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Classical Approximation to Nonradiative Electronic Relaxation in Condensed Phase Systems
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We present a study of the classical limit of nonradiative electronic relaxation in condensed phase systems.
The discrete Hamiltonian representing an impurity in a condensed phase environment is mapped onto a
continuous form using the MeyeMiller approach. The classical electronic relaxation rate is obtained within

the framework of the reactive flux formalism and is compared to the fully quantum mechanical result, and to
a mixed quantumclassical approximation. Similar to the case of vibrational relaxation, we find that the
fully classical treatment is closer to the fully quantum mechanical rate than the mixed queariassical
treatment. We provide a time domain analysis of the results.

. Introduction work,>19we have highlighted the problems associated with such
mixed treatment by considering an exactly solvable model
Hamiltonian. It was shown that for large energy gaps of the
impurity, that are typical for the electronic energy relaxation,
the rates obtained within the mixed quantuafassical treatment

can differ by several orders of magnitude from the exact

Nonradiative relaxation in condensed phases plays an im-
portant role in many processes of scientific and technological
interest, including the operation of lasers and chemical reactions
in solutions!™3 Radiationless decay is most conveniently
introduced by contrasting it_to radiative relaxation, where the quantum resultg10
system goes from the excited state to the ground state by . . o .
emitting a photon of the same energy as the gap between the The m'xed quantumcla§5|cql approximation was also dis-
two states involved in the transition. In radiationless relaxation, cysseq in the context of V|br?£|onal energy relaxaﬁb}’?,and
the excitation energy of the system is not transferred to the vibronic absorption spectfd:* For the vibrational energy

electromagnetic field, but instead is dissipated into other forms relaxgnon itwas f(_)und_ that in certain cases the mixed quantum
of motion, such as heat. Particular examples of nonradiative classical approximation can underestimate the vibrational

decay include electronic relaxation of ionic impurity centers in [ela:x?jt_lfc;n rate bybs?\xleral otrﬁer? of :nagrllt&%ﬂfolne ;mp_or- d
solids, vibrational relaxation of molecules in crystals and in "?‘S t'l eTence € :aent_ € trealments ol elec rtcr>]n|c ag |
solutions, intramolecular vibrational energy redistribution in vibrational energy relaxation processes concerns the mode

large polyatomic molecules, energy transfer processes, etc. |tHamiItonian fqr the solute itse.lf.lln the former.c.ase, due to.the
is often the case that the amount of energy transferred from thelarge electronic energy gaps, itis usually Sumc'?m to CO'.‘S'(.’er
impurity to the host exceeds by many times the typical energy ON!Y two states of the impurity (ground and excited), while in

associated with the thermal motion of the solvent. Clearly, in _the latter case th? who_le vibrational manifold can be involved
contrast to radiative decay, many quanta of bath excitations needn the process. Itis straightforward to formulate the problem of

to be created in this process, which is generally referred to asViPrational energy relaxatiorully classically provided one
multiphonon relaxation (MPR). calculates the overall energy relaxation rate for the whole

Most theoretical treatments of MPR are based on the time- ViPrational manifold of the solute, rather than state-to-state

dependent perturbation theory, where the relaxation rate istrans!tlon rates. In fact,_ it has bgen found that such a fully
expressed in terms of the appropriate time correlation function. classical tregtmqnt provides ponsstently more accurate rgsults
A fully quantum mechanical evaluation of this time correlation for overall wbrgtlonal re'axa“g” rates compared to the mixed
function is a daunting task that is achievable only for highly quantu.rwclassmal approacﬁ: i ) )
simplified models, such as the harmonic bath model. The latter !N Vview of the above finding, we became interested in
model would be appropriate for treating radiationless decay in performing a fully classical treatment of the electronic relaxation

a low-temperature solid, but is inadequate for problems involv- Problem. Since a typical model for the electronic relaxation
ing liquid hosts*~® Given the extreme difficulty of calculating ~ Involves two discrete solute electronic states (with two distinct

quantum time correlation functions in liquids, a common Solvent PES associated with them), it is more difficult to

approach is to obtain the relaxation rates from mixed quantum formulate a fully classical treatment of this model than in the
classical simulations, where the two discrete states of the vibrational relaxation case. One possibility is to employ the
impurity are treated quantum mechanically, while the solvent Method of Meyer and Millet>"*7 which provides a classical
degrees of freedom are treated classicafiyin our recent analogue for a system involving discrete quantum states. To
study the classical limit of the nonradiative electronic relaxation
T Permanent address: School of Chemistry, The Sackler Faculty of we will treat the eleqtromc degree_s of free_dom_ and the_bath
Science, Tel Aviv University, Tel Aviv 69978, Israel. degrees of freedom in the MeyeMiller Hamiltonian classi-

