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Abstract: Multiple time scale methodologies have gained widespread use in molecular dynamics
simulations and are implemented in a variety of ways across numerous packages. However,
performance of the algorithms depends upon the details of the implementation. This is particularly
important in the way in which the nonbonded interactions are partitioned. In this work, we show
why some previous implementations give rise to energy drifts, and how this can be corrected.
We also provide a recipe for using multiple time step methods to generate stable trajectories in
large scale biomolecular simulations, where long trajectories are needed.

1. Introduction

Molecular dynamics is a ubiquitous tool for simulating a wide
variety of large scale systems, ranging from the materials to
the biological sciences. Schemes that increase the efficiency
of such simulations are of great interest. In standard
techniques, the time step of the generated trajectory is limited
by the fastest motions present in the system. However,
realistic systems contain a broad spectrum of frequencies.
Multiple time scale (MTS) methods partition the computation
into “slow” and “fast” portions, assigning appropriate time
steps to each segment. This methodology may be exploited
in systems with disparate masses,' high frequency oscillators
in slowly evolving baths,” and distance based schemes that
partition the nonbonded interactions into short- and long-
range components.” >

The reversible reference system propagator algorithm (r-
RESPA)® is one of the most powerful implementations of
the multiple time scale concept. r-RESPA integrators are
readily derived from factorization of the Liouville propaga-
tor.®” Tt therefore provides an integration scheme that is
reversible in time and evolves in a symplectic and area
preserving fashion, thereby preserving these attributes of an
exact solution to Hamilton’s classical equations of motion.
Furthermore, a variety of different multiple time scale
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partitionings may be readily recovered from this framework,
including related integrators.” This algorithm has been widely
implemented in simulation packages such as IMPACT,®
NAMD?2,” AMBER,'’ and DESMOND."!

The widespread availability of fast multicore computer
clusters, massively parallel supercomputers, and the im-
provements of parallel algorithms have facilitated the simula-
tion of longer trajectories on the order of tens of nanoseconds
to microseconds for large biomolecular systems. Since the
majority of papers reporting tests of the stability of multiple
times scale methods were published before such advances,
it is important to evaluate the validity of MTS algorithms
using much longer times scales. A more recent work by Han
et al.'? studies disparate time scales in a simulation of a
biomolecular system in a Langevin bath over several
nanoseconds. Here, we focus on the stability of the integrator
as measured by its energy conservation in the microcanonical
simulation. This is due to the fact that coupling the system
to the thermostats and barostats necessary to generate other
ensembles may obscure or complicate the evaluation of the
integrator’s stability.

Symplectic integrators such as r-RESPA can successfully
generate long stable trajectories. In addition, for such
integrators, there exists a modified or shadow Hamiltonian'*'*
which is exactly conserved as the system is propagated,
although it is only known approximately for realistic
systems.'>'® However, despite these desirable properties,
r-RESPA and related integrators are known to suffer from
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Figure 1. (Top) Deviation of the total energy from the initial
energy (Eo = —240 068 kcal/mol) plotted against trajectory
length for a solvated lysozyme using the NAMD2 package.
The lengths of all covalent bonds to hydrogen are constrained
in all runs. The default RESPA2/C1 (red line) and BONDED/
NON-BONDED (labeled B/NB, green line) schemes are
plotted against a standard velocity Verlet run (black line). The
bottom panel shows a NAMD2 simulation of the same system.
The red and black lines correspond to the same plots as in
the top panel. The blue line utilizes the RESPA2 type splitting
with our fix, which has been implemented as the “long-
Splitting=c2” option in NAMD2, version 2.7b2 (see section
3).

resonance instabilities,>!” " !° which bound the size of the
time step of the slowest motions relative to the size of the
faster modes. Resonance phenomena engender the building
up of energy in the system, thereby giving rise to drifts in
average properties and inaccurate sampling. Schemes have
been developed to alleviate this problem,'®?°~% although
some are only suitable for sampling and not investigations
of system dynamics.

