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We present a study of the classical limit of nonradiative electronic relaxation in condensed phase systems.
The discrete Hamiltonian representing an impurity in a condensed phase environment is mapped onto a
continuous form using the Meyer-Miller approach. The classical electronic relaxation rate is obtained within
the framework of the reactive flux formalism and is compared to the fully quantum mechanical result, and to
a mixed quantum-classical approximation. Similar to the case of vibrational relaxation, we find that the
fully classical treatment is closer to the fully quantum mechanical rate than the mixed quantum-classical
treatment. We provide a time domain analysis of the results.

I. Introduction

Nonradiative relaxation in condensed phases plays an im-
portant role in many processes of scientific and technological
interest, including the operation of lasers and chemical reactions
in solutions.1-3 Radiationless decay is most conveniently
introduced by contrasting it to radiative relaxation, where the
system goes from the excited state to the ground state by
emitting a photon of the same energy as the gap between the
two states involved in the transition. In radiationless relaxation,
the excitation energy of the system is not transferred to the
electromagnetic field, but instead is dissipated into other forms
of motion, such as heat. Particular examples of nonradiative
decay include electronic relaxation of ionic impurity centers in
solids, vibrational relaxation of molecules in crystals and in
solutions, intramolecular vibrational energy redistribution in
large polyatomic molecules, energy transfer processes, etc. It
is often the case that the amount of energy transferred from the
impurity to the host exceeds by many times the typical energy
associated with the thermal motion of the solvent. Clearly, in
contrast to radiative decay, many quanta of bath excitations need
to be created in this process, which is generally referred to as
multiphonon relaxation (MPR).

Most theoretical treatments of MPR are based on the time-
dependent perturbation theory, where the relaxation rate is
expressed in terms of the appropriate time correlation function.
A fully quantum mechanical evaluation of this time correlation
function is a daunting task that is achievable only for highly
simplified models, such as the harmonic bath model. The latter
model would be appropriate for treating radiationless decay in
a low-temperature solid, but is inadequate for problems involv-
ing liquid hosts.4-6 Given the extreme difficulty of calculating
quantum time correlation functions in liquids, a common
approach is to obtain the relaxation rates from mixed quantum-
classical simulations, where the two discrete states of the
impurity are treated quantum mechanically, while the solvent
degrees of freedom are treated classically.7,8 In our recent

work,9,10we have highlighted the problems associated with such
mixed treatment by considering an exactly solvable model
Hamiltonian. It was shown that for large energy gaps of the
impurity, that are typical for the electronic energy relaxation,
the rates obtained within the mixed quantum-classical treatment
can differ by several orders of magnitude from the exact
quantum results.9,10

The mixed quantum-classical approximation was also dis-
cussed in the context of vibrational energy relaxation,11,12 and
vibronic absorption spectra.13,14 For the vibrational energy
relaxation it was found that in certain cases the mixed quantum-
classical approximation can underestimate the vibrational
relaxation rate by several orders of magnitude.11,12One impor-
tant difference between the treatments of electronic and
vibrational energy relaxation processes concerns the model
Hamiltonian for the solute itself. In the former case, due to the
large electronic energy gaps, it is usually sufficient to consider
only two states of the impurity (ground and excited), while in
the latter case the whole vibrational manifold can be involved
in the process. It is straightforward to formulate the problem of
vibrational energy relaxationfully classically, proVided one
calculates the overall energy relaxation rate for the whole
vibrational manifold of the solute, rather than state-to-state
transition rates. In fact, it has been found that such a fully
classical treatment provides consistently more accurate results
for overall vibrational relaxation rates compared to the mixed
quantum-classical approach.11,12

In view of the above finding, we became interested in
performing a fully classical treatment of the electronic relaxation
problem. Since a typical model for the electronic relaxation
involves two discrete solute electronic states (with two distinct
solvent PES associated with them), it is more difficult to
formulate a fully classical treatment of this model than in the
vibrational relaxation case. One possibility is to employ the
method of Meyer and Miller,15-17 which provides a classical
analogue for a system involving discrete quantum states. To
study the classical limit of the nonradiative electronic relaxation
we will treat the electronic degrees of freedom and the bath
degrees of freedom in the Meyer-Miller Hamiltonian classi-
cally.