* Present address: Theoretical Chemistry Institute and Department of cally.

Chemistry, University of Wisconsin, Madison, WI 53706. . . . .
§ Permanent address: Department of Chemistry, University of Virginia, | N€ MOst convenient way to obtain the rate in this approach

McCormick Road, Charlottesville, VA 22901. is to use the reactiveflux method®-22which was generalized
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to the quantum mechanical case by Miller, Schwartz, and This form of diagonal coupling would arise when the two
Tromp2® This approach has recently been applied to the potential energy surfaces corresponding to the two electronic
unbiased spirrboson problem by Miller and coworket$25As states can be described by two multidimensional harmonic
will become clear in the next Section, our Hamiltonian is more surfaces with different equilibrium positions and different
general, but the model we employ is still exactly solvable frequencies with the additional possibility of mode mixing
guantum mechanically (within the lowest order perturbation between the two states. It reduces to the form used by Miller
theory), which will allow us to compare the fully quantum and and coworker¥2>when A is taken to be a linear function of
fully classical results for the electronic relaxation rates. Since the bath modes arif, is taken to be equal t&;. The procedure
the quantum mechanical rates are obtained within the lowestof obtaining the coupling constait, and g, was described
order perturbation theory while the fully classical rates are in our recent work.
obtained from the non-perturbative reactive flux approach, we For simplicity we limit the discussion here to the static-
limit the magnitude of the nonadiabatic coupling terms to the coupling (crude BorrOppenheimer) approach in which the off-
range where the Fermi golden rule is valid. diagonal coupling matrix elementgy; andVio, are taken to be
We consider two routes for computing the classical limit of real constants, i.e., they are independent of the bath degrees of
the electronic relaxation rates. In both cases the propagation offreedom? Vo; = V1o = V.. In our previous work we have also
all degrees of freedom is done classically. The two classical considered a more general form of the off-diagonal coupling
limits differ with respect to choice of the mapping of the matrix elements.
quantum mechanical operators that appear in the reactive flux As mentioned in the Introduction, we obtain the nonradiative
formalism. In the fully classical approximation we follow the relaxation rate using the reactive flux formali$fn?! The
quasi-classical mapping and sampling of initial conditibhs, quantum mechanical rate is given in terms of the time integral

while in the other approach we perform a WignsveylP27 over the symmetrized fluxflux correlation functiof®
transform of the relevant operators. In semiclassical language,

the latter approach is often referred to as the Wigner phase space Koy = 1 fmdt C®) (4)
methoc® or the linearized semiclassical initial value representa- 1 zJo f

tion (linearized SC-IVR or LSC-IVR}?

The organization of the paper is as follows: in Section Il we whereZ, is the partition function of the reactants, and the fiux
introduce our model Hamiltonian and provide a summary of flux correlation function is given by
the quantum mechanical reactive flux meti#édh Section IlI
we describe the mapping of the discrete model Hamiltonian onto Ci(t) =TrF ﬁF(t) (5)
the continuous MeyerMiller form.1%17 We also outline the
details of the implementation of the LSC-IVR and the fully | the aboveF; is the Boltzmannized flux operatq & 1/kgT
classical approximation to the reactive flux formalism. The s the inverse temperature)
results of our calculations using this formalism are given in

Section IV, where the classical electronic relaxation rates are E. = o PH2 pgpH2 6)
. : B

compared with the exact quantum rates. In Section V we

conclude.

and the symmetrized flux operatét, can be expressed in terms
of a commutator between the Hamiltonid#) @nd a projection

