further 500 ps of equilibration was found
to be necessary leaving the final 1.5 ns for analysis. The
RATTLE59 constraint algorithm was used to keep the water
molecular geometry rigid, and the bonds between the protein
heavy atoms and hydrogens were held fixed. The Ewald
parameters for the simulations wereη ) 0.37 Å-1, a spherical
truncation of the real space potential atRcut ) 10 Å applied
to the electrostatic site positions, a grid spacing of 0.75 Å,
and an assignment orderP ) 6. The minimum energy
electrostatic configuration is solved iteratively at the outset
of the simulation. The extended Lagrangian method was used
to propagate these variables during the simulation. The
availability of computing time dictated the duration of each
simulation segment (65-600 ps). To generate the 2 ns
trajectories the simulation segments were run in sequential
order using the final nuclear configuration of the previous
segment as the initial configuration for the following
segment. For computational convenience the variable charges/
dipoles are iteratively minimized at the outset of each
segment. It should be noted that the minimizations are not
motivated by a drift of these variables from the minimum
energy surface. For example the increase in the extended
Lagrangian temperature is only≈0.01 K for the 315 ps
segment using PFF/TIP4P-FQ.

B. Results and Discussion.1. Efficiency.To analyze the
speedup from adopting the extended Lagrangian formalism
and the P3ME approximation we compare to a regular Ewald
calculation of the electrostatic energy with an iterative
solution to the electrostatic variables. For a consistent level
of accuracy with the P3ME simulation (relative rms Force
≈ 10-5) an efficient parameter set60 for the regular Ewald
sum corresponds toη ) 0.25 Å-1, a spherical truncation of
the real space potential atRcut ) 15 Å and of the wave vectors
kmax ) 14 Å. The P3ME method is approximately 8 times
faster than Ewald in evaluating the forces. An iterative
simulation requires greater than six iterations of the field
calculation per time step.36 In contrast, the overhead in using
the extended Lagrangian formalism is less than a factor of
1.1. A conservative estimate of the computational gain is
therefore on the order of 40 for an extended Lagrangian/
P3ME polarizable simulation compared to an iterative/Ewald
scheme even for this relatively small protein. For a similarly
sized system of neat RPOL water, Toukmaji et al.36 have
reported a speedup of 100 using an extended Lagrangian/
SPME simulation. The difference lies not in the relative
efficiency of SPME vs P3M Ewald, which is very similar,
but in the choice of suboptimal parameters for the regular
Ewald calculation used in the comparison between SPME
and Ewald. To compare the computational cost of a polariz-
able simulation to fixed charge models we present timing
data for the execution of one molecular dynamics time step.
Remarkably the fully polarizable model is only a factor of
1.23-1.45 more expensive than the fully fixed charge model
(the ratios are relative to the fixed charge simulation). The
bulk of the computational effort comes from the evaluation
of the electrostatic interactions. The TIP4P-FQ model
requires no new interactions and thus requires the smaller
computational effort (1.23). Using truncation methods and
the regular Ewald sum, models that incorporate inducible

dipoles have been shown to be a factor of 2 more expensive
than analogous fixed charge models.10,26 However in the
P3ME formalism there is no additional expense in the
evaluation of the FFT’s when using a model with shared
charge/dipole sites compared to charges alone. For this reason
the RPOL polarizable dipole solvation model gives the
improved scaling (1.45).

The molecular dynamics program used in this study is
benchmarked against a popular MD program in order to put
the preceding timing experiments into a familiar context. SIM
shows comparable computational speed relative to AMBER
7.4 Our SIM molecular dynamics program is approximately
1.3 times slower than AMBER 7 on a 2.4 Ghz Pentium IV
processor for a 23558 atom sized system of fixed charges.

2. Simulation Accuracy.Energy conservation in the NVE
ensemble is one measure of how faithfully our simulation
represents the model Hamiltonian given the P3ME and
extended Lagrangian approximations employed. The total
energy fluctuations,∆V, provide a measure of the energy
conservation and the total energy drift

whereVi is the total energy at stepi, V0 is the initial energy
under the extended Lagrangian dynamics, andNT is the total
number of time-steps. This quantity has been interpreted as
a reasonable measure of accuracy,61-63 and a value of∆V e
0.003, i.e., log(∆V) < - 2.5, gives an acceptable numerical
accuracy. Another parameter that measures the simulation
accuracy is the ratio of root-mean-square fluctuations
between the total energy (∆Vrms) and the kinetic energy
(∆KErms)

A value of R < 0.05 has been correlated with good energy
conservation.64 In Table 3 we present these parameters for
the various simulations. The largest values for log(∆V) and
R are -4.66 and 0.004, respectively, far less than the
acceptable minimum level of accuracy, indicating very good
energy conservation. One should note the excellent perfor-
mance of our simulations indicates a conservative array of
P3ME and integration parameters. A less strict tolerance may
be sufficient and result in a faster simulation.