In this work, however, we do not focus on resonance
phenomena in particular, but rather on optimizing the
splitting of the long-range nonbonded electrostatics in order
to ensure long time numerical stability. In periodic systems,
nonbonded interactions may be split in two ways. We will
refer to these schemes as RESPAT1 (split by real-space and
k-space in Ewald summation) and RESPA?2 (split by intrinsic
time scale; see section 2). Another consideration is how the
interactions are smoothed at the boundary between the long-
and short-range interactions.*° This is facilitated by use of
a switching function, the details of which may be crucial to
generating a stable trajectory.

As with any numerical scheme, the performance of
r-RESPA depends on the details of its implementation. In
order to illustrate this point, we present in Figure 1 the
deviation of the total energy from its initial energy over the
course of a microcanonical simulation of lysozyme in an 8
M urea solution performed utilizing several integration
schemes, as implemented in the NAMD?2 simulation package.
The simulations were run for up to 200 ns, but only the first
15 ns of data are shown. It can be seen that the standard
velocity Verlet integrator is stable with a time step of 1 fs.
In the r-RESPA schemes, the bonded interaction is evaluated
with a time step of 1 fs. However, the nonbonded interaction
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is handled in two different ways, each utilizing an additional
time scale of 2 fs. In one version, the entire nonbonded
interaction is evaluated at the larger time step. We refer to
this as “RESPA:B/NB”, and the results are reported in the
top panel of Figure 1. Also plotted in the top panel is the case
when the nonbonded interactions are split across the two time
scales according to the default implementation in NAMD?2.
This is denoted as “RESPA2:C1” (as we will discuss in
section 2, this implementation in NAMD?2 is similar to
RESPA?2 as presented in the literature?® but is not exactly
the same). It can be seen that, whereas RESPA:B/NB is
relatively stable, a significant energy drift is present in the
RESPA2:C1 result. Counterintuitively, therefore, the larger
drift is seen in the case where a greater portion of the
interaction is integrated at the shorter time step.

It has been shown that seemingly reasonable implementa-
tions can give rise to unexpected energy drifts. We are
therefore motivated to test the stability of the various schemes
of applying the r-RESPA algorithm in microcanonical
simulations over long trajectories. In particular, we are
interested in investigating the details of the partitioning of
the nonbonded interactions. Stability depends upon the details
of the interaction split, such that the incorrect choice of
parameters can lead to unstable trajectories. We find that
the large energy drift of RESPA2:C1 as shown in the top
panel of Figure 1 is engendered by the choice of switching
function that facilitates the partitioning of the nonbonded
interactions (electrostatic interactions to be specific). The
bottom panel of this figure shows the total energy for
the trajectory for the same RESPA2 scheme, except that the
switching function has been “fixed” (denoted RESPA2:C2).
This modification has been recently ported into NAMD?2,
and its details will be explained below.

This article is organized as follows: Section 2 reviews the
different ways to decompose the nonbonded interactions. In
section 3, the sensitivity of the nonbonded splittings is tested
for a simple water system, and what is learned here is applied
to a biomolecular system in section 4. Conclusions are given
in section 5.

2. Choosing the Force Splitting

Of crucial importance to the nature of the algorithm is the
way in which the multiple time scales are defined. In a typical
empirical potential, this may be done by splitting the force
into a set of terms that are evaluated at different time steps.
It is typical for the fastest motions to be chosen as the
stretching and bending terms of the force field. The torsional
terms of the potential may be included here, or treated at
another level “outside” the stretching and bending interaction.
The nonbonded interaction may be split into two or more
parts according to their relative intrinsic time scales (fast or
slow, on the basis of pair distances). In this work, we will
only consider nonbonded potentials of the following form
which act in a periodic simulation cell with vector of
periodicity n:

V—ZZZ<1—6°[¢<U>+” 1)
ij

i j=i
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where the sum is over all periodic images and all pairs that
do not correspond to the same atomic site. The function, ¢,
is a short-ranged potential effectively accounting for repulsive
and dispersion interactions (typically taken to be of the
Lennard-Jones form), and the second term is the electrostatic
interactions of fixed point charges. The electrostatic potential
is long-range and may be treated via the Ewald summation
technique’*-!

