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A renormalization approach is introduced in quantum thermal annealing. This new global optimization algorithm
(QTAR) is applied to a highly frustrated BLN model protein with 46 residues. The underlying quantum
sampling algorithms utilized are primitive and staging path integral Monte Carlo. The current method enables
us to achieve significant improvement in the success rate for locating the global minimum of this protein,
while using much less computational effort, compared to previous schemes used. Further applications and
possible enhancements of the algorithm are also discussed.

I. Introduction

In many fields of science and technology, global optimization
represents an important yet often very difficult challenge. This
is especially true of the so-called NP-complete problems, where
the number of local minima for the underlying system increases
exponentially with its size. The protein folding and traveling
salesman problems are well-known examples of such cases. It
is impossible to exhaustively search for the global minimum of
these systems once they reach a large enough size. Instead, one
has to rely on existing optimization methods and hope that they
will be able to sample these huge search spaces efficiently and
reliably.

Many good optimization methods exist, for example the
widely used simulated annealing algorithm,1 pure quantum
annealing methods,2-5 quantum thermal annealing,6,7 (a super-
set of the aforementioned methods), various potential smooth-
ing8,9 and classical density annealing10-14 techniques, Monte
Carlo minimization,15,16multicanonical algorithms,17-19 dimen-
sional strategies,20-24 and others. However, the presence of a
multitude of energy scales on the energy landscapes of certain
classes of systems might present difficulties for some optimiza-
tion algorithms in a practical sense. A search method might get
stuck in a metastable energy basin and subsequently be unable
to overcome energy barriers to explore other parts of the energy
landscape. An even more dire scenario is the presence of a huge
number of similar local minima which have energy values very
similar to that of the global minimum but are separated by
energy barriers of disparate scales. Most optimization algorithms
would have difficulty picking out the correct global minimum
readily out of the many comparable local minima in these so-
called frustrated systems. In this paper, we investigate the use
of a new algorithm, quantum thermal annealing with renormal-
ization (QTAR), to effectively overcome the aforementioned
issues in global optimization.

It has been shown computationally that quantization of a
system moving on a rough energy landscape softens the
potential, thereby hastening convergence to the global minimum
in quantum annealing.6 In fact, quantum annealing has been

achieved experimentally and it proves to be much more efficient
than classical thermal annealing in the determination of the
ground state of a disordered magnet.25 However, to be an
effective computational tool, one needs to address the overhead
associated with the additional degrees of freedom that are
introduced when a classical system is quantized. This is
especially apparent in quantum thermal annealing with a path
integral Monte Carlo approach. In this study, we discuss how
one can systematically reduce the number of degrees of freedom
(and hence the computational cost) as one anneals the system
from the quantum regime back to the classical realm, through
the use of arenormalizationapproach. In addition to cost saving,
this approach also allows the isomorphic classical system to
sample a hierarchy of energy and length scales during the search
for its global minimum. The particle-based character of the path
integral Monte Carlo method makes renormalization a natural
addition to our quantum thermal annealing scheme. The current
QTAR method contrasts with our previous QTA schedule,6

where we annealed the system quantum mechanically by
decreasing the value ofp within a quantum-to-classical cycle.
In the present implementation, we anneal the system by
decimatingP, the number of Trotter time slices as well. This
leads to an efficient systematic reduction in the number of
degrees of freedom.

The 46-residue BLN model protein of Honeycutt and Thiru-
malai26,27 is an interesting and challenging case for global
optimization methods. It has been shown through thermodynam-
ics and kinetics28 that this 46-mer is a highly frustrated system.
This fact is confirmed by further studies of its potential energy
surface (PES) through the use of disconnectivity graph analysis
and examination of pathways on the energy landscape.29 Both
studies show that there is no single dominant funnel on the PES
that would lead the 46-mer to its global minimum consistently.
In fact, the PES is a very rugged, “glassy” one which is made
up of many minima with energies close to that of the global
minimum. These minima are separated by a diverse range of
energy barriers, which makes the global minimum particularly
difficult to locate. Structurally, this corresponds to having many
generalâ-barrel-like low energy structures, out of which only
one is the true global minimum (strictly speaking there are two
degenerate global minima here because the Hamiltonian of the
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BLN model is invariant under inversionr i f -r i). The ability
for any one of these structures to transform to another is greatly
hindered by the need for cooperative and collective rearrange-
ments of the residues.