The accuracy of the configurational trajectory for the
fluctuating charge and polarizable dipoles is related to the
extended Lagrangian temperature. If the electrostatic vari-
ables begin to drift from the potential energy minimum, the
corresponding extended Lagrangian temperature will begin
to increase. The extended Lagrangian temperature remains

Table 2: Time Averaged RMSD between the Average
NMR Structure and the Average Simulation Structurea (Å)

model CR heavy atoms

OPLS-AA/TIP4P 0.7 1.17
PFF/TIP4P-FQ 0.85 1.47
PFF/RPOL 0.91 1.39

a Terminal residues are excluded from the comparison.

∆V )
1

NT
∑
i)1

NT |V0 - Vi

V0
| (27)

R )
∆Vrms

∆KErms
(28)
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near the value at the beginning of the polarizable simulations
never rising above 0.5 K (see Table 3), which indicates these
variables remain near the potential energy minimum for the
duration of the simulation (for the TIP4P-FQ model a
temperature< 6 K has been correlated with a good
representation of the minimum energy electrostatic config-
uration19). Figure 1 shows the extended Lagrangian temper-
ature for the longest simulation segment between iterative
minimizations (315 ps) using the TIP4P-FQ model. Table 3
also shows the root-mean-square deviations of the electro-
static variables from the minimum energy configuration for
the last nuclear configuration corresponding to the largest
simulation segment between minimizations (400 ps for
RPOL). The deviations are small providing further evidence
the generated trajectories are representative of the minimum
energy surface.

3. Force Field Accuracy.How well simulations represent
the native structure of the protein provides a coarse measure-

ment of the quality of the polarizable force field models.
Assuming the model simulation begins in the real native
state, a poor representation will lead to large deviations as
it relaxes to the erroneous native state of the model.
Measuring small deviations from experiment over long
simulation periods (nanoseconds) is a positive indication for
the model. In this study the experimental crystal structure is
used to represent the native state. NMR experiments of BPTI
in liquid water65 have shown small root-mean-square devia-
tions (RMSD) between the average NMR structure and the
crystal structure (RMSD)0.85 Å) indicating the native
protein structure does not change significantly between the
liquid and crystal. We present the RMS deviations of the
simulated peptide backbones relative to the experimental
crystal structure for 2 ns simulations in Figure 2. The terminal
residues show large fluctuations in the liquid water simula-
tions and are not included in the RMSD analysis in line with
the results from the NMR experiments.65 The polarizable
force field simulations are similar to the fixed charge model
with the average RMS deviation being≈0.8 Å for all the
models. For a direct comparison to an experimental solvated
structure, time averaged RMSD values between simulation
and the average NMR structure are evaluated and sum-
marized in Table 2. The differences between the polarizable
and nonpolarizable models remain small and within the
experimental error.

We also investigate the RMS deviations of the heavy
atoms of the protein (see Figure 3). The results show close
similarity between the polarizable and nonpolarizable model
simulations. It is interesting to note that equilibrium of the
protein including the side chains requires an additional 500
ps of simulation as evidenced by the slope at the start of the

Figure 1. Trajectory of the total energy and extended Lagrangian temperature for PFF/TIP4P-FQ simulation. The 315 ps duration
is the longest simulation segment used between minimizations for this model combination. The temperature stays approximately
constant for the duration indicating little thermal coupling with the nuclei on this time scale. The total energy for the same trajectory
is also plotted showing fluctuations about a consistent value for the simulation length.

Table 3: Summary of the Simulation Accuracy

model log(∆V)a Rb

extended
Lagrangian

T (K)c
qrmsd

(e)
µrmsd

(Debye)

OPLS-AA/TIP4P -5.21 0.004 N/A N/A N/A
PFF/TIP4P-FQ -4.96 0.003 0.5 0.002 0.012
PFF/RPOL -5.30 0.004 0.1 N/A 0.003

a log(∆V) measures fluctuations about a reference energy near the
beginning of the simulation. b R measures the ratio of root-mean-
square fluctuations between the total and kinetic energy. Accurate
fixed charge simulations have been correlated with a value of log(∆V)
< -2.5 and a value of R < 0.05. c The extended Lagrangian
temperature measures the degree of thermal coupling between the
electrostatic variables and the nuclear variables. Typically tempera-
tures less than 6 K have been correlated with a good representation
of the potential ground state.
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simulations in Figure 3. Figure 4 shows the time averaged
RMS deviation corresponding to each residue in the protein
from simulation and NMR experiment relative to their
average structures. The results are again similar for all three
simulations.

Considering the small structural deviations between simu-
lation and the protein crystal structure are similar to that from
the nonpolarizable force field one can only conclude that
like the fixed charge models the polarizable simulations are
a reasonable representation of this water/BPTI system. The
results are similar for averaged RMSD values between
simulation and the average NMR structure (see Table 2). A

more sensitive experimental probe is necessary to resolve
the relative accuracy of the nonpolarizable OPLS-AA
simulation and the proposed polarizable solvation models
studied in this report.