2 2 2(1 q_ZJ - Vscr + VKS ()
i j=i ij

where V. is a short-ranged, screened potential and Vs is a
smooth, slowly varying potential that is most efficiently
computed in reciprocal space:
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where S(k) = YVg; ¢, The term Vi subtracts out the
interaction between the same sites that is implicit in the
reciprocal space sum. As it is position-independent, it will
not contribute to the forces and will be neglected for the
rest of this discussion. The parameter o determines the degree
of screening and is chosen in accordance with the real space
interaction cutoff r.,. The reciprocal space part of the Ewald
summation may be computed directly or by means of
methods that utilize fast Fourier transforms (FFT) such as
particle mesh Ewald (PME),?* smooth particle mesh Ewald
(SPME),* particle—particle particle-mesh Ewald** (P3ME),
and the fast multipole method* (FMM). Such techniques
have been implemented alongside r-RESPA??-6~38

Within the multiple time scale framework, the nonbonded
forces may be split into two or more partitions.?***#° In
this study, we will restrict ourselves to splitting the non-
bonded force into two parts. When choosing a splitting for
the forces into near and far contributions, a natural choice
would be to utilize the explicitly short-ranged potentials as
the near force and the reciprocal space sum as the long force.
This choice also has the utility that the more computationally
expensive reciprocal space part is computed less frequently.
Following the nomenclature of ref 29, this choice is referred
to as “RESPAL.”

erfc(our; )
Vi = 2 X 30 - 0loe) + ag— - ,,r ] x
i =i Ij
a- G)(rij — Iy)
Vi = Vis

(6)

The factor (1 — O(r]] — re) cuts off the interaction in
real space, where ©(r) is the Heavyside function. Smoother
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functions may be utilized to facilitate improved energy
conservation.

As noted in previous work,?* this is not the optimal split,
as some fast components are screened out of the potential
in eq 3 and are therefore present in the reciprocal space term
(eq 5). One may subtract this portion from the “far” potential
and add it into the “near” potential, yielding a split that we
will refer to (as in ref 29) as “RESPA2.”
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The forces may be obtained by taking the negative gradient
of the associated piece of the potential and then splitting it
according to the r-RESPA algorithm.® In general, a cutoff
different than the overall real space interaction cutoff, rgy,
may be employed for the division between the “near” and
“far” forces. The forces may be decomposed as follows:*°

finner ﬁlearS(r > :)?]5[’ }’)
fouter - ffar + fnear(l

where S is a switching function that softens the transition
from fast to slow forces that occurs at a given cutoff. The
switching function is made to act over a healing length, 4.
Too harsh a transition can lead to errors in the region of the
cutoff, thereby introducing instabilities in the propagation
that accumulate over the integration time. In some implementa-
tions,”"* the entirety of short ranged potential ¢ is placed in
the inner loop and only the electrostatic interactions are split.
It is also possible to instead apply a switching function
directly to the potential.*>*! If S is applied to the potential,
then the corresponding switching function S will act upon
the force, thereby replacing S in eq 9 with the following
expression:

S(r res }.)) (9)

’ Cl.l[’

V()
Vi(r)

where the prime indicates a derivative with respect to
distance r. Note that, since the forces and not the potentials
are utilized to generate the trajectories, it is the smoothness
of the switching function that acts on the force which will
impact the integration stability. In principle, equivalent
switching functions, either on the potential or on the force,
will generate the same smooth trajectories.