Il. Model Hamiltonian and Nonradiative Relaxation Rate
operator on the product®{ = |00|)%3

The model Hamiltonian used in this work is identical to the
one we used in our previous study of mixed quantutassical
approximations to nonadiabatic electronic relaxafiowe
consider an impurity embedded in a condensed phase environ-
ment, which we model as a harmonic bath. The impurity has  The fully quantum mechanical calculation of the fhufkux

F=1{HPJ = ;1| — Vloml) — (7)

two relevant quantum levels which we label|@8land |1Cifor time correlation function is not feasible for most many-body
the ground and excited states with energigs and E, systems. Recently, Miller and cowork&®2%3have introduced
respectively. The most convenient, yet completely general, form a semiclassical method based on a linear approximation to the
of the Hamiltonian is given By Van Vleck propagato#*3° In the following section we will

provide a brief description of their semiclassical method and
H=(H, + A+ Ey|0I0| + (H, + E)[1I| + V,|OT| + make the connection to our model.

V,o/100] (1) , L

[ll. The Classical Approximation
whereHy, is the bath Hamiltonian which we take to be a sum  A. Meyer—Miller Hamiltonian. To obtain a consistent
over harmonic mass-weighted normal mo@gswith frequen- classical description of the nonradiative relaxation rate we need
ciesw, and conjugate moment,: to represent the Hamiltonian in eq 1 with a set of continuous

degrees of freedom. One convenient approach to reduce the
1 5 P discrete representation of the Hamiltonian to a continuous one
H, = Ez(Pa T w, Q) ) is based on the early work of Meyer and Miller (sometimes
@ referred to as the MeyeiMiller Hamiltonian)®> Recently, Stock
and Thos¥ have shown that the MeyeMiller Hamiltonian
can be obtained by extending the formulation due to Schwinger.
In their derivation, the mapping relation between the basis set
1 and the harmonic oscillator creation and annihilation operators,
A=y 0g0,Qy + EZwi 02 + ZQW,Q(XQG, (3) En anda, with commutation relationsaf, al] = dnm, is given
o [ oo Yy

The diagonal coupling termj, is taken to be a quadratic
function of the bath degrees of freed¥ms?2
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In| — ala,, 8)

Using the identity|O00] + |11| = 1 along with the above
specified map (cf. eq 8), the Hamiltonian in the continuous
representation reads

H= angao + ElaIal +Hy+ Aagao + V01a$al + VloaIao
)

with Hp and A given by egs 2 and 3, respectively. Introducing
the position

G, == +a)

Sl

and momentum
Py =—=(al — a)
"V2
operators, the corresponding Hamiltonian takes the form
H = ho (P + 2—1)—17% (Pi+f—1)+H, +
= 4WWel P1 T qr 4 WWel Po T Ao b
1 1
EA(p(Z) + Q(Z) -+ E(Vm + V(0o + PoPy) (10)

wherehwe = E; — Ep, and we have set the zero of energy to
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W, 'P — -
Pe(QF) I]coshﬁhwa/Z)

2 tanhfhw,/2)
hw

2 2 ~2
P(1 w(lQ(l
—+

2

ex (14)

[08

In the other classical approach, the Wigngveyl form of
the operators is replaced with the purely classical form, and
the quantum mechanical partition functiah, needed to obtain
the electronic relaxation rate is also replaced with its classical
counterpart. The fluxflux correlation function is obtained in
a similar way to the LSC-IVR with

F*(0.p) = V(P10 — Polh) (15)
andpy, is replaced by the classical distribution function, i.e., by
taking the limith — 0 in eq 14.

