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A detailed study of mixed quantum-classical approximations for radiative and nonradiative processes in
condensed phase systems is presented and each approximation is compared to exact fully guantum mechanical
dynamics. The problems are formulated in terms of a quantum mechanical time correlation function, and the
corresponding mixed quantum-classical descriptions are obtained following the general methodology of
Wigner—Kirkwood based on the expansion in powers of Planck’s constant. Illustrative examples of the
performance and applicability of mixed quantum-classical treatments include vibrational and electronic energy
relaxation processes, and the calculation of vibronic absorption spectrum.

I. Introduction the mean field approach based on the Ehrenfest tamkl the
Preston-Tully surface hopping methdd.

The Ehrenfest approach led to the development of the most
widely used mixed quantum-classical method which is a
classical version of the fully quantum time dependent self-
consistent field (TDSCF) methdd!® The main limitation of
this approach is that the classical trajectories evolve on a mean
potential energy surface (PES), and there are certain physical
extremely complicated due to the well-known phase cancella- ;ityations where such a single cor}figuration .TDSCF a.pproa}ch
tions (the sign problem). At the present time, one of the viable is |nadeq_uate. The_ abqve shortcoming of thg single configuration

' ’ TDSCF is remedied in the surface hopping apprdaéhz®

alternatives to the exact quantum mechanical solution is the USe, pich originated in the pioneering work of Preston and Télly,

8]: m'xﬁd ‘9uu?rf?urrr;’?lriisollzzl itsret?ézteegts’uvggtelj; ?nZTﬁgn?g;Hsetand it is the classical analogue of a multiconfiguration gener-
gny a q Y alization of the TDSCR? Tully uses the word “analogu®

while the remaining degrees of freedom are treated ClaSSica”y‘because surface hopping is not a rigorous classical limit. In

The major ISsue in these mixed approaches IS self-consstentrecent years, several groups have attempted to derive surface
dynamical treatment of the quantum and classical degrees of

i i inci 0,26,27
freedom: the motion of the classical particles and the concomi- hopping from first principles; although some uncontrolled

. b ) approximations are still unavoidable.
tant time-dependence of the Hamiltonian triggers quantum . ) L .
transitions, while the latter alter the potential energy surface Various extensions and modifications of the above two mixed

and thereby change the forces that act on the classical particlesduantum-classical schemes have been proposed over the recent
In the situation where the energies of the classical particles years. On the basis of early work of PechuRias? Rossky et
are larger than the spacings bet\?veen the auantum s?ates thaI.31 have developed a nonadiabatic molecular dynamics method
g P g d 8 applied it to the study of electron solvation in various

back-reaction of t.he quantum subsystem on the classical ONCiquids32-35 It was later shown that surface hopping can be
can be neglected; such approach is taken in the classical path

3 . ) . presented as a short time approximation to the Pechukas
rr;etr;]odrfi ?r;gtmrthf Fieteidf'?]ld theor‘é/H;Jwe\r/er, Irr; m(?St Cr?ljesth formulation1® Thirumalai, Bruskin, and Berd& have also
?ee(zibilckczetw:e(ra\sq'uanfume;(ralzsilgss?cgl %%ngese;c frei doemderived a mixed quantum-classical approximation based on the

) ) . semiclassical theory of Pechuk&sC but they applied it to the
To achieve this goal, two major attempts have been undertaken,case where the initial and final quantum states are the same.

Their final mixed quantum-classical approximation is identical

" Tcpermak”eR”t %ddéissi t'?ep"’.‘lfltm‘\elfx %ESBZ’”“SW’ University of Virginia, tg the TDSCF ansatz, yet it was derived within the stationary
cCormic oaadq, ariottesvile, . . . .. .
* Permanent address: School of Chemistry, The Sackler Faculty of Phase approximation. In the original work, they combine the

Science, Tel Aviv University, Tel Aviv 69978, Israel. mixed quantum-classical approximation with the Gaussian wave-

One of the longstanding problems in chemistry and physics
is the quantum mechanical treatment of dynamical properties
of arbitrary condensed phase systems. Unfortunately, direct
solution of the time-dependent S¢Himger equation is com-
putationally nonfeasible due to the exponential scaling with the
number of degrees of freedom. In Feynman’s path integral
formulation, the exact numerical solution of this problem is
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packet methotl38 to determine the electronic spectra of a to take the limit of infinite number of bath modes). In addition
diatomic molecule embedded in a rare gas matrix. Ben-Nun et to the fully quantum mechanical solution, for each problem we
al. developed a mixed quantum-classical method and applied ithave formulated the corresponding mixed quantum-classical
to study the dynamics of in rare gas solvent¥:*°Gerber and description, where the bath degrees of freedom (and, in certain
co-workers have introduced the classical separable potentialcases, the nuclear degrees of freedom of the impurity) were
(CSP) approximation which was used to study the dynamics of treated classically.
halogens in rare gas clustéfs'? In providing such a description, we have followed the general
A more systematic approach to treating dynamical processesmethodology of WignerKirkwood based on the expansion in
in condensed phases is based on the semiclassical propagatgrowers of Planck’s constant of the relevant quantum mechanical
originally written down by Van Vleck344 which is the time-correlation function (TCF)® We would like to emphasize
stationary phase approximation to the exact quantum mechanicathat the above expansion is unique only for the problems
propagatof® The root search is the bottleneck of this method involving a single PES?8%and it is somewhat arbitrary for the
in its original formulation, and it has been circumvented by case of several PE8%%2We address this issue of nonuniqueness
transforming to the initial value representatitn®® Due to the and attempt to provide a prescription for an optimal mixed
unfavorable system size scaling, the semiclassical initial value quantum-classical representation.
representation (SC-IVR) methods have been primarily applied  Our methodology is somewhat different from the aforemen-
to systems with few degrees of freedom. Several approximationstioned mixed quantum-classical treatments, where certain ad hoc
have been introduced to extend the applicability of semiclassical approximations are unavoidable. It remains an open question
methods to many-body systems. Neria and Nitz&hhave whether those mixed quantum-classical treatments agree with
applied the frozen Gaussian approximatfotfto calculate the  our mixed quantum-classical results in the regime where lowest
nonradiative relaxation rate for model systems and for solvated order perturbation theory is valid, i.e., the weak coupling limit.
electron. Miller and co-worke?$°®! used a “linearized” ap-  Since the main concern of this article is to assess the accuracy
proximation to the SC-IVR propagator to study nonadiabatic of mixed quantum-classical treatments in condensed phases, we
transitions of a quantum system coupled to a bath of harmonic will not return to this issue herein.

oscillators. Makri and Thompsétfhave combined the forward By providing a methodology for obtaining both exact
and backward paths of th94 bath to compute a semiclassicalgyantum mechanical and mixed quantum-classical treatments
version of FeynmanVernorf* influence functional. for all studied models, we were able to address the following