S(r) = S(r) + —=8'(r) (10)



Molecular Dynamics with Multiple Time Scales

The switching function, S, used here is given in the
following piecewise form:

res
1 r<r.,— A4
._res _ .. res res res
S(rirgeA) = {grirgnA) roy —A<r<ry (11)
0 r=re

cut

where the function, g, is chosen so as to smoothly transition
from 1 to 0. In this work, we will consider three forms of
this function: a cubic spline, g3, that was utilized on the force
in the original formulation of r-RESPA,*® a quintic spline,
gs, that was utilized to cut off the electrostatic potential in a
different context,*? and a different form of cubic spline
(denoted as the C1 spline), gci, which is the default choice
in NAMD2.°

&S ) = 1 4+ u’Qu — 3) (12)

gs(rire ) = 1+ W’(15u — 6 = 10) (1)

8o ) =1+ %(u2 -3) (14)
where:

u= %(r -t A (15)

The quintic spline has the benefit of being a smoother
function than the other choices, although it is also marginally
more computationally expensive. Of course, we make no
pretense of making the optimal choice, and other functions
may be appropriate. The sensitivity of the algorithm perfor-
mance to the nonbonded interaction splitting will be con-
sidered in the next section.

3. Testing the Splitting

In order to test the performance of the schemes delineated
above, we perform a series of simulations and monitor the
total energy conservation via the deviation of the energy from
its initial energy, E — Ey, as a function of time, where E is
the total energy and E, is the initial energy. This plot
monitors the drift and fluctuations of the conserved quantity.

We carried out simulations utilizing the PINY_MD pack-
age.*> The PINY_MD package contains a multifeatured
r-RESPA implementation to which we have added the
RESPAZ2 splitting and the quintic switching function. The
particle mesh Ewald method is utilized for computing the
long-range interactions.®> An overall real space cutoff of
10 A and an 7S of 8 A were utilized in all of our PINY_MD
studies in this and the succeeding section. Using a relatively
small cutoff for ry is presently computationally advanta-
geous due to the fact that it shifts a greater burden onto the
less frequently evaluated “far” interactions. It has been shown
by Han et al.'? that the cutoffs may be increased to yield
larger differences between the inner and outer time steps such
that the algorithm efficiency may be optimized according to
the features of the simulation package and available hard-
ware. The switching function is applied directly to the force
as in eq 9.
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Figure 2. The deviation, E — E; (where Ey = —7259 kcal/
mol), of the conserved energy for TIP3P water when the
RESPA1 (black lines) and RESPA2 (red lines) schemes are
utilized. The top panel depicts the results if a cubic switching
function with a healing length of 2 A is employed, whereas in
the bottom panel a smoother choice for the switch (a quintic
function with a healing length of 4 A) is made.

Due to the large difference between fast OH stretches and
the slower librations and translational motions, liquid water
is a natural system on which to test the multiple time scale
approach. However, the high frequency of the OH stretch
induces resonance instabilities (see section 1) at rather small
outer time steps.”> The resonance barrier may be simply
postponed by constraining the lengths of all the covalent
bonds to hydrogens, and this is the approach that we follow
here. Therefore, we utilize a rigid model of water. Since all
covalent bond lengths are being constrained, the forces are
only split between near and far nonbonded contributions.

We simulate a system of 905 water molecules in a periodic
cubic cell with a side 30 A in length, and the TIP3P model**
is utilized to describe the interactions. The internal geometry
of each molecule is constrained.*> The near forces are
updated every 1 fs, whereas the far forces are updated every
5 fs. The Ewald screening parameter utilized is a. = 0.4 A.
In this regime, previous studies have shown that the multiple
time scale splitting is stable for rigid water models.*?
Simulations of 4 ns in length were carried out in order to
test the sensitivity of RESPA1 and RESPA?2 to the choice
of switching function and healing length.