The most convenient way to obtain the rate in this approach
is to use the reactive-flux method,18-22 which was generalized
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to the quantum mechanical case by Miller, Schwartz, and
Tromp.23 This approach has recently been applied to the
unbiased spin-boson problem by Miller and coworkers.24,25As
will become clear in the next Section, our Hamiltonian is more
general, but the model we employ is still exactly solvable
quantum mechanically (within the lowest order perturbation
theory), which will allow us to compare the fully quantum and
fully classical results for the electronic relaxation rates. Since
the quantum mechanical rates are obtained within the lowest
order perturbation theory while the fully classical rates are
obtained from the non-perturbative reactive flux approach, we
limit the magnitude of the nonadiabatic coupling terms to the
range where the Fermi golden rule is valid.

We consider two routes for computing the classical limit of
the electronic relaxation rates. In both cases the propagation of
all degrees of freedom is done classically. The two classical
limits differ with respect to choice of the mapping of the
quantum mechanical operators that appear in the reactive flux
formalism. In the fully classical approximation we follow the
quasi-classical mapping and sampling of initial conditions,15

while in the other approach we perform a Wigner-Weyl26,27

transform of the relevant operators. In semiclassical language,
the latter approach is often referred to as the Wigner phase space
method,28 or the linearized semiclassical initial value representa-
tion (linearized SC-IVR or LSC-IVR).29

The organization of the paper is as follows: in Section II we
introduce our model Hamiltonian and provide a summary of
the quantum mechanical reactive flux method.23 In Section III
we describe the mapping of the discrete model Hamiltonian onto
the continuous Meyer-Miller form.15,17 We also outline the
details of the implementation of the LSC-IVR and the fully
classical approximation to the reactive flux formalism. The
results of our calculations using this formalism are given in
Section IV, where the classical electronic relaxation rates are
compared with the exact quantum rates. In Section V we
conclude.

II. Model Hamiltonian and Nonradiative Relaxation Rate

The model Hamiltonian used in this work is identical to the
one we used in our previous study of mixed quantum-classical
approximations to nonadiabatic electronic relaxation.9 We
consider an impurity embedded in a condensed phase environ-
ment, which we model as a harmonic bath. The impurity has
two relevant quantum levels which we label as|0〉 and |1〉 for
the ground and excited states with energiesE0 and E1,
respectively. The most convenient, yet completely general, form
of the Hamiltonian is given by9

whereHb is the bath Hamiltonian which we take to be a sum
over harmonic mass-weighted normal modesQR with frequen-
ciesωR and conjugate momentaPR:

The diagonal coupling term,∆, is taken to be a quadratic
function of the bath degrees of freedom30-32

This form of diagonal coupling would arise when the two
potential energy surfaces corresponding to the two electronic
states can be described by two multidimensional harmonic
surfaces with different equilibrium positions and different
frequencies with the additional possibility of mode mixing
between the two states. It reduces to the form used by Miller
and coworkers24,25 when∆ is taken to be a linear function of
the bath modes andE0 is taken to be equal toE1. The procedure
of obtaining the coupling constantδR andgRR′ was described
in our recent work.9

For simplicity we limit the discussion here to the static-
coupling (crude Born-Oppenheimer) approach in which the off-
diagonal coupling matrix elements,V01 andV10, are taken to be
real constants, i.e., they are independent of the bath degrees of
freedom,9 V01 ) V10 ) Vc. In our previous work we have also
considered a more general form of the off-diagonal coupling
matrix elements.9

As mentioned in the Introduction, we obtain the nonradiative
relaxation rate using the reactive flux formalism.18-21 The
quantum mechanical rate is given in terms of the time integral
over the symmetrized flux-flux correlation function23

whereZr is the partition function of the reactants, and the flux-
flux correlation function is given by

In the above,Fâ is the Boltzmannized flux operator (â ) 1/kBT
is the inverse temperature)

and the symmetrized flux operator,F, can be expressed in terms
of a commutator between the Hamiltonian (H) and a projection
operator on the products (P0 ) |0〉〈0|)23

The fully quantum mechanical calculation of the flux-flux
time correlation function is not feasible for most many-body
systems. Recently, Miller and coworkers24,25,29,33have introduced
a semiclassical method based on a linear approximation to the
Van Vleck propagator.34,35 In the following section we will
provide a brief description of their semiclassical method and
make the connection to our model.