Despite the fact that SC-IVR approach has a more sound major issues: 1. Can mixed quantum-classical methods provide
theoretical foundation than the mixed quantum-classical meth- an accurate description of dynamical processes in condensed
ods, it is also more computationally demanding. Therefore, we phase systems? What is the range of their applicability in terms
limit the scope of the present review to the mixed quantum- of the physical parameters characterizing the system (temper-
classical treatments. As already discussed, a wide variety ofature, characteristic energies, etc.)? 2. What are the criteria for
these methods have been developed and have been applied tohoosing the most accurate propagation scheme for our mixed
numerous problems. However, all these methods involve variousquantum-classical treatment (recall the arbitrariness mentioned
levels of approximations. In view of that, it is of great above in the case of multiple PESs)? 3. Are there ways to infer
importance to assess the accuracy of mixed quantum-classicathe quantum dynamical information from the results of classical
methods by performing tests on exactly solvable (but still or mixed quantum-classical simulations by applying certain
realistic) models. Most such tests reported in the literature to “quantum corrections”? 4. Howdo fully classical treatments

date have been confined to few particle systém&) one of compare to mixed gquantum-classical approaches in terms of
the notable exceptions being the study of the spin-boson approximating the exact quantum results?
problen* by Mller and Stock2 The article is structured as follows: in section Il we provide

Motivated by the widespread use of mixed quantum-classical a general formulation of our mixed quantum-classical approach.
simulations and the lack of information on their accuracy for We start by writing the exact quantum mechanical expression
many-body problems, in a recent series of paffeféwe have for the observable of interest in terms of the relevant time
undertaken a comprehensive study of reliability of mixed correlation function. Next, we expand it in powers of Planck’s
quantum-classical methods for a wide variety of models and constant, and retain the terms up to (and including) the term of
physical processes. In particular, we have looked at the problemsorderi®. We note that in certain cases terms containing inverse
involving a single PES (in the context of vibrational energy powers ofh are present in the expansion, which generally leads
relaxation in condensed phas@¢yand at the situations where  to a nonuniqueness of the mixed quantum-classical result (see
several PES are necessary for describing the process ofthe discussion of Mukamel on the semiclassical treatment of
interest’>"7 In the latter case, we considered both radiative spectroscopic observab#é€?3.

processe$:7¢ (taking vibronic absorption spectrum of a chro- |y section Il we provide comparisons between the fully
mophore coupled to a condensed phase environment as a tegjuantum mechanical and mixed quantum-classical results for
case) and at the nonradiative relaxation procéségsecifically,  various physical problems. We start by considering vibrational
electronic relaxation of an impurity in a bath). energy relaxation in condensed phases. As was shown by

In all cases studied, it has been assumed that the couplingSakung® and Berkowitz and Gerbéf.the dominant contribution
between the relevant quantum states in the quantum subsystento the relaxation rate in this case comes from the dependence
(guest or solute or chromophore) is small. Thus, the lowest orderof the off-diagonal systembath coupling on the bath coordi-
perturbation theory can be applied to calculate the property of nates. We consider both the linear coupling case which allows
interest, such as the energy relaxation rate, dephasing time ornly single-phonon procesgésnd the nonlinear coupling case
spectrum. Since it was imperative for us to be able to obtain which is necessary for multiphonon relaxatinNext we
the exact quantum mechanical result for each problem studied,consider a quantum subsystem that contains electronic degrees
the condensed phase environment was always modeled as af freedom!” In this case the systeabath interactions depend
collection of harmonic oscillators (in some cases we were able strongly on the quantum state of the system, and thus one is
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forced to consider several (at least two) PESs. Section IV golden rule, this property is related to a real-time correlation
provides the last test case which involves the vibronic absorption function of the form:
spectrum of a diatomic chromophore in a condensed phase ) _
environment, where both electronic transitions and vibrational C(t) = Trlpy(B)V gty e_'Ht”‘] (5)
relaxation are importarte:7®

In Section V we discuss the results for the different models where the thermal averaging is performed with the distribution
presented in sections Ill and IV. We try to delineate the various appropriate to the initial quantum state, i.e., we assume that
relevant parameters that govern the success or failure of mixedthe system has equilibrated undés:
guantum-classical approximations to time correlation functions.
We discuss the static and dynamical contributions to the po(B) = 1 ’ﬁH°|ODIID| (6)
properties of interest for several limiting cases. Finally, in section Z(p)
VI we provide our view of future direction in the study of mixed

guantum-classical dynamics in many-body systems. and the partition functioa(f) is given by

— —BHo
Il. Model Hamiltonian and Mixed Quantum-Classical Z(p) = Trle "|0LI0] )
Theory Similarly, the real-time correlation function can be written as
In what follows, we will focus on two particular states of the _
guantum subsystem, which we label |@§land |1[J All other CO) = TrlpoB)VOV(D] (8)

degrees of freedom (apart from those of the quantum subsystem)

will be generally treated within the classical approximation when

a mixed quantum-classical treatment is imposed. Thus we referandv is given in eq 4

to them as the “nuclear” degrees of freedom, and label their We ne?(t erforrr? thé trace over the two quantum sties

positions and momenta witQ and P, respectively. We are and |10to ol:F))tain q

interested in radiative and nonradiative transitions between these

two quantum states and write the general total Hamiltonian as 1 iy Hoth Mt

follows: C@H = Z(ﬁ)TrQ [e "oV, €1y, e ©)

Hiot = HolOLIO] + Hy |11 + Vi [OLTL] + Vil 100] (1) where Tg (...) denotes the trace over the nuclear degrees of
freedom, and the partition functiof(3) is now given by

n the above equations = 1/kgT is the inverse temperature,
the symbol Tr(...) denotes the trace over all degrees of freedom,

whereHo = Eg + H + Ag andHy = E; + Hy, + Ag; Hy, Ao,

A1, Vo1 andVyp are operators in the Hilbert space of the nuclear Z(B) = Tr, [e*ﬂHo] (10)
variablesQ andP. In the study of vibronic absorption spectrum
the off-diagonal coupling matrix element4; and Vio will Applying the interaction representation, eq 9 can be written in
depend also on the tinte the form of a time-ordered exponenfal
As will become clear below, it is convenient to perform the )
following transformation of the total Hamiltonian: we add and — [t 1t A g
subtractAg|1001| in eq (1) and use the identit@I0| + |11 c EE Vor(0)exp. (hj;) dUA(t )) VlO(t)D (11)
= 1 to obtain

wherell..0= Trq [e7...]/Z(B) denotes a quantum mechanical
Hyo: = (Hp + Ep)|O000| + (H, + A + Ep)|101| + ensemble average over Hamiltoniép, ar)dwlo = (El - I_Eo)/
V0T + V, |10 = H + V (2) h. The negative time ordered exponential, ekp), is defined
o1 10 - in the usual way® A(t), Vo(t), andVio(t) are the Heisenberg
form for the operators\, Vo1, and Vi, respectively, and are

whereH, = Hy + Ay andA = A; — Ao. In eq 2 we have also given by

used the following definitions

__ AHot —iHot
H = (H, + E)IOCID| + (H, + A + E))|111]  (3) A(t) =€ Ae (12)

and Vo) = €0V e M (13)
wheres ands take the values of 0 or 1.