In this paper, we shall be investigating the frustrated BLN
46-mer. Previous studies6,19have shown that a standard method
like simulated annealing (SA) is very ineffective in dealing with
such a system. Its success rates in locating the correct lowest
energy structure of the protein are discouragingly small even
though long simulation times are used. In the following, we
present the QTAR algorithm, and apply it to the BLN protein.
Simulation studies with this new method show that it is able to
efficiently and very reliably locate the global minimum of this
highly frustrated system.

II. Method

In Feynman’s path integral formulation of quantum statistical
mechanics,30 the quantum canonical partition function is written
in terms of a path integral. For the formalism to be computa-
tionally useful, one could discretize the path integral in various
ways.31,32 Two such discrete expressions are results of the
primitive approximation33,34and staging transformation.35,36The
partition function with the primitive Hamiltonian for a system
of sizeN in three dimensions is

where P, the Trotter number, is an integer that denotes the
number of “time” slices used in the discretization, andωP ≡
(âp)-1xP. Accurate treatment of a highly quantum system
requires a large value forP, while a purely classical system
hasP ) 1. Hence,P is a measure of the “quantumness” of a
system. In the above equation,r i,t is the 3-vector position of
the i-th particle in thet-th time slice, andVcl({r i};t) represents
the total classical potential energy evaluated at time slicet. For
a strongly quantum system whereP is large, one could sample
its equilibrium properties more efficiently with the staging
Hamiltonian. The corresponding partition function36 is

with nj ) P, wheren and j are the number of end-point and
staging Trotter beads, respectively. The staging coordinates are
ui,t, with mk ) mk/(k - 1), andωj ≡ (âp)-1xP/j.

For the present scheme, quantum thermal annealing is
achieved by methodically reducing bothP and p. In each
quantum-to-classical cycle, we wish to systematically remove
half of the total number of Trotter time slices of the primitive
and/or staging Hamiltonians in stages until we reachP ) 1
(classical regime):

whereP0 ) 2R (R g 1) is the initial number of Trotter time
slices used. The reduction inP is accomplished through the
use of a renormalization approach for both Hamiltonians.
Between renormalizations, in eachP stage where the number
of Trotter beads is held constant, the system is allowed to
explore configuration space via PIMC moves. Different types
of renormalization schemes are possible. The one used here is
that due to Migdal and Kadanoff (MK).37-39 We choose the
MK approach because it provides a simple way to incorporate
renormalization in QTAR. First, MK bond moving operations
are performed whereby all bonds representingVcl({r i}; t) with
odd-numbered Trotter time slices are moved to theiradjacent
even-numbered sites (the designation of odd and even is
arbitrary). Consequently, instead of havingVcl({r i}; t ) a + 1)
at a particular time slicet ) a + 1 (which is even), we now
have 2 sets of bondsVcl({r i}; t ) a + 1) + Vcl({r i}; t ) a) at
t ) a + 1. Unlike lattice systems (e.g., the Ising model) for
which the MK transformation was originally used, the BLN 46-
mer (and other chemical and biological molecules of interest
here) is off-lattice. For such systems, the bond-moving opera-
tions do not in general result in bonds that fall exactly on top
of their targets. However, since the configurations corresponding
to time slicest ) a + 1 andt ) a are adjacent, they are expected
to be quite similar to each other in terms of configuration and
thus energy. As a result, we take

If more than one set of bonds (sayp of them) are moved
instead of just the nearest-neighbor set, we expect the ap-
proximation above to be less valid because it is not likely that
all p adjacent configurations would be similar to one another.
In this case, one might consider using other renormalization
schemes such as those that involve potential averaging. How-
ever, that would add additional computational costs to the
scheme. Hence, the MK approach serves us better for quantum
thermal annealing purposes. Upon performing the MK bond-
moving operations, all the odd-numbered Trotter beads are now
free from the external potentialVcl({r i}; t). These odd-numbered
Trotter beads can now be integrated (decimated) out. The end
result is rather simple. For the primitive Hamiltonian, the
functional form remains the same as in eq 1, but withP replaced
by P′ ) P/2. The MK renormalization of the staging Hamil-
tonian,7 while more involved, gives an analogous result. Its
functional form is also conserved as in eq 2, but withP replaced
by P′ ) P/2, n by n′, andj by j′, with the condition thatn′j′ )
P′. Hence, upon renormalization, we have half as many degrees
of freedom as before in both the primitive and staging
Hamiltonians. This process could then be repeated until the
classical regime (P ) 1) is reached, as in eq 3.