One technical point we would like to make before we discuss
the results is related to the sampling of the initial distribution
of the electronic degrees of freedom. In the LSC-IVR, the
Wigner form of the Boltzmannized flux operator suggests a
Gaussian sampling of the electronic phase space variables,
according to eq 13, and each trajectory carries a weightopf
— pod1. On the other hand, the classical form of the flux operator
is given only in terms of the weightigo — pots. Thus, in the
fully classical approach we adopt the quasiclassical prescrip-
tion,’> where the population of the two staté, & (qF + p2 —

be halfway between the two states. The fully quantum mechan- 112 is sampled randomly in the intervat-@ such that the
ical dynamics generated by the Hamiltonian in eq 10 is exactly tota| population is unity, and the conjugate anglg= tan -

the same as those generated by the Hamiltonian in eq 1. Th

&pn/ay), is sampled randomly between the intervat®r. As

advantage of eq 10 is that it can be used as a starting point forpefore, each trajectory carries a weightpatio — pods.

a rigorous classical as well as semiclassical approximations.
B. Classical Nonradiative Relaxation RateWe discuss two

classical approximations to the electronic relaxation rates. The

first is based on a linearized approximation to the SC-IVR
propagatoi®43 introduced by Miller and coworkers, which
is referred to as the linearized SC-IVR approach (LSC-IVR).

In many ways this approach is identical to the Wigner phase

space method due to Hell&t is not a pure classical limit in

the sense that the relevant operators are replaced with th

corresponding WignetWeyl transformg82” However, both the

IV. Results

To demonstrate the limitations of the classical approximations
we consider a simple model studied by Stock and Thbasich
is the well known spir-boson modétf with only one vibrational
mode. Specifically, the model consists of two coupled electronic
states with a HamiltoniaRls, = (Q? + P2)/20 + (¢} + p2)/2 +

elPop1 + Goa)/5 + Q(ah + P — d; — p)/40. In Figure 1 we

show the time dependence of the ground state population. The

electronic and the bath degrees of freedom are propagatedull-blown SC-IVR for this model is in very good agreement

classically in this approach, i.egn(t), pn(t), Qu(t), and Pq(t)
are classical dynamic variables. The LSC-IVR fitflux
correlation function is given 13y

1

G = ( Zﬂh)f

[ dadpdQdPF,,(a,p.Q,P)F,,(a(®).p() (11)

whereq and p label the electronic phase space variabl@s,
and P label the bath phase space variables, aglthe total
number of degrees of freedom. We approxinfaién eq 6 by
Fs = Fe " which is equivalent to neglecting the diagonal
coupling termA, for the initial distributior?® an approximation
not always justified. The WignerWeyl form of F is then given

by
F5(a,p,Q.P) = F*(a,p)0;(Q,P) (12)
where
F*(q.p) = 16V (p,qp — poql)e—(q8+p8+q%+p%) (13)

and

with the fully quantum mechanical result (not showh)it
captures both the period of the oscillations as well as the
dephasing and rephasing of the ground state population. The
LSC-IVR and the classical approximation are in good agreement
with the SC-IVR for short times; however, they fail to capture
the rephasing of the ground state populafibithe LSC-IVR
does a somewhat better job compared to the classical ap-
proximation. We note that in the classical approximation shown,
we have used a Wigner form for the initial distribution, i.e.,
the electronic and nuclear degrees of freedom were sampled
from a Wigner distribution. However, the WigneWeyl
transform of the population operator was employed only for
the LSC-IVR approach and not for the classical approximation.
To be more specific, the classical ground state population was
given by

1
PclassicaI: E(q(z) + p(z) -1 (16)

and in the LSC-IVR the ground state population was given by

2 2 2, 2
Prsc_vr = 8(0% + P — 1/2)e PP (17)
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Figure 1. Plot of the time dependence of the ground state population
for a spin-boson model with only one vibrational mode. The solid, . . .

dashed, and dashed-dotted lines are the SC-IVR, LSC-IVR, and classical \l/%u(rltz viér Ela(:)ril:z|)oi_lr:I:fthféuggéiTcgfgﬁg?ggi%gﬂ)ﬁl?unp:)c(’;r gfntle_l)s\?e-rsus
approximations, respectively. The SC-IVR is in very good agreement _. . : /

with the fully quantum mechanical result (not shown). time. Note that as the electronic gap increases, the-fllux correlation

function become oscillatory, reflecting the recrossing of the dividing
surface.