The mixed quantum-classical limit of eq 11 is obtained in
two steps: (a) We replace the quantum mechanical trace over
the nuclear degrees of freeddghwith a phase-space integral
_ . Lo : over a corresponding classical distribution function. (b) We
= Hy, + Ep, while the Hamiltonian corresponding to stat€ls replace the quantum mechanical operatéigt), Vio(t), and

given byH; = H, + A + E;. A is the difference between the . : . K ;
two PESs in the dressed picture, i.e., when the constant termsA(t) with the corresponding classical dynamical variables. In

. - o doing so we also drop the time ordering since the classical
(Eo andEy) are omlttepl. This form of the Hamiltonian is the. dynamical variableA(t) commutes with itself at all time%.
most convenient choice for the present problems, yet it is

Thus, eq 11 reduces to a mixed quantum-classical time
completely general.

As discussed in the Introduction, we use the lowest order correfation function of the form
perturbation theory (the Fermi golden rule) to calculate the it
property of interest (relaxation rate, dephasing time, or absorp- Crnad) = B/Ol(O)exp(ﬁ /s dt'A(t')) VlO(t)ul (14)
tion spectrum). In what follows, we will treat the off-diagonal
couplingV between the two quantum states within the perturba- wherell..[d = / dQdP (e #H(@P) .. )/Z,(8) denotes a classical
tion approximation. In the time-domain formulation of the Fermi ensemble average over the classical Hamiltohgi®@, P), and

V = V|0 + V| 1010 4)

With the above form of the total Hamiltonian, it is clear that
the Hamiltonian corresponding to the st#®&lis given byHg
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Zq(B) is the classical partition function given by momentaPy:
_ 1 —BHo(Q.P) _1 2 2 ~2
Zy(p) = o) J dQdpe (15) H, = ZZ(PQ + 0y Q) (16)

Equation 11 can be rewritten in various different (but A. Vibrational Energy Relaxation. Numerous processes in
equivalen)) forms by making different choices for the Hamil- condensed phases involve dissipation of energy from vibra-
tonian under whichA(t), Vou(t), and Vao(t) are propagated. In  tionally excited modes. Thus, a profound microscopic under-
other words, one is not restricted to usiHg in transforming ~ standing of vibrational energy relaxation is of major
to the interaction picture. However, after carrying out steps a importance!2-120In theoretical treatments of vibrational energy
and b outlined above, the resulting mixed quantum-classical time relaxation based on the low-order perturbation theory the total
correlation functions areot equivalent to each other. This is Hamiltonian is generally partitioned into three terms: the
precisely the nonuniqueness of the mixed quantum-classicalHamiltonian for the vibrational mode of the solute, the Hamil-
approximation mentioned in the Introduction. In the case where tonian for the solvent degrees of freedom, and the interaction
the Hamiltonians associated with the two quantum states arebetween these two subsystems, which induces the transitions
the same (i.e., wheA = 0), the time-ordered exponentials in between the solute vibrational states. Within this formalism, the

eq 11 disappear, and the mixed quantum-classical approximationstate-to-state transition rates are determined by the Fourier
becomes unique. transform (at the vibrational frequency of the solute) of the TCF
Equation 14 is perfectly suited for evaluation in a simulation for the force exerted by the solvent on the solute vibrational
by propagating classical trajectories on the Hamiltonian specified mode. When studying vibrational energy relaxation in low-
by the interaction picture used. The mixed quantum-classical temperature solids, this TCF can be evaluated quantum me-
TCF is obtained by monitoring the time-dependent potential chanically. At the same time, a full quantum treatment of
energy difference between the two PE@st)) and averaging  dynamics in liquid hosts is not feasible, and a common approach
over the appropriate initial conditions. The applications reported is to treat the translational degrees of freedom in liquids
in this article were obtained for a model system where an classically. However, for certain experimental conditions (e.g.,
analytic expression for the correlation function was derived, and Vibrational relaxation of molecular oxygen in liquid mixtures
thus there was no need for performing simulations. We did With argon in the temperature range-880 K)!°*?!a classical
perform a convergence test and found that typically 1000 treatment of the solvent may be questionable. In other words,
trajectories were enough to obtain converged results for the the mixed quantum-classical treatment outlined in the previous
correlation function. Section is likely to break down. In this subsection we present

Before we discuss the application and performance of the the mixed quantum-classical treatment of vibrational energy
mixed quantum-classical approximation we would like to relaxation, and review the previous theoretical work concerning
emphasize that the above mixed quantum-classical approach idts range of validity.
not identical to the so called mean-field approach (i.e., mixed In order to apply the general theoretical framework outlined
quantum-classical TDSCF). Since we obtain the relevant in the previous section to the problem of vibrational energy
property of interest within the framework of lowest order relaxation, we make the following identification0lland |10
perturbaﬂon theory' the mixed quantum_dassica] approach doesare the two vibrational states of the solute for which we calculate
not include the feedback between the classical subsystem andhe transition rate (in what follows, we treat the solute vibrational

the quantum subsystem. degree of freedong in the harmonic approximation, however
the theoretical treatment is not limited to this ché?@g
I1l. Nonradiative Processes As mentioned earlier, we assume that the bath Hamiltonian

is the same for all solute vibrational states, i.e., we/set 0.
V is the perturbation that couples the solute vibrational ngpde
to the solvent degrees of freeddpn We take it to be linear in
g and assume it to be a function of a certain collective solvent
coordinateQ, that is, some (linear) combination of the modes
' comprising the seQ, i.e. we writeV = gF(Q). ThusVo; =
[0|g|10= go1 and V1o = [1]q|00= th1o. Two functional forms
for F(Q) have been considered previously: (1) case of bilinear
Ysolute-solvent couplingV¥ O qQ) has been treated in detail by
Bader and Berné and (2) case where the solutsolvent
interaction is modeled with an exponential function of the bath
collective coordinate has been analyzed by Egorov and Bérne.
The former case allows for single phonon relaxation processes
while the latter is appropriate for describing multiphonon
' relaxation.