III. The Classical Approximation

A. Meyer-Miller Hamiltonian. To obtain a consistent
classical description of the nonradiative relaxation rate we need
to represent the Hamiltonian in eq 1 with a set of continuous
degrees of freedom. One convenient approach to reduce the
discrete representation of the Hamiltonian to a continuous one
is based on the early work of Meyer and Miller (sometimes
referred to as the Meyer-Miller Hamiltonian).15 Recently, Stock
and Thoss17 have shown that the Meyer-Miller Hamiltonian
can be obtained by extending the formulation due to Schwinger.
In their derivation, the mapping relation between the basis set
and the harmonic oscillator creation and annihilation operators,
an andam

† , with commutation relations [an, am
† ] ) δnm, is given

by

H ) (Hb + ∆ + E0)|0〉〈0| + (Hb + E1)|1〉〈1| + V01|0〉〈1| +
V10|1〉〈0| (1)

Hb )
1

2
∑

R
(PR

2 + ωR
2 QR

2) (2)

∆ ) ∑
R

ωR
2δRQR +

1

2
∑

R
ωR

2 δR
2 + ∑

RR′
gRR′QRQR′ (3)

k0r1 ) 1
Zr
∫0

∞
dt Cf(t) (4)

Cf(t) ) TrFâF(t) (5)

Fâ ) e-âH/2 Fe-âH/2 (6)

F ) i
p
[H,P0] ) i

p
(V10|1〉〈0| - V01|0〉〈1|) (7)
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Using the identity|0〉〈0| + |1〉〈1| ) 1 along with the above
specified map (cf. eq 8), the Hamiltonian in the continuous
representation reads

with Hb and∆ given by eqs 2 and 3, respectively. Introducing
the position

and momentum

operators, the corresponding Hamiltonian takes the form

wherepωel ) E1 - E0, and we have set the zero of energy to
be halfway between the two states. The fully quantum mechan-
ical dynamics generated by the Hamiltonian in eq 10 is exactly
the same as those generated by the Hamiltonian in eq 1. The
advantage of eq 10 is that it can be used as a starting point for
a rigorous classical as well as semiclassical approximations.

B. Classical Nonradiative Relaxation Rate.We discuss two
classical approximations to the electronic relaxation rates. The
first is based on a linearized approximation to the SC-IVR
propagator36-43 introduced by Miller and coworkers,29 which
is referred to as the linearized SC-IVR approach (LSC-IVR).
In many ways this approach is identical to the Wigner phase
space method due to Heller.28 It is not a pure classical limit in
the sense that the relevant operators are replaced with the
corresponding Wigner-Weyl transforms.26,27However, both the
electronic and the bath degrees of freedom are propagated
classically in this approach, i.e.,qn(t), pn(t), QR(t), and PR(t)
are classical dynamic variables. The LSC-IVR flux-flux
correlation function is given by29

whereq and p label the electronic phase space variables,Q
and P label the bath phase space variables, andf is the total
number of degrees of freedom. We approximateFâ in eq 6 by
Fâ ) Fe-âHb which is equivalent to neglecting the diagonal
coupling term,∆, for the initial distribution,25 an approximation
not always justified. The Wigner-Weyl form ofFâ is then given
by

where

and

In the other classical approach, the Wigner-Weyl form of
the operators is replaced with the purely classical form, and
the quantum mechanical partition function,Zr, needed to obtain
the electronic relaxation rate is also replaced with its classical
counterpart. The flux-flux correlation function is obtained in
a similar way to the LSC-IVR with

andFb
w is replaced by the classical distribution function, i.e., by

taking the limitp f 0 in eq 14.
One technical point we would like to make before we discuss

the results is related to the sampling of the initial distribution
of the electronic degrees of freedom. In the LSC-IVR, the
Wigner form of the Boltzmannized flux operator suggests a
Gaussian sampling of the electronic phase space variables,
according to eq 13, and each trajectory carries a weight ofp1q0