w,t

The lesson to be learned from the above model is that the
LSC-IVR and the classical approximation are reliable only for 0.0
relatively short times, and they fail to capture the rephasing
phenomend® Moreover, the WignerWeyl transform of the
relevant operators improves the agreement at long times, but is
still not sufficient to capture the full SC-IVR rephasing. Thus, -10
the success of these classical approximations in condensed phase
systems depends mainly on the time scale of the decay of the
correlation function associated with the relevant observable. In _ _,4
the case that the correlation function decays on a short time %
scale, and rephasing is not important, they are expected to &
provide reasonable resuts?>Such a situation is likely to occur

in condensed phase problems. -3.0

In view of the above, we have performed a test of the classical — Quantum “ %
and LSC-IVR approaches for a non-trivial many-body problem B ";i‘s%(EWR *
defined by the Hamiltonian given in eq 10. The above model ~ _, /| % Classical R
is completely specified by the two spectral densitiégw) and
Ji(w)—corresponding to the ground and excited states of the ) ) : . ‘
impurity, respectively. The procedure for obtaining the co- 20 30 4.0 5.0 6.0 7.0 8.0
efficients 0, andgq in €q 3 from these spectral densities is O

outlined in ref 9. Since we are primarily interested in the Figure 3. Semilog plot of the electronic relaxation rate as a function
electronic nonradiative relaxation processes characterized byof the reduced electronic gap. The fully quantum mechanical (solid
|arge energy gapS, we assume that the dominant Contributionllne). and the mixed qu_antum:IaSSIcal (dashed I|ne) results were
to the relaxation rate comes from the high-frequency optical 2Ptained using the Fermi golden rule. The LSC-I\® @nd the fully
honons. In order to model the corresponding spectral densit classical §) results_ were obtained using the reactive ﬂl_Jx formalism.
P : . . i Y:The LSC-IVR provides the best overall agreement, but fails to reproduce
we have chosen a Gaussian form centerea,gtvith the width the oscillation (see the inset).
parametew and the normalization constahi® . . :
we have calculated the flixflux correlation function using the
LSC-IVR method and the classical approach, as discussed in
Jy () = __701 exp[—(w—wo'l 2/202] (18) the previous section. The results of our calculations are shown
0.1 N op . . . . .
(270*) in Figure 2 for three values of the dimensionless electronic

energy gamy, = welwqp. One sees that with increasing energy
where the labels 0 and 1 refer to the ground and excited stategap the flux-flux correlation function in both methods becomes
of the impurity, respectively. Since optical phonons are char- more oscillatory and is therefore likely to become less accurate.
acterized by a narrow dispersion, we have limited ourselves to Note also that for a given energy gap the oscillations are less

the Casea/cug’pl < 1 (from now on we employ atomic units), pronounced in the LSC-IVR result compared to the fully
which, in addition, allows us to avoid the nonphysical contribu- classical method.

tions arising from the tail of the Gaussian function extending  The results for the electronic relaxation rates are shown in
to negative frequencies. Specifically, we have chosen the Figure 3 on a semilog plot versus the dimensionless electronic

following values of the parameters: = O.l,wgp = 1.1,a)$ = energy gap. Also shown are the fully quantum mechanical and
1.0,40=0.05, andl; = 0.125. With the above spectral densities, mixed quantum-classical (the so called dynamic classical limit
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semiclassical approximation, which is known to deviate from
the exact quantum dynamics at long times.

V. Conclusions

Motivated by recent work on vibrational energy relaxation
in condensed phases, which has shown that a fully classical
treatment of the problem is superior to the mixed quantum
classical approach;'?2 we have performed a fully classical
calculation of the electronic energy relaxation rates. We have
employed the reactive flux formalism combined with the method
of mapping of discrete quantum degrees of freedom onto the
classical ones proposed two decades ago by Meyer and Miller
and recently modified by Stock and Thd$d/Ve have consid-
ered two implementations of the method: a fully classical
approximation and a linearized semiclassical initial value
representation, that involves a WignéWeyl transform of the
initial distribution and the flux operator.