In this section we discuss the application of the general results
obtained above to various physical problems involving nonra-
diative relaxation. Depending on the specific problem, different
mechanisms will give the dominant contribution to the relaxation
rate. For example, in the case of vibrational energy relaxation
the solvent is not affected significantly by the change of the
solute vibrational stat®,84and the dominant relaxation mech-
anism arises from the dependence of the solute-solvent couplin
term on the solvent coordinatés®7-192 |n the language of the
previous section, this means that we Aet= 0. On the other
hand, electronic relaxation is generally accompanied by a
significant change in the solutesolvent interactiori® and one
needs to introduce different PESs for different solute electronic
states. A common model involves shifted/distorted surfaces

Whe:je_ A é7388 ?0}1'126?./ quadLatlc d f”.”C“O” of hth?’ bathf As stated above, the transition rate from stafeto state|0C]
coordinates. " >ince the dominant mechanisms of ¢ proportional to the Fourier transform (at the solute vibrational
vibrational and electronic relaxation are different, we will discuss frequencymui = (E1 — Eo)/fi) of the TCF for the forcé®(Q)

vib — .
these two problems separately. . . . The quantum mechanical expression for the state-to-state

We model the condensed phase environment in both vibra- transition rate then reads

tional and electronic relaxation processes as a harmonic bath,
which constitutes the nuclear degrees of freedom in our system. Iq |2
Thus, we takeHp, in eq 2 to be a sum over harmonic mass- Koy = 01
weighted normal mode®,, with frequenciesv, and conjugate h?

S, dtexploy,t) FOFHD  (17)
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TABLE 1: Vibrational Energy Relaxation Rates for the
Quantum Mechanical, Mixed Quantum-Classical, and
Classi%al Treatments Taken from the Work of Bader and
Berne

classical solvent quantum solvent
classical solute  T;* T, ! Bhol2 cothphw/2
quantum solute T, '2/8hw tanhphw/2 T,
The mixed quantum-classical approximatiorkgo; is obtained S
by applying the procedure outlined in the previous section. g?
As indicated by Bader and Berrigjn the case of bilinear -
solute-solvent coupling the fully quantum and mixed quantum- NN
. Fully Quantum NN
classical results for the rate are related by - Classical NN
e A — Classical+Correction NN
Pho ib Bho i — - — Mixed Quantum~—Classical N
kimy = coth—| k% (18) >
2 2
1 . ‘ l . ‘
o ) 0.0 25 50 75 10.0 125 15.0
The above relation is exact, and holds for an arbitrary (not o

. . . . . vib

nelcessa”h/ hal'hmonltl:) mo%el f.or tflle In;g;lal Vlbr.atlondOf the Figure 1. A semilog plot of the vibrational relaxation rate versus the
solute. When the solute vibrational moteharmonic Bader solute vibrational frequency for the exponential sokgelvent interac-
and Berné have shown that the above relation also holds for tion. The solid, dashed, dotted, and dashedtted lines are for the

the overall energy relaxation ralg . fully quantum mechanical, classical, corrected, and mixed quantum-
classical relaxation rates, respectively.

(T, "=

hw,, Aw,,;
ﬁ 2wb coth (ﬁ 2wb) (Tzl)ch (19) -1 —~ T T T T T

Fully Quantum

- — —- Schofield
At the same time, the fully classical treatment of the relaxation . —-— Egelstaff
—1 i . . N N scaled Egelstaff
rate T, -, is identical to the fully quantum one for this N,
particular model (harmonic oscillator bilinearly coupled to the
harmonic bath). The above results are summarized in Table 1.
Within the low-order perturbation theory, the model studied
by Bader and Berne can only produce single-phonon transitions,
and thus is mainly applicable to study the relaxation of the low-
frequency solute vibrational modes. On the other hand, vibra-
tional energy relaxation of high-frequency modes is dominated
by multiphonon processes. In order to account for multiphonon
relaxation, one needs to consider the sohgelvent coupling
that is nonlinear in the solvent coordinai®s This case has =1
been considered in the work of Egorov and Béfnehere the
solute-bath interaction was modeled with an exponential -8 : ' : : '
function of a collective solvent coordinate. A semilog plot of 00 25 50 13 100 125 150
the comparison between the fully quantum mechanical, mixed D
quantum-classical, and classical relaxation rates (scaled by aFigure 2 A_semilog plot of the vibrational relaxation rate versus the
typical phonon frequency of the bath) versus the vibrational SOluté vibrational frequency for the exponential sokgelvent interac-
frequency (scaled by the same value) is shown in Figure 1. tion. The solid line is for the fully quantum mechanical relaxatlon.rate.
X . ) - The dashed, dashediotted and dotted lines are for the Schofield,
Itis clearly seen that in contrast to the case of linear coupling ggelstaff, and scaled Egelstaff empirical corrections.
studied by Bader and Berne, where the fully quantum and the
fully classical results are identical, in the case of exponential approximate correction to the mixed quantum-classical relax-
solute-bath interaction, the fully classical treatment significantly ation rate. It was found that the quantum correction is accurate
underestimates the relaxation rate. The mixed quantum-classicabver a wide range of relevant systetmath parameters as shown
result for the relaxation rate is always below the classical result, in the figure. The important point is that in the high frequency
i.e., the fully classical treatment gives consistently better results limit this quantum correction depends exponentially on the
for the relaxation rate than the mixed quantum-classical one solute vibrational frequency, and thus the ratio of the fully
(although the classical rates are still off from the quantum rates quantum to the mixed quantum-classical rate becomes very
by several orders of magnitude). Note that, as the vibrational large.
frequency of the solute increases, the disagreement between the It is also of interest to compare the results obtained with the
classical/mixed quantum-classical and the quantum resultsquantum correction factor to other approximations suggested
becomes worse. in the literaturet?3-125 These approximations have been dis-
In addition, we also show the results of the quantum cussed in the context of vibrational relaxation and rigid
correction to the classical relaxation rate as given by eq 16 of rotors2%127and more recently in the context of a general time
ref 74. Unlike the case of bilinear coupling studied by Bader correlation functior’#128 The results of the application of the
and Berne, there is no exact analytic relation between the mixedSchofield, Egelstaff, and “scaled” Egelstaff empirical corrections
guantum-classical and quantum mechanical rate. On the basido the present problem are shown in Figure 2 along with the
of stationary phase method Egorov and Berne derived anexact quantum mechanical relaxation rate. One sees that the

log,,(I/T,")
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Schofield transformation overestimates the quantum correctionas a quadratic form in the bath coordinates:

somewhat (especially at the higher frequencies), the Egelstaff

approximation gives the rates which are too low, and the 5 1 1 52

“scaled” Egelstaff procedure is generally as accurate as theA = Z we0,Q, + -+ ‘Z WO T Z U QuQu  (20)
approximate correction shown in Figure 1 (see also eq 16 of o 2 24 oo

ref 74). ) ) ] )