- p0q1. On the other hand, the classical form of the flux operator
is given only in terms of the weightp1q0 - p0q1. Thus, in the
fully classical approach we adopt the quasiclassical prescrip-
tion,15 where the population of the two states (Nn ) (qn

2 + pn
2 -

1)/2) is sampled randomly in the interval 0-1 such that the
total population is unity, and the conjugate angle,φn ) tan-1-
(pn/qn), is sampled randomly between the interval 0-2π. As
before, each trajectory carries a weight ofp1q0 - p0q1.

IV. Results

To demonstrate the limitations of the classical approximations
we consider a simple model studied by Stock and Thoss,17 which
is the well known spin-boson model44 with only one vibrational
mode. Specifically, the model consists of two coupled electronic
states with a HamiltonianHsb ) (Q2 + P2)/20 + (q1

2 + p1
2)/2 +

(p0p1 + q0q1)/5 + Q(q0
2 + p0

2 - q1
2 - p1

2)/40. In Figure 1 we
show the time dependence of the ground state population. The
full-blown SC-IVR for this model is in very good agreement
with the fully quantum mechanical result (not shown).17 It
captures both the period of the oscillations as well as the
dephasing and rephasing of the ground state population. The
LSC-IVR and the classical approximation are in good agreement
with the SC-IVR for short times; however, they fail to capture
the rephasing of the ground state population.17 The LSC-IVR
does a somewhat better job compared to the classical ap-
proximation. We note that in the classical approximation shown,
we have used a Wigner form for the initial distribution, i.e.,
the electronic and nuclear degrees of freedom were sampled
from a Wigner distribution. However, the Wigner-Weyl
transform of the population operator was employed only for
the LSC-IVR approach and not for the classical approximation.
To be more specific, the classical ground state population was
given by

and in the LSC-IVR the ground state population was given by

|n〉〈m| f an
†am (8)

H ) E0a0
†a0 + E1a1

†a1 + Hb + ∆a0
†a0 + V01a0

†a1 + V10a1
†a0

(9)

qn ) 1

x2
(an

† + an)

pn ) i

x2
(an

† - an)

H ) 1
4
pωel(p1

2 + q1
2 - 1) - 1

4
pωel(p0

2 + q0
2 - 1) + Hb +

1
2
∆(p0

2 + q0
2 - 1) + 1

2
(V01 + V10)(q0q1 + p0p1) (10)

Cf(t) ) 1

(2πp)f∫dqdpdQdPFwâ(q,p,Q,P)Fw(q(t),p(t)) (11)

Fâ
w(q,p,Q,P) ) Fw(q,p)Fâ

w(Q,P) (12)

Fw(q,p) ) 16Vc(p1q0 - p0q1)e
-(q0

0+p0
2+q1

2+p1
2) (13)

Fb
w(Q,P) ) ∏

R

1

cosh(âpωR/2)

exp{-
2 tanh(âpωR/2)

pωR
[PR

2

2
+

ωR
2 QR

2

2 ]} (14)

Fw(q,p) ) Vc(p1q0 - p0q1) (15)

Pclassical)
1
2
(q0

2 + p0
2 - 1) (16)

PLSC-IVR ) 8(q2
0 + p0

2 - 1/2)e
q2

0+p2
0+q2

1+p2
1 (17)
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The lesson to be learned from the above model is that the
LSC-IVR and the classical approximation are reliable only for
relatively short times, and they fail to capture the rephasing
phenomena.33 Moreover, the Wigner-Weyl transform of the
relevant operators improves the agreement at long times, but is
still not sufficient to capture the full SC-IVR rephasing. Thus,
the success of these classical approximations in condensed phase
systems depends mainly on the time scale of the decay of the
correlation function associated with the relevant observable. In
the case that the correlation function decays on a short time
scale, and rephasing is not important, they are expected to
provide reasonable results.24,25Such a situation is likely to occur
in condensed phase problems.