In addition toP, the other parameter that controls the degree
of “quantumness” of the system isp ) h/2π, whereh is Planck’s
constant. For quantum annealing purposes,p is used as an
adjustableparameter. By suitably controlling this parameter,
or more generally, the force constantkP ≡ mωP

2, we could
adjust how free or bounded each Trotter bead is with respect to

QP
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their neighbors in the same quantum polymer chain. This allows
us to control the size of the quantum clouds during annealing.

III. Implementation

Writing eqs 1 and 2 in the form of a classical configurational
integral,

one can extract the following effective potentials

and

Equations 6 and 7 are associated with the primitive and staging
Hamiltonians, respectively. Sampling these effective potentials
with the Monte Carlo algorithm constitutes the path integral
Monte Carlo approach. In general, one samplesΦprim usinglocal
andglobal MC moves andΦstag with stagingMC moves. For
each local move, a single Trotter bead on each residue is
displaced randomly within a cube of width∆local and the
Metropolis criterion is then used to determine the acceptance
or rejection of this trial move. Similarly, a global and staging
move is made up of trial displacements of the entire Trotter
chain of P beads and a partial chain segment ofj beads of a
residue, respectively.6,36 In the series of equations above, we
have introduced two differentâ’s, specificallyât andâq. The
former is the true inverse thermal temperature, while the latter
is a factor in the quantum annealing parametersωP(âq) and
ωj(âq). This differentiation allows one to perform either quantum
or thermal annealing individually or both types of annealing
concurrently. In what follows, we define one Monte Carlo sweep
(MCS) to be the attempted displacements ofN particles, where
N is the system size. The attempted moves of allN × P Trotter
beads once is called a PIMC pass. There is a slight overhead
associated with the calculation of the harmonic potential when
making local moves with the primitive Hamiltonian or doing
the coordinate transformation in staging PIMC. However, this
is not significant compared to the dominant calculational
demands of the nonbonded interaction potentials which scale
asN2. The actual CPU overhead required will be presented later
in the paper. Therefore, one PIMC pass of either local, global,
or staging moves involves approximatelyP MC sweeps.

A brief description of the algorithm follows (details of the
implementation will be given later):

1. Generate an initial random configuration for the system.
2. Set the initial value of the Trotter numberP to P0, kP to

kP0, and the thermal temperatureT to T0. Quantize the classical
configuration by going to step 3.

3. Performnstagingstaging PIMC passes with eq 7. IfP gets
relatively smaller (typicallye64 here), performnlocal local and
nglobal global PIMC passes with eq 6 instead. After each PIMC
pass,T is reduced linearly by∆T andkP is increased linearly
by ∆kP.

4. ReduceP to P′ ) P/2 through renormalization. The number
of PIMC passes for this newP′-stage is doubled so that the
total number of MC sweeps used in eachP-stage remains
constant. Go back to step 3. This process is repeated untilP )
1, when anintermediateclassical configuration is obtained.

5. Terminate if the stop criterion is met. If not, repeat the
quantum thermal annealing process with the intermediate
classical configuration by going to step 2.

Steps 2-4 make up a QTARcycle. A graphical depiction of
the above algorithm is given in Figure 1.

The 46-residue BLN model protein studied here has the
sequence B9N3(LB)4N3B9N3(LB)5L, where the letter codes B,
L, and N represent hydrophobic, hydrophilic and neutral
residues, respectively. The potential energy of the BLN system
is given by

where

In eq 8 above,N is the number of residues andrij ) |r i - r j|.
All physical quantities are in reduced units. In our simulations,
the mass of each residuem, the bond lengtha, the energy
constantε, the Lennard-Jones parameterσ, and the Boltzmann
constantkB are set to unity. The other constants arekr ) 400ε/
a2, kθ ) 20ε/(rad)2, and θ0 ) 1.8326 rad. For the dihedral-
angle potential term, if two or more of the four defining residues
of φi are neutral (N), thenAi ) 0ε, Bi ) 0.2ε, otherwiseAi )
Bi ) 1.2ε. Following previous studies,6,13we also utilize a weak
boundary potentialVbp({r i}) ) ∑i)1

N (kb/2)|r i - r com|2 to pre-
vent the protein from dissociation and also to encourage folding.
r com is the center of mass of the protein chain andkb is reduced
from 0.05 to 0.005 in each QTAR cycle.