In summary, the problem of vibrational energy relaxation in This fprm of diagonal coupling WOUl.d arise when the wo
the present formulation provides a convenient test case Wherelomentlal energy S”rf?‘ces correspondm_g_to the_ two electron_lc
a unique mixed guantum-classical approximation to the quantum states can _be d_escrlbed by_ two multld_lr_nensmnal h_armonlc
time correlation function can be obtained. We have considered surfaces_ with .dn‘ferent eqwhbnum positions and dlﬁgrgnt
wo models for the solutesolvent coupling (bilinear and frequencies with the additional possibility of mode mixing

exponential), and have analyzed the relation between the fully b_etween the two states. T.he. first twp_terms&nare due to the

quantum, mixed quantum-classical and classical vibrational dlsplacements of the equilibrium positions of the normal_modes,
relaxation rates. In both cases, the classical treatment provide while t.he last term corresponds to the frequency shifts and
more accurate relaxation rates, than the mixed quantum-classica uschm_sky rotations of the normal modeg _between the two
approximation. However, in the case of nonlinear coupling it electronic states. The procedure of obtaining the coupling

 is given i 7
can still underestimate the rate significantly in the high constante andgaa IS given In our recent WOI’.R. )
frequency limit. Under the assumption of the constant off-diagonal coupling

- . . _ (static coupling approach), the quantum mechanical expression
B'. Nonradlgtlvg Elegtronlc Relaxatlp ns.Nonradiative e]ec- for the transition rate reduces to the Fourier transform (evaluated
tronic relaxation is an important step in numerous chemical and

; - . at the frequencyde; = (E1 — Eg)/h) of the thermal average of
physical processes, such as internal conversion, electron transfe{he time-ordered exponential:
reactions, eté/9212%133 Radiationless electronic relaxation '
processes in condensed phases involve energy transfer from v .
electronically excited impurities to the host, and it is often the _ Vol e iwett 1ort i
case that the amount of energy transferred exceeds by many ko1 = h2 f—m de @xp, {h fo dUA(t )}D (1)
times the typical energy associated with the thermal motion of

the solvent. Clearly, many quanta of the bath excitations must pg giscussed in the previous section, in order to obtain a mixed
be created in this process. quantum-classical approximation to the above result, one needs

Most theoretical treatments of electronic multiphonon relax- to replace the quantum mechanical average with the classical
ation are based on the time-dependent perturbation theory. Dueone, neglect the time ordering, and tregt) as a function of
to some arbitrariness in defining the zeroth-order Hamiltonian dynamic classical variables. In addition, one needs to specify
and the coupling term, various routes to nonradiative decay arethe Hamiltonian used for the propagation of the nuclear degrees
possible. Here we consider two different routes: the adiabatic of freedom, i.e., the form of the interaction picture used. Here
(Born—Oppenheimer) and the “static-coupling” (crude Bern  we will limit ourselves to the following two propagation
Oppenheimer) methods. In the present formulation both methodsschemes: (a) the dynamic classical limit is obtained by
involve shifts and/or distortions between the two PESs corre- propagatingA(t) on the initial HamiltonianHo and (b) the
sponding to the two electronic states. In the language of sectionaverage classical limit is obtained by propagatix() on the
Il, A'is taken to be a quadratic function of the nuclear degrees arithmetic averaged Hamiltonialo(Ho + Hi) (both mixed
of freedomQ. This is very different from the case of vibrational ~quantum-classical approximations are very different from the
relaxation discussed in the previous subsection, where the twomixed quantum-classical TDSCF approach).

PESs were taken to be identical, i&.7= 0. Due to these shifts/ The fully quantum mechanical results are calculated by
distortions of PESs, both the adibatic and the static coupling employing the density matrix formalism of Kubo and Toy-
descriptions allow for multiphonon processes in the lowest order ozawal34 which is based on Gaussian integrals. (Equivalently,
perturbation theory. The difference between the adiabatic one could use the boson algebra technique of Balian and
approach and static coupling approach is in the form of the off- Brezin144 which allows evaluation of the thermal averages of
diagonal coupling matrix elements; andVio. In the adiabatic  exponentiated quadratic functions of phonon operaf6ré?)
approach the off-diagonal coupling depends on the momentumThe method to obtain the mixed quantum-classical result is
operators of the nuclear degrees of freeddwhile in the static ~ based on phase space Gaussian integrals, and the details can be
coupling approach the off-diagonal coupling matrix elements found in our recent work® In all cases, the calculations can be
are taken to be constants. In solid-state theory, both approacheglone only for a finite number of bath modes (convergence tests
were employed by Kubo and Toyozaw# Perlin3> Miyakawa have shown that 100 bath modes is always sufficient to obtain
and Dexter;** and other$? 88103 111137141 Recently, they have  converged results for the relaxation rate). Interested readers may
become widely used in the field of liquid phase chemistry in consult ref 77 for explicit expressions of the relaxation rate in
the context of calculating nonradiative relaxation rates of the exact quantum mechanical case and in the various mixed
solvated electron%;142.143 quantum-classical approximations.

As in the case of vibrational relaxation, we now focus on  The results of our calculations are shown in Figure 3, where
assessing the accuracy of a mixed quantum-classical treatmentve present a semilog plot of the transition rate (scaled by a
in the calculation of the electronic relaxation rate. We consider typical phonon frequency of the bath) versus the energy gap
an impurity embedded in a condensed phase environment andscaled by the same frequency). One sees that for the largest
concentrate on the nonradiative transitions between the initial energy gap considered, the dynamic classical approximation
electronic statg0dand the final electronic statglJof the underestimates the transition rate by nearly two orders of
impurity. As before, the bath (which constitutes the nuclear magnitude, while the average classical approximation is nearly
degrees of freedom) is taken in the harmonic approximation, one order of magnitude smaller than the quantum mechanical
cf. eq 16. Regarding the diagonal coupling tefqwe write it rate.
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-1.0 — , . . classical limit of a more general Hamiltonian obtained by using
second quantization formalism.

To study the fully classical limit of the nonradiative electronic
relaxation we will treat the electronic degrees of freedom and
the bath degrees of freedom in the Mey#&filler Hamiltonian
classically. The only nonclassical feature of this computation
involves the use of the Wigner form of the appropriate initial
distribution®%.153|n semiclassical language, this approximation
is referred to as the linearized SC-IVR.