In view of the above, we have performed a test of the classical
and LSC-IVR approaches for a non-trivial many-body problem
defined by the Hamiltonian given in eq 10. The above model
is completely specified by the two spectral densitiessJ0(ω) and
J1(ω)scorresponding to the ground and excited states of the
impurity, respectively. The procedure for obtaining the co-
efficients δR and gRR′ in eq 3 from these spectral densities is
outlined in ref 9. Since we are primarily interested in the
electronic nonradiative relaxation processes characterized by
large energy gaps, we assume that the dominant contribution
to the relaxation rate comes from the high-frequency optical
phonons. In order to model the corresponding spectral density,
we have chosen a Gaussian form centered atωop with the width
parameterσ and the normalization constantλ30

where the labels 0 and 1 refer to the ground and excited state
of the impurity, respectively. Since optical phonons are char-
acterized by a narrow dispersion, we have limited ourselves to
the caseσ/ωop

0,1 , 1 (from now on we employ atomic units),
which, in addition, allows us to avoid the nonphysical contribu-
tions arising from the tail of the Gaussian function extending
to negative frequencies. Specifically, we have chosen the
following values of the parameters:σ ) 0.1,ωop

0 ) 1.1,ωop
1 )

1.0,λ0 ) 0.05, andλ1 ) 0.125. With the above spectral densities,

we have calculated the flux-flux correlation function using the
LSC-IVR method and the classical approach, as discussed in
the previous section. The results of our calculations are shown
in Figure 2 for three values of the dimensionless electronic
energy gapωel

/ ) ωel/ωop. One sees that with increasing energy
gap the flux-flux correlation function in both methods becomes
more oscillatory and is therefore likely to become less accurate.
Note also that for a given energy gap the oscillations are less
pronounced in the LSC-IVR result compared to the fully
classical method.

The results for the electronic relaxation rates are shown in
Figure 3 on a semilog plot versus the dimensionless electronic
energy gap. Also shown are the fully quantum mechanical and
mixed quantum-classical (the so called dynamic classical limit

Figure 1. Plot of the time dependence of the ground state population
for a spin-boson model with only one vibrational mode. The solid,
dashed, and dashed-dotted lines are the SC-IVR, LSC-IVR, and classical
approximations, respectively. The SC-IVR is in very good agreement
with the fully quantum mechanical result (not shown).

J0,1(ω) )
λ0,1

(2πσ2)1/2
exp[-(ω-ωop

0,1)2/2σ2] (18)

Figure 2. Plots of the flux-flux correlation function for the LSC-
IVR (lower panel) and the classical approximation (upper panel) versus
time. Note that as the electronic gap increases, the flux-flux correlation
function become oscillatory, reflecting the recrossing of the dividing
surface.

Figure 3. Semilog plot of the electronic relaxation rate as a function
of the reduced electronic gap. The fully quantum mechanical (solid
line) and the mixed quantum-classical (dashed line) results were
obtained using the Fermi golden rule. The LSC-IVR (b) and the fully
classical (/) results were obtained using the reactive flux formalism.
The LSC-IVR provides the best overall agreement, but fails to reproduce
the oscillation (see the inset).
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(DCL) which was described in detail in ref 9) results, both
obtained within the low order perturbation theory.9 One sees
that for small electronic energy gaps the LSC-IVR approach
does not capture the oscillations present in the quantum result,
which is reminiscent of the static classical method.45 These
oscillations are absent even when the Wigner-Weyl transform
of the flux operator is used (LSC-IVR). Thus, it is the classical
treatment of thedynamicsof the electronic degrees of freedom
which fails to reproduce the resonances.33

For large energy gaps, the performance of the classical
methods is better compared to the mixed quantum-classical
approximation, similar to the situation for vibrational energy
relaxation.11,12The LSC-IVR provides the best overall agreement
among the approximations considered in this work. We would
like to emphasize that going from the classical to LSC-IVR
treatment involves the Wigner-Weyl transform not only of the
initial distribution, but also of the flux operators, and the
transformation of the flux operator turns out to be important
for the calculation of the electronic relaxation rate.