IV. Results

We conduct 20 simulation trials for QTAR. Each run starts
with a random extended protein configuration as in ref 6. Every
residue of the starting configuration of the 46-mer is endowed
with P0 ) 256 Trotter beads. The system is then “quantized”
through the use of staging moves, which are more efficient than
either local or global moves for largeP. The number of staging
passes used isnstaging ) 15. At the end of these moves,
renormalization of Trotter time slices is carried out to leave us
with P ) 128. The number of staging passes is now doubled to
30 such that the total number of MC sweeps used in eachP
stage remains constant. ForP ) 256, staging moves of length
j ) 24 are used, and the Gaussian widths of such moves are
approximately 0.12. ForP ) 128, we usej ) 8, and the widths
of staging moves are 0.08. That the use of a largeP0 together
with the staging Hamiltonian are effective for “quantization”
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is evident in the rapid rise in the average size of the quantum
clouds at the beginning of each QTAR cycle, as shown in Figure
2. For P e 64, local and global moves with the primitive
Hamiltonian are used instead of staging moves. At theseP
values,j drops too low if a reasonable acceptance ratio is to be
maintained for the set of simulation parameters used here. This
is not unexpected since the staging algorithm has been designed
for strongly quantum systems whereP is huge, typically in the

hundreds or more. Hence, it is very useful at the beginning of
a QTAR cycle. The number of MC sweeps for these local and
global moves in eachP stage is also kept constant by doubling
nlocal andnglobal every timeP is halved. For these moves,kP0 )
0.24 andkPf ) 1.0. The thermal temperature is annealed linearly
from T0 ) 0.2 toTf ) 0.02 in each QTAR cycle. PIMC moves
and renormalization are thus carried out repeatedly in the
aforementioned manner until we reachP ) 1, where the
quantum cloud of each residue would collapse back to a point,
signified by rsize ) 0 in Figure 2. The intermediate classical
configuration so obtained is subjected to a conjugate gradient
refinement of its energy. The above completes one QTAR cycle.
This whole process is iterated until the currently known global
minimum of the 46-mer is located, which is the stop criterion
for the QTAR schedule here. Figure 3 plots the potential energy
attained at the end of each QTAR cycle versus MC sweeps for
a typical run. Finally, we note that 10 QTAR cycles are used
during each trial for equilibration purposes whereby the number
of staging beads{j}Pi, the set of maximum displacements at
different values ofP for local moves {∆local}Pi, and the
corresponding displacements for global moves{∆global}Pi, are
adjusted such that the acceptance ratio for each type of move
is kept approximately constant at 40%.

The results of the simulation runs are presented in Figure 4.
Alongside these, we place corresponding data obtained with SA
from ref 6. In Figure 4a, we see that QTAR is able to locate
the global minimum of the 46-mer with a perfect success rate
of 100%, versus 9% for SA. How much computational effort
is used to obtain either set of results? For SA, 32× 106 MC
sweeps are used per simulation trial. For QTAR, the average
number of MC sweeps utilized in each run is 3.8× 106. This
is shown in Figure 4b. However, 1 MC sweep for QTAR costs

Figure 1. The QTAR (quantum thermal annealing with renormalization) algorithm illustrated schematically with a single classical particle. The
classical particle is repeatedly quantized and annealed back to the classical regime using PIMC moves and the Migdal-Kadanoff renormalization
operationR. At the end of the quantum thermal annealing cycles, the global minimum of the classical system would be obtained. Note that for
illustration purposes,P0 is set to 8 in this diagram. The actualP0 used in our simulations is 256.

Figure 2. A snapshot of the root-mean-square size (rsize) of the classical
ring polymers representing the quantum clouds of the residues versus
MC sweeps, for 7 QTAR cycles. The use of a relatively large number
of Trotter beads (P0 ) 256) at the beginning of each cycle enables the
system to be “quantized” efficiently and facilitates strong tunneling
events, resulting in better searches on the PES.
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approximately 13% more CPU time than that for SA, due to
the extra overhead associated with using PIMC over regular
MC mentioned earlier. Consequently, the amount of computa-
tional effort used for QTAR is 7.5 times less than that of SA,
yet its success rate is 11.1 times higher than the latter.