The most convenient way to obtain the rate in this approach
is to use the reactiveflux method!>4-157which was generalized

log, (k')

Mechanical . Ny to the quantum mechanical case by Miller, Schwartz, and
. g;::ltl‘l‘iTCl:scsi::llc ~ Tromp158 This approach has been recently applied to the
=30 F | ___ Averaged Classical N ] unbiased spirboson problem by Miller and co-worke?%6!
—-— Averaged Classical +Wigner Our Hamiltonian is more general and reduces to their model
©® Meyer—Miller whenA is taken to be a linear function of the bath modes and
~6.0 : : : - Ey is taken to be equal t&;. The implementation details for
2.0 40 6.0 8.0 10.0 . ; .
o’ applying the reactiveflux method to our model Hamiltonian

el

_ _ _ _ will be reported elsewherél!
Figure 3. A semilog plot of the electronic relaxation rate versus the

electronic energy gap for the static coupling approach. The solid, dotted, M'ITI-he resu!ts f%r the ellecl:trc.mlc relaxaltlon Late Of. thg_ Meyer
dashed, and dashedotted lines are the results of the electronic Miller reactive-flux calculations are also shown in Figure 3.

relaxation rate for the quantum mechanical, dynamic classical limit, Due to the fact that the method is computationally quite
averaged classical limit, and averaged classical limit with a Wigner demanding, the relaxation rates were calculated only for a few
initial distribution respectively. The filled circles are the electronic selected values of the electronic energy gaps. We find that the
relaxation rate calculated within the MeyeMliller Hamiltonian ap- results for the electronic relaxation rate are in good agreement
proach (see the text for more details). with the exact quantum results. In addition, we would like to
. ) ) point out that in contrast to the mixed quantum-classical
Motivated by the work of Shemetulskis and Loritf§we 5,5 oximation, the transformation of the Hamiltonian into the
have analyzed the Wigner form of the time correlation function Meyer—Miller form does not suffer from nonuniqueness.
appearing in the static coupling approach (see eq 21), and haverperefore, we believe that this treatment is more robust to the
arrived at the conclusion that a mixed quantum-classical aforementioned mixed quantum-classical approximations.
treatment should employ the average Hamiltonian for the  \ye now proceed to discuss the adiabatic approach to
propagation of the nuclear degrees of freedérif.Therefore, _electronic relaxation processes. In this case, the off-diagonal
the somewhat better performance of the average cIassmaIcoup"ng term depends linearly and quadratically on the bath
propagation scheme is hardly surprising. However, we empha- momenta. Following Kubo and Toyozad¥,we neglect the
SiZe that the above COnCIUSiOn |S Only Va“d fOI’ the StatIC Coup|lng quadra“c term and make the Condon approximation in the
scheme, i.e., foconstanbff-diagonal coupling matrix elements.  remaining linear term. The diagonal coupling tefxris given
It no longer holds when these matrix elements depend on thepy eq 20 and is the same as in the static coupling approach.
nuclear coordinates and/or momenta, as will be shown below. The quantum mechanical expression for the transition rate is
Our analysis of the Wigner form of the time correlation given by the Fourier transform (evaluated at the frequengy (
function has suggested performing thermal averaging with the = (E1 — Eo)/i) of the thermal average of the time-ordered
Wigner form of the initial distribution. As can be seen from exponential:
Figure 3, the results of the above approximation are in excellent
agreement with the exact quantum mechanical relaxation rates. _ 1 pe oot [& . Tt oaan .
Once again, such good agreement is not expected in the caseko"l N h2f*°° de Eﬁ PO)exp. (h j(; dUA(t )) S P(t)D
of momentum-dependent coupling (the adiabatic approach, see (22)
below).

Recall that in the case of vibrational energy relaxation a fully \yhere according to the Condon approximation the nonadiabatic
classical treatment provides more accurate results than the mixetoypling vectorS is taken to be independent of the bath
quantum-classical approximation. Motivated by this finding, we coordinate$? The quantum mechanical result and various mixed
became interested in performing a fully classical treatment of guantum-classical approximations (dynamical classical, averaged
the electronic relaxation problem. Since our model for the classical, and averaged classical with the Wigner initial distribu-
electronic relaxation involves two discrete states (two distinct tjon) for the relaxation rate are then calculated using the same
PESs), this is more difficult to formulate compared to the procedures as in the case of static coupling. Interested readers
vibrational relaxation case. One possibility is to employ the may consult ref 77 for the details.
method of Meyer and Millet!*150which provides a classical The results of our calculations are shown in Figure 4, where
analog for a system involving on several electronic states. In we present a semilog plot of the transition rate (scaled by a
the Meyer-Miller method, the Hamiltonian of the discrete characteristic phonon frequency) versus the dimensionless
system is mapped to a continuous one, and the dynamics of theenergy gap (scaled by the same frequency). For the largest
electronic degrees of freedom and the bath degrees of freedomenergy gap considered, the dynamical classical approximation
are treated classically. The mapping procedure for the presentunderestimates the transition rate by several orders of magnitude,
problem is described in detail in our recent publicafiehiwe while the averaged classical result is about 2 orders of magnitude
note in passing that Stock and Th¥8shave shown that the  smaller than the quantum mechanical rate. The averaged
Meyer—Miller Hamiltonian can be obtained by taking the classical result with the Wigner initial distribution still provides
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electronic relaxation, and thus is not unique. In due course we
will discuss the results of different propagation schemes.
When the nuclear coordinates of the primary system are
strongly perturbed by the electronic transition, it would seem
appropriate to extend the quantum methodology to these degrees
of freedom, and to couple their quantum dynamics in some way
to the classical dynamics of the bath particte& For this
purpose we have formulated a Feynman path integral description

f% of the vibronic absorption spectrum where the primary nuclear
2 degrees of freedom of the chromophore are treated quantum
- : mechanically. The effect of the bath on the spectrum in this
-10.0 + ~ - . . . . .
N approach is entirely given by the influence functional of
—— Quantum Mechanical .. Feynman and Vernotf,which was generalized for the present
ok | T Dynamic Classical ™ problem?® The mixed quantum-classical approximation is then
—— - Averaged Classical obtained by taking the classical limit of the influence functional.
—-— Averaged Classical + Wignet . . o
\\ We note that this classical limit, like many others, does not

-14.0 ; .
2.0 4.0 6.0 8.0 10.0

,

el

Figure 4. A semilog plot of the electronic relaxation rate versus the

preserve detailed balance per. 84éore recently, Makri and
Thompsof?62 studied a semiclassical limit of an influence
functional for a different physical problem. Their approach is

electronic energy gap for the adiabatic approach. The solid, dotted likely to provide a more accurate solution than the fully classical
dashed, and dashedotted lines are the results of the eleétronic limit (in the case of a harmonic bath, the semiclassical limit of

relaxation rate for the quantum mechanical, dynamic classical limit, the influence functional is exact). . )

averaged classical limit, and averaged classical limit with a Wigner ~ We calculate the electronic spectrum within the Fermi golden

initial distribution respectively. rule and the electric dipole approximati#i.We also adopt
the Condon approximation where the electric dipoldoes not

the best approximation to the exact quantum result, althoughdepend on the nuclear coordinates. Hence, the off-diagonal

in the present case it is less accurate compared to the case ofoupling term is given by

the static coupling scheme. Note that we did not present the _ _

fully classical approximation in the form of the MeyeNiller V= ee” UoyOC| + e*e_""t/,tlo| 1000 (23)