An alternative approach to obtain the electronic relaxation
rates is based on a nonequilibrium approach, where the system
is initiated in the excited state, and the rate is obtained from
the long time decay of the excited state population. The fully
quantum mechanical rate obtained using this approach should
be in agreement with the rate obtained via the fully quantum
mechanical reactive flux formalism. The strength of the reactive
flux approach is that the rate is obtained from relatively short
time information, while the approach based on the time
dependent population requires a consideration of much longer
times. As we have shown, the classical limit of the reactive
flux approach is a good approximation of the quantum result.
It might be thought that one could equally well determine the
rate by using the Meyer-Miller dynamics to generate the long
time decay of the population. Unfortunately, this is not the case,
as is illustrated in Figure 4, where we show a semilog plot of
the classical excited state population for an inverse temperature
â ) 2. From the long decay of the excited state population one
would determine a rate constant much smaller than that found
from the reactive flux approach. The reason for this is that the
classical approach presented in this work was derived from a

semiclassical approximation, which is known to deviate from
the exact quantum dynamics at long times.

V. Conclusions

Motivated by recent work on vibrational energy relaxation
in condensed phases, which has shown that a fully classical
treatment of the problem is superior to the mixed quantum-
classical approach,11,12 we have performed a fully classical
calculation of the electronic energy relaxation rates. We have
employed the reactive flux formalism combined with the method
of mapping of discrete quantum degrees of freedom onto the
classical ones proposed two decades ago by Meyer and Miller15

and recently modified by Stock and Thoss.17 We have consid-
ered two implementations of the method: a fully classical
approximation and a linearized semiclassical initial value
representation, that involves a Wigner-Weyl transform of the
initial distribution and the flux operator.

In calculating the electronic relaxation rates for an impurity
coupled to a condensed phase environment, we have employed
a model studied previously by us,9 where an impurity is
represented by a two-level system, and all the nuclear (bath)
degrees of freedom are treated in the harmonic approximation.
In the earlier study of this model, we have treated it both
quantum mechanically and in the mixed quantum-classical
approximation. The results of the present work have demon-
strated that, similarly to the case of vibrational relaxation, a
fully classical treatment produces better agreement with the fully
quantum mechanical rates than the mixed quantum-classical
approach. Furthermore, the rates obtained within LSC-IVR
method are closer to the exact quantum rates than the fully
classical results. However, the LSC-IVR approach requires
performing Wigner-Weyl transformations which are difficult
to obtain for a general system, and even for the present
application several approximation were introduced. In addition,
both classical methods performed rather poorly for small
electronic energy gaps, where they failed to reproduce the
resonances present in the exact quantum rates.

In more general terms, one can mention the following feature
that makes a fully classical approach more robust compared to
the mixed quantum-classical approximation. Namely, the time
propagation of the classical degrees of freedom in the fully
classical approach is unique, while the mixed quantum-classical
propagation approach suffers from nonuniqueness,9,10 i.e., there
is freedom in the choice of the Hamiltonian used to propagate
the classical degrees of freedom in the mixed quantum classical
approach. This nonuniqueness can be actually turned into an
advantage: one can improve the results of mixed quantum-
classical treatment by choosing the optimal propagation scheme.
However, the criteria for choosing the optimal propagation
scheme must be established for a general system where the bath
is not taken in the harmonic approximation.

Both the classical treatment and the mixed quantum classical
approximation lend themselves to a systematic improvement,
that would involve going from classical to a full-blown
semiclassical approximation for the degrees of freedom that were
treated classically. It seems to be imperative to use the fully
SC-IVR in order to reproduce the resonances mentioned earlier.
However, the latter approach is not yet practical for the many-
body system.46,47

Finally, we can draw one more conclusion from the present
study, namely, that it is always advantageous to employ the
framework where the required time-correlation functions are
characterized by a fast decay. We have illustrated this point by
showing that the classical results obtained from the flux-flux

Figure 4. Semilog plot of the time dependence of the excited state
population (P1(t) ) 1/2(q1

2 + p1
2 - 1)) for the classical approximation.

The LSC-IVR is identical to the classical result within the noise level
of the computation, and thus is not shown.
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correlation function were far superior to those obtained from
the analysis of the population decay.
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