As a further test, we conduct sets of 20 SA runs using 4.3×
106 MC sweeps per run. If one takes into account the 13% CPU
overhead associated with utilizing PIMC over regular MC, each
set of 20 SA runs takes the same amount of CPU time as a set
of 20 QTAR runs which uses an average of 3.8× 106 MC
sweeps per run. We perform 3 different sets of such 20 SA
trials, each with a different linear annealing schedule. Here, we
denote the number of temperature annealing steps asndT and
the number of MC sweeps used at each temperature asnT, such
that the total number of MC sweeps used in each SA run isndT

× nT. The 3 SA schedules havendT × nT ) 215× 20000, 2150
× 2000, and 21500× 200. They are labeled as SA1, SA2 and
SA3, respectively, in Figure 5a, and SA(avg) represents the
averaged results of SA1 to SA3. From the figure, it is clear

that none of these SA schedules is able to locate the global
minimum of the 46-mer even once. In fact, SA is prone to
getting stuck at metastable states with higher energies. This is
evident from the large spread in the spectrum of lowest energy
attained, as shown in Figure 5b. Another significant aspect of
the aforementioned figure is the collection of local minima
which have energies very close to that of the global minimum.
This is a clear indication of the frustrated nature of the 46-mer.
On the other hand, with the same computational effort, QTAR
is able to achieve 100% success rate in locating the global
minimum of this highly frustrated protein.

The present QTAR algorithm also represents an improvement
over the previous QTA scheme.6 For example, in QTA, the
global minimum was found 60% of the time out of a series of
20 simulation runs each utilizing 32× 106 MC sweeps, whereas
in QTAR, the global minimum is found 100% of the time using
an average of 3.8× 106 MC sweeps per trial over 20 trials.
Thus, QTAR is at least 8 times more efficient than QTA. While
the present results are very encouraging, it is not inconceivable
that other QTAR schedules, together with systematic parameter
optimization, might improve the results even further.

V. Discussion

For an unbiased global optimization algorithm to be success-
ful, it has to take into account at least the following: (a) the
size of the search space, (b) the ability to overcome potential
barriers, (c) the ability to explore the search space in an effective
and efficient manner. Although the configurational space for
QTAR is of a higher dimension than the underlying classical
system, simple arithmetic and simulation results show that the

Figure 3. Potential energy of the BLN 46-mer versus MC sweeps.
Each circle represents an intermediate classical configuration obtained
at the end of a QTAR cycle.

Figure 4. The results of global optimization of the 46-residue BLN
protein with the QTAR algorithm, in comparison to those obtained with
SA (simulated annealing). Results for QTAR are averaged over 20 trials,
those for SA are from ref 6. (a) The success rates for locating the global
minimum of the BLN 46-mer with QTAR and SA. (b) The average
number of MC sweeps used to find the global minimum over 20 QTAR
trials. For SA, the total number of MC sweeps used in each trial is
shown.

Figure 5. (a) The success rates of locating the global minimum of the
46-residue BLN protein with QTAR and SA. Each bar represents 20
independent simulation runs done using the same total amount of CPU
time. SA(avg) is the average of SA1 to SA3. None of the SA schedules
is able to locate the global minimum even once, while QTAR is able
to achieve 100% success rate. (b) The corresponding minimum energies
attained with the fore-mentioned QTAR and SA schedules. The dotted
line represents the global minimum energy of the BLN 46-mer.
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use of renormalization overcomes the computational cost of the
increased dimensionality effectively. One could also view the
renormalization process as a systematic way for performing
dimensional annealing. In fact, it has been shown that dimen-
sional strategies do very well in optimization problems.20-24

QTAR finds its power in its ability to utilize both quantum and
thermal effects in overcoming energy barriers efficiently on the
PES. With the use of suitable parameters, there would be no
barriers on the PES that the system could not overcome
thermally and/or tunnel through quantum mechanically. In
addition, QTAR is capable of generating higher dimensional
collectiVe moves (i.e., global and staging moves that displace
whole and partial segments of quantum chains, respectively).
This serves the need for collective rearrangements of protein
configurations mentioned at the beginning of this article, albeit
at higher dimensions. Hence, the QTAR algorithm is able to
address all three criteria (a)-(c) mentioned above. Furthermore,
it is possible to incorporate future improvements in any of the
three categories. The current method is completely unbiased.
However, for a general optimization problem, one would also
want to make use of any physical insights into the problem, if
available, by including system-specific techniques and heuristics.
This would also help further increase the effectiveness of the
algorithm.

VI. Conclusion

The present study demonstrates that QTAR consistently and
efficiently locates the global minimum of a highly frustrated
system, a BLN model protein with 46 residues, in completely
unbiased fashion. A perfect success rate of 100% is attained
with this new global optimization algorithm. This is achieved
using significantly less computational effort than previous
methods, including thermal annealing which is very ineffective
for this system. In the future, we plan to test the QTAR
algorithm on more realistic protein models, as well as other
physical, chemical, biological or even abstract computational
systems.
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