This model will serve as our test of the sensitivity to choice
of switching function parameters and functional forms.
Healing lengths of 2 and 4 A, as well as the cubic and quintic
forms, were studied. In Figure 2, E — Ej is plotted versus
time for selected choices of the switching function using both
the RESPA1 and RESPA2 schemes. Additional stability data
for all runs are given in the Appendix. It can be seen that
the energy conservation dramatically improves as the switch-
ing function is made ‘“smoother” for RESPA2, although
RESPAL1 is relatively insensitive to this change. The switch-
ing function can be made smoother by increasing its order
and by increasing the distance over which the function acts
(A). As is evident from the data in the Appendix, the careful
choice of both of these aspects is necessary to optimize
performance. Sensitivity of the RESPA2 scheme to the
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choice of healing length has been previously noted in ref
24. The RESPAI1 scheme is relatively insensitive to this
choice due to the fact that the interactions are already damped
in the cutoff region because the screened and not the bare
Coulomb potential is utilized for the “near interaction” (see
eq 6). Furthermore, one may note that the drift observed in
the RESPA2 scheme for a poor choice of switching function
can go unnoticed over the first several hundred picoseconds
of the simulation. This observation underlines the importance
of monitoring longer trajectories in order to assess the
performance of any integration scheme.

We now return to the original question posed by Figure
1. As noted in the Introduction, the nonbonded portion is
split according to RESPA2 within NAMD?2.” By default, the
C1 switching function (eq 14), with a hard wired healing
length of 1 = rey, is applied directly to the potential.
Numerical stability therefore depends upon the smoothness
of S(r) as defined in eq 10 (see section 2). In the bottom
panel of Figure 1, we plot the results shown in the top panel
of this figure against what occurs if the default C1 switching
function is simply replaced with our smoother quintic
switching function for the RESPA2 scheme.*® One can see
that this single modification largely alleviates the drift in the
conserved energy and provides a fix, albeit not an optimal
one.

4. Appropriate Settings for Biomolecular
Simulations

In current research, the primary utility of multiple time scale
methods is to increase the computational efficiency of
biomolecular simulations. To this end, we make a careful
study of the performance of r-RESPA for such systems. As
a test case, we simulate a lysozyme surrounded by 6328
TIP3P water molecules in a periodic cubic box with a side
of length 61.5 A using the CHARMM?22*" force field. The
Ewald screening parameter is set to 0.37 A. We chose a time
step of 1 fs for the near nonbonded interactions and torsional
terms, and we integrate the stretching and bending terms of
the protein with a time step of 0.5 fs. The outer time step
that splits the nonbonded interactions is varied. We utilize a
quintic switching function with a healing length of 4 A in
all runs. All water molecules are taken to be rigid, and all
bonds to hydrogen (except hydrogen bonds) within the
protein are also constrained, so as to delay resonance
instabilities (see sections 1 and 3). We equilibrate the system
using the RESPA2—4FS protocol for over 4 ns.

Several runs are presented in Figure 3. It is shown that
the splitting is strictly stable up to 4 fs, whereas larger steps
exhibit some degree of drifting due to the onset of resonance
effects discussed in section 1. When the switching function
is properly set, it can be seen that the RESPA2 scheme
outperforms RESPA1. This is indicated by the smaller energy
fluctuations in the RESPA?2 runs. For an outer time step of
6 fs, the RESPAZ2 result also possesses a significantly smaller
drift than the corresponding RESPA1 run and, in fact, appears
to be fairly stable, as shown in Figure 3. The small drifts
become more apparent, however, as the simulation progresses
beyond 8 ns (results not shown).
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Figure 3. The deviation, E — Ey, of the energy from the initial
energy is plotted for selected runs of lysozyme utilizing
RESPA1 with an outer time step of 4 fs (black line) and 6 fs
(purple line) and RESPA1 with an outer time step of 4 fs (red
line) and 6 fs (blue line). For this system, E; = —53 377 kcal/
mol.