Hamiltonian for the adiabatic approach since the momentum

coupling introduces a technical complication into this method. whereuo; = O|x|10andu10 = Clu|00are independent of the

In summary, the major difference between the electronic nuclear coordinates;andw are the amplitude and the frequency

relaxation case and the vibrational relaxation (in its present of the field coupling the two electronic states, respectively. The

formulation) lies in the nonuniqueness of the mixed quantum- normalized electronic absorption spectrum is given by the

classical approximation. While worrisome, this nonuniqueness Fourier transform of the normalized real-time dipole autocor-

can be actually turned into an advantage: one can improve therelation function:

results of mixed quantum-classical treatment by choosing the . )

optimal propagation scheme. We have illustrated this point by _ L _ L L

pgrformipr)\g pthe analysis of the Wigner form of th(gJ time (@) = 21 f*°° dtexpi(wyo = )t) pr_ {h v/(‘) dUA(t )}D

correlation function in certain cases studied. The outcome of (24)

this analysis has allowed us to formulate the optimal propagation

scheme, and thereby to improve the agreement of the mixedwherew,o = (E1 — Eo)/h. Here we consider a more particular

guantum-classical treatment with the exact quantum result.  quadratic form for the diagonal coupling termto model a
primary diatomic moded) treated in the harmonic approxima-

IV. Radiative Processes tion and bilinearly coupled to the harmonic bath:

In addition to nonradiative relaxation processes, quantum time
correlation functions are of major importance in calculating A= —(wﬁﬂ(q - 6)2 - wﬁoqz) + z(g(ll(q —0) — ggq)QOL
various types of spectf.15° The effect of nuclear dynamics 2 1
of the bath particles on the line shape reveals itself in the shift (25)
and broadening of individual spectral lines comprising the gas
phase electronic absorption spectrum of the chromophore. AsNote that our model accounts for different vibrational frequen-
such, the absorption spectrum of a molecule embedded in acies of the primary modexn andwmi) and different solute
crystal or in a liquid provides valuable information about the bath coupling strengtkgﬁ andg(lx) in the two electronic states.
structure and dynamics of the host and the chromophore The procedure of obtaining the coupling constafjt is
perturbed by the host. described in ref 75.

Quantum mechanical calculations of electronic absorption  We calculate the fully quantum mechanical vibronic spectrum
spectra in condensed phases are extremely difficult in view of and also the dynamic and averaged mixed quantum-classical
the large number of degrees of freedom involved. For any approximations to it using the techniques mentioned in the
realistic system this many-body problem can only be solved previous section. (Recall that the dynamic classical approxima-
approximately. The simplest approximation would be to retain tion involves propagation with the initial Hamiltonian, while
the quantum nature of the electronic degrees of freedom only, in the averaged classical approximation the propagation is done
and to treat all nuclear degrees of freedom (including those of using the arithmetic average Hamiltonian.) As mentioned earlier,
the chromophore) classicall§.”6.81.169163 This approximation =~ we have also obtained another mixed quantum-classical pre-
is equivalent to the mixed quantum-classical treatment of the scription in which the primary mode (the vibrational mode of
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Figure 6. The vibronic absorption spectrum of a diatomic molecule
coupled to a harmonic bath in the limit of fast electronic dephasing.
The thin solid line is the fully quantum mechanical result. The dotted
and dashed lines are the dynamic and average classical approximations,

Figure 5. A plot of the electronic dephasing rateT;'?C and the respectively. The thick solid line is the result of the mixed quantum-
vibrational relaxation rate on the ground electronic sta®"lversus ~ classical treatment where the primary mode is treated quantum
the coupling strength in the ground electronic stateand for o, = mechanically and the bath is treated classically (Q-solute, C-Solvent).

0.24 (see our original wofR for the definitions ofpg1). Note that 1/
TS decreases wittpo until a minimum is reached, and then it

increases withpo, while 1/T;" scales linearly with the coupling — Quantum Mechanical
strength. Dynamic Classical

— — - Q-solute C-solvent

0.3 T T T T T

the molecule) is treated quantum mechanically, based on taking
a classical limit of the appropriate influence functioffal.

Within our model, the two important time scales in calculating
the vibronic spectrum are the vibrational relaxation rate for the
primary mode (I7i") and the electronic dephasing rate (1/
TS9. The two rates have very different dependencies on the
temperature and on other physical parameters specifying the
model. In general, the electronic dephasing rate increases with 0.1
the magnitude of thalifference between the systerbath
coupling strengths in the two electronic states, while the
vibrational relaxation rate in each of these states is proportional
to the magnitude of the coupling strength. Thus, by adjusting
these parameters, one can achieve the situation where the 0 ,
electronic dephasing is faster than vibrational relaxation (1/ -5 -25 0 25 5 7.5 10
TS > 1/T¥®) or vice versa, as illustrated in Figure 5. On the P
basis of the discussion of mixed quantum-classical treatmentsFigure 7. The vibronic absorption spectrum of a diatomic molecule
of vibrational energy relaxation in the bilinear coupling case, coupled to a harmonic bath in the limit of fast vibrational relaxation.

‘s : : .~ The thin solid line is the fully quantum mechanical result. The dotted
one may anticipate .that the optimal mlxeq qugntum-classwal line is the dynamic classical approximation. The dashed line is the result
scheme would be different for these two situations.

of the mixed quantum-classical treatment where the primary mode is
In our work, we have considered both the case (’)’E'icl> treated quantum mechanically and the bath is treated classically (Q-
UTY® and the opposite case whenT37® > 1/Ty*.75.76 The solute, C-Solvent). The results of the averaged classical limit agree
performance of various mixed quantum-classical approximations with the fully quantum mechanical result and thus are not shown.
was indeed found to be markedly different in the two cases. In misplaces the positions of individual vibronic features. The best
Figure 6 we present the exact quantum mechanical vibronic agreement is obtained using the mixed quantum-classical
absorption spectrum and various mixed quantum-classicaltreatment in which both the two states and the primary mode
approximations to it for the case when the electronic dephasingare treated quantum mechanically and the bath is treated
is much faster than vibrational relaxation. One sees immediately classically. This approximation captures the position and very
that the dynamic classical approximation captures only the slightly overestimates the width of the individual lines.
envelope of the exact spectrum but not the vibronic structure, We now turn to the case when the vibrational relaxation is
similar to the classical FranekCondon results®> We note that faster than the electronic dephasing. The corresponding results
this failure of the dynamic classical approximation is related to for the absorption spectra are presented in Figure 7; the relevant
a rather specific choice of parameters; in a more general caseparameters are given in the caption. Since we have seen that
the performance of this method is somewhat better, as will be for the problem of vibrational relaxation the mixed quantum
shown below. The averaged classical treatment provides a goocclassical treatment is inferior to the fully classical one, in the
approximation to the absorption spectrum, albeit somewhat present case one would anticipate a breakdown of the ap-

Lay,
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mechanically and the solvent is treated classically, we can only
calculate the dephasing rate analytically in the absence of
coupling in the initial electronic state, the result is also shown

in Figure 8, it is slightly larger than the quantum dephasing

rate.