IV. Conclusions
We have presented a computationally efficient and accurate
methodology for the simulation of large polarizable systems
using a combination of fluctuating charges and polarizable
dipoles. The method requires only a modest overhead relative
to nonpolarizable force fields and the simulations run stably
for 2 ns. The method does not need thermostats or the

Figure 2. Root-mean-square deviation of CR atoms for the simulation structures from the experimental crystal structure as a
function of simulation time. Terminal residues, which show large fluctuations from NMR experiments as well as simulation, are
not included in this analysis. All models do a reasonable job representing the protein native state for the 2 ns duration of the
simulation.

Figure 3. Root-mean-square deviation, including all heavy atoms, for the simulation structures from the experimental crystal
structure as a function of simulation time.
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imposition of restraint potentials, which may obscure the
dynamics of the system, to keep the electrostatic degrees of
freedom near the minimum energy surface. Thus, the method
allows a reliable representation of the system dynamics at
constant energy and constant volume. Our tests of a newly
developed polarizable protein force field combined with the
TIP4P-FQ and RPOL models for water gave promising levels
of accuracy compared to the experimental structures. How-
ever, a more detailed study is necessary to resolve the relative
accuracy of this protein polarizable model to that of fixed
charge polypeptide models. Experiments that probe the
hydrogen bonding environment of these solvated peptides,
such as time-resolved infrared spectroscopy, are a promising
tool for evaluating the quality of biomolecular force fields.47

Although the structural quantities investigated in this report
show little to differentiate the polarizable and nonplarizable
simulations, one should not conclude that the simulations
are similar. Significant differences between the nonpolariz-
able and polarizable simulations are found in the hydrogen
bonding patterns of the protein structure and in the structural
and dynamic properties of the solvent surrounding the
protein. This will be presented in a following publication.66

One should also keep in mind that the polarizable peptide
model is in the first stage of development. Further refinement
of the model, by including condensed phase data into the
parametrization, is now possible and will certainly lead to
more accurate polarizable models.
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V. Appendix: Optimized Coulomb
Propagator for a System of Point Charges
and Point Dipoles
Following the procedure of Hockney and Eastwood31 one
can derive optimized Coulomb propagators on a discretized
space for charge-dipole and dipole-dipole interactions.
Defining the mean square difference between the force
calculated on the grid,F, and the true reference force for
the continuous space problem,R, to be

The Fourier space representations of the reference forces for
the interacting charge/dipole sites are

whereqqdenotes the force between two charges,qpdenotes
the force on chargeq from dipolep, pq denotes the force on
p from q, and pp denotes the force between two dipoles.
The calculated force from the discretized space is

Figure 4. Time averaged RMSD over main chain atoms of individual residues from the respective average simulation and
NMR structure. The â-strands are marked in green, and the R-helices are marked in dark gray. The residue dependence of the
protein fluctuations in the liquid show correspondence between the simulation models and the NMR experiment.

Q ) 1
Vh
∫Vh

d3r1∫V
d3r |F(r ;r1) - R(r )|2 (29)

R̂qq ) qiqjik
4π
k2

e-k2/4η2

R̂qp ) qi(ik‚µj)ik
4π
k2

e-k2/4η2

R̂pq ) -(ik‚µi)qjik
4π
k2

e-k2/4η2

R̂pp ) -(ik‚µi)(ik‚µj)ik
4π
k2

e-k2/4η2
(30)

F̂qq ) qiqjÛD̂Ĝ∑
n

Ûei(k-kn)‚r1

F̂qp ) qiÛD̂Ĝ∑
n

Û(ikn‚µj)e
i(k-kn)‚r1
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whereÛ ) Ŵ/Vh andD̂ depends on the method of potential
differentiation for the field gradient. The wave vectork )
2πm/L and kn ) k + 2πn/h. Minimizing the functional
derivative ofQ̂ with respect toĜ we can get the optimized
functional parameterĜ corresponding to this set of interac-
tions. However sinceik is not periodic in the alias sum over
n, the Fourier transform of the dipole gradient remains within
the alias sum (see page 274 of ref 31 for details of the
derivation), and the parametersĜpq, Ĝqp, and Ĝpp remain
explicit functions of the particular dipole site,µ. Obviously
this is not a tenable solution. A finite difference approxima-
tion for differentiating the dipole gradients is periodic, and
the result reduces to eq 19 for all interacting pairs. Of course
as was shown in ref 33 the difference inĜ between keeping
ik within the alias sum and factoring it out all but disappears
for the assignment orders and grid densities used in this
study, which means to an excellent approximation,Ĝqq )
Ĝpq ) Ĝqp ) Ĝpp.
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