Table 1. Comparison of the Average Total Energy,
Potential Energy, and Temperature for Selected
Simulations of the Solvated Lysozyme System?

system E (kcal/mol) T (K) V (kcal/mol)
NO-SPLIT-1FS  —53374 (0.17) 299.45 (1.7) —66138 (73)
RESPA1—-4FS —53373 (0.73) 299.24 (1.7) —66127 (72)
RESPA2—4FS —53374 (0.30) 299.64 (1.7) —66147 (73)
?The standard deviation of each quantity is given in

parentheses.

Furthermore, it is shown in Table 1 that the r-RESPA runs
yield equivalent averages to runs where the nonbonded
interactions are not split and evaluated every femtosecond.
It may be possible to utilize larger outer time steps by either
increasing the real space cutoff'? or by splitting the non-
bonded interaction into more than two portions,”’ where
different time scales may be used to characterize near,
intermediate, and long-range nonbonded interactions.

5. Conclusion

Multiple time scale molecular dynamics techniques can be
an important tool for the creation of optimized molecular
dynamics integrators. Although splitting the nonbonded
interactions according to their intrinsic space or time scales
may be readily accomplished, the proper division of the
intermediate and long-range interactions interactions so as
to ensure stability and energy conservation can be full of
pitfalls. In this work, we have performed a detailed study of
the accuracy of nonbonded splitting schemes, in particular,
schemes where the electrostatic interactions are split into real
and reciprocal space (RESPAI1) parts or distance based
(RESPA2) contributions. It is found that, while RESPA2
outperforms RESPAL, it has a greater dependence upon the
details of the function that switches between the two
contributions. This dependence can lead to rather significant
drifts in the total energy over the course of long simulations,
as is found in some previous implementations. To this end,
we have provided some guidance for nonbonded splitting
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Table 2. Simulation Details as well as Energy
Conservation Measures Eg,, and R for the Simulations of
Water (section 3) and the Solvated Lysozyme (section 4)%

Atlouter length

system split (fs)  sWorg A(A) (ns) 10g(Econv) R (x1072)
water RESPA1 5 3 20 40 —4.42 1.37
water RESPA1 5 5 40 40 —4.42 1.37
water RESPA2 5 3 20 40 —2.96 21.8
water RESPA2 5 5 20 40 —4.38 1.48
water RESPA2 5 3 40 40 —38.75 5.63
water RESPA2 5 5 40 40 —4.65 0.628
lysozyme NO-SPLIT 1 2.0 —5.58 0.231
lysozyme RESPA1 4 5 40 80 —4.95 1.02
lysozyme RESPA1 6 5 40 80 —3.64 10.4
lysozyme RESPA2 4 5 40 80 —5.23 0.408
lysozyme RESPA2 6 5 40 80 —4.59 1.35

2 Entries are categorized according to the size of the outer loop
time step, the type of non-bonded splitting employed (RESPA1,
RESPA2, or NO-SPLIT), the details of the switching function
(order (sworg) and healing length (1)), and trajectory length.

schemes and implemented these in selected simulation
packages (NAMD2 and PINY_MD). Even though these
implementations are applied to particular simulation pack-
ages, we believe that these findings are of broader applicabil-
ity to multiple time scale methods and will be particularly
useful for modern biomolecular simulations where long
trajectories on the order of tens of nanoseconds to micro-
seconds are needed.
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Appendix: Quantifying the Integrator
Stability

We utilize two standard measures in order to assess the
stability of the run:*°

IE — E,|
E =9

conv |E0| (16)

(E = (Ey)'"”
R -
(T — ("

where E is the total energy and T is the kinetic energy. In
general, E..,y 1S more sensitive to the drift in energy, whereas
R is more directly related to its fluctuation. The details of
all the simulations performed with PINY_MD are given
alongside these measures of stability in Table 2. It can be
seen that RESPA?2 does not outperform RESPA1 until both
a suitable smooth switching function form and appropriate
healing length are chosen.
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