In calculating the electronic relaxation rates for an impurity
coupled to a condensed phase environment, we have employed
a model studied previously by dswhere an impurity is
represented by a two-level system, and all the nuclear (bath)
degrees of freedom are treated in the harmonic approximation.
In the earlier study of this model, we have treated it both
(DCL) which was described in detail in ref 9) results, both quantum mechanically and in the mixed quanttrctassical
obtained within the low order perturbation the8r@ne sees approximation. The results of the present work have demon-
that for small electronic energy gaps the LSC-IVR approach strated that, similarly to the case of vibrational relaxation, a
does not capture the oscillations present in the quantum result fully classical treatment produces better agreement with the fully

In(P)

-3 L I
2000 3000

ot

0 1000 4000

Figure 4. Semilog plot of the time dependence of the excited state
population Pi(t) = Y»(c? + p? — 1)) for the classical approximation.
The LSC-IVR is identical to the classical result within the noise level
of the computation, and thus is not shown.

which is reminiscent of the static classical metod.hese
oscillations are absent even when the Wigréfeyl transform

of the flux operator is used (LSC-IVR). Thus, it is the classical
treatment of thelynamicsof the electronic degrees of freedom

guantum mechanical rates than the mixed quantalassical

approach. Furthermore, the rates obtained within LSC-IVR
method are closer to the exact quantum rates than the fully
classical results. However, the LSC-IVR approach requires

which fails to reproduce the resonanées. performing Wigner-Weyl transformations which are difficult

For large energy gaps, the performance of the classical!© Obtain for a general system, and even for the present
methods is better compared to the mixed quantetassical appllcatlon_several approximation were introduced. In addition,
approximation, similar to the situation for vibrational energy both chsswaI methods performed rather poorly for small
relaxationt12The LSC-IVR provides the best overall agreement electronic energy gaps, where they failed to reproduce the
among the approximations considered in this work. We would resonances present in the exact quant_um rates. .
like to emphasize that going from the classical to LSC-IVR In more general terms, one can mention the following feature
treatment involves the WigneiWeyl transform not only of the that ”.‘a"es a fully cIassu;aI approaqh more robust compared to
initial distribution, but also of the flux operators, and the the mlxeq quantumclasspal approximation. Namely, the time
transformation of the flux operator turns out to be important propagation of the_ cla§3|cal de_grees O.f freedom in the fully
for the calculation of the electronic relaxation rate. classical ?‘ppfoaCh Is unique, while the m|x_ed quaﬁ_mlassmal

i i i . propagation approach suffers from nonuniquefié&se., there

An alternative approach to obtain the electronic relaxation is freedom in the choice of the Hamiltonian used to propagate
rates is based on a nonequilibrium approach, where the systeMpne classical degrees of freedom in the mixed quantum classical
is mmateql in the excited state, and the rate is qbtalned from approach. This nonuniqueness can be actually turned into an
the long time decay of the excited state population. The fully advantage: one can improve the results of mixed quantum
quantum mechanical rate obtained using this approach shouldg|assical treatment by choosing the optimal propagation scheme.
be in agreement with the rate obtained via the fully quantum However, the criteria for choosing the optimal propagation
mechanical reactive flux formalism. The strength of the reactive scheme must be established for a general system where the bath
flux approach is that the rate is obtained from relatively short s not taken in the harmonic approximation.
time information, while the approach based on the time  Both the classical treatment and the mixed quantum classical
dependent population requires a consideration of much longergpproximation lend themselves to a systematic improvement,
times. As we have shown, the classical limit of the reactive that would involve going from classical to a full-blown
flux approach is a good approximation of the quantum result. semiclassical approximation for the degrees of freedom that were
It might be thought that one could equally well determine the treated classically. It seems to be imperative to use the fully
rate by using the MeyetMiller dynamics to generate the long  SC-IVR in order to reproduce the resonances mentioned earlier.
time decay of the population. Unfortunately, this is not the case, However, the latter approach is not yet practical for the many-
as is illustrated in Figure 4, where we show a semilog plot of body systentt47
the classical excited state population for an inverse temperature Finally, we can draw one more conclusion from the present
B = 2. From the long decay of the excited state population one study, namely, that it is always advantageous to employ the
would determine a rate constant much smaller than that found framework where the required time-correlation functions are
from the reactive flux approach. The reason for this is that the characterized by a fast decay. We have illustrated this point by
classical approach presented in this work was derived from a showing that the classical results obtained from the-fiflox
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correlation function were far superior to those obtained from
the analysis of the population decay.
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