To summarize this Section, we have considered the vibronic
absorption spectrum of a diatomic molecule (taken in the
harmonic approximation) bilinearly coupled to a harmonic bath
(with different equilibrium positions, coupling strengths, and

0.0 . . .
000 005 010 015 020 025

Po molecular vibrational frequencies for the two electronic states),

0.4 ‘ : , and tested various mixed quantum-classical approximations. We
 uantum Mechanical considered separately two situations: the case when the

~~~~~~~~~~ Dynamic Classical electronic dephasing is fast compared to vibrational relaxation,

—— Averaged Classical and the opposite casg¢he vibrational relaxation is faster than

& o0zl @ Q-solute C-solvent the electronic dephasing. We have found that in the first case
- the approximation where the primary mode is treated quantum
mechanically and the solvent is treated classically provides the
best overall agreement with the quantum mechanical spectrum.
0.0 : . ; . In the second case, the best mixed quantum-classical ap-

00 05 10 pls 20 25 proximation is provided by the averaged classical treatment.

Figure 8. Plots of the temperature and coupling dependence of the Thes_e findings are Con_SIStem with the resulf[s frqm the previous
dephasing rate T{* Shown are the fully quantum mechanical result S_e_ctlon on the vibrational energy relaxation in the case of
(solid line), dynamic classical approximation (dotted line), average Pilinear coupling.
classical approximation (dashed line), and the result of the mixed One final remark is that all spectra in our work were
quantum-classical treatment where the primary mode is treated quantumcalculated within the FranekCondon approximation, and the
mechanically and the bath is treated classic@ly@-solute, C-solvent). averaged classical method was generally found to give highly
o ] ) accurate results. However, if one goes beyond the Franck
proximation where the primary mode is treated quantum condon approximation, the off-diagonal matrix elements of the
mechanically and the bath_ls t_rea_ted classically. As can be clearlydipme operator acquire a dependence on the bath coordinates,
seen from Figure 7, this is indeed the case: the above gnq the analysis of the Wigner form of the corresponding time
approximation captures only the envelope of the spectrum, andcoprelation function would no longer suggest classical propaga-
fails to predict the individual vibronic features. As expected tjon with the average Hamiltonian. In other words, the averaged
from the work of Bader and Berrié the problems with this  ¢jassical method then can no longer be expected to provide
method are somewhat less pronounced at higher temperatures,ccyrate results. This is similar to our findings on the electronic

In contrast to the case of fast electronic dephasing, for the rgjaxation rates calculated in the adiabatic approximation
present choice of parameters the dynamic classical approximapresented in the previous Section.

tion does capture the overall shape and width of individual
vibronic features; howeyer, they are shifted with respect to thg V. Discussions and Conclusions
exact quantum result. Finally, the averaged classical result is
essentially indistinguishable from the fully quantum spectrum,  The problem of obtaining accurate quantum mechanical time
and therefore is not shown in Figure 7. As in the case of correlation functions in many-body systems is of primary
nonradiative electronic relaxation, performing the averaging with importance for calculating numerous observables of interest in
the Wigner initial distribution is expected to improve the physics and chemistry. Unfortunately, at the present time the
performance of mixed quantum-classical treatments. However, exact solution to the above problem is possible only for highly
the major improvement occurs at high frequencies, i.e., in the simplified models, such as harmonic baths. As an alternative,
tails of the spectra, where the magnitude of the spectra are rathevarious mixed quantum-classical treatments have been widely
small, and therefore the improvement is not noticeable. used over the past several decades. In these methods, the full
As is clear from the above discussion, one of the major many-body system is generally divided into a few highly
deficiencies of mixed quantum-classical treatments in calculating quantum degrees of freedom (for which the characteristic
vibronic spectra is that they produce incorrect results for the energies are higher than the temperature), and the remaining
positions and widths of individual vibronic features. The above modes, for which the characteristic energies are lower than the
quantities are given by the frequency shifts and dephasing ratesemperature, and which are treated classically. However, the
which, in turn, are determined by the long-time behavior of the above criterion for selecting the classical modes does not
corresponding time-correlation functions. In order to address necessarily guarantee the accuracy of the mixed quantum-
this issue, we have adopted and generalized the theory ofclassical treatments, since it is imperative to achieve a consistent
Skinner and Hst$6-168 which allowed us to calculate the dynamical treatment of quantum and classical degrees of
frequency shifts and the dephasing rates for the fully quantum freedom, and to properly describe the feedback between the two
mechanical case and for the dynamic and averaged classicabubsystems.
approximations. The results of our calculations are presented The above goals are achieved in different ways depending
in Figure 8. The dynamic classical treatment underestimates theon a particular realization of the mixed quantum-classical
dephasing rates severely as the coupling strength in the initialapproximation, but in most cases certain ad hoc assumptions
electronic state goes to zero, while the averaged classicaland uncontrollable approximations are unavoidable. Therefore,
approximation reproduces the quantum dephasing rates reasoni is of great importance to assess the accuracy and the range of
ably well over the whole range of the coupling strengths. For validity of the mixed quantum-classical treatments by comparing
the approximation where the primary mode is treated quantum their predictions to the quantum mechanical results for exactly



10988 J. Phys. Chem. B, Vol. 103, No. 50, 1999 Egorov et al.

solvable models. It also would be advantageous to adopt athe quantum time correlation function in powers of Planck’s
systematic approach for developing mixed guantum-classical constant and to incorporate this information into correcting the
treatments, since it would allow not only the systematic results of the mixed quantum-classical approximation. Another
improvement of the results for the observables of interest, but way is to resort to semiclassical methods, such as the afore-
would also elucidate the mechanisms for the processes undeimentioned linearized SC-IVR which implies a Wigréteyl
consideration. One such systematic proceeiasgansion of the  transform of the correlation function, or to its fully-blown
guantum time correlation functions in powers of Planck’s version which would also partially correct part of the incorrect
constant-forms the basis of our recent work, which has been dynamics.
reviewed in the present article. We have also considered various empirical quantum correc-
Starting with a general harmonic Hamiltonian, we have tions (such as those due to Schofield and Egelstaff) in the context
specialized it and adopted it to study various physical processes Of vibrational energy relaxation in condensed phases. A common
including both radiative and nonradiative transitions of impuri- feature in these empirical prescriptions is the replacement of
ties (solutes) in condensed phase environments (baths). We havéhe time argument in the classical time-correlation function by
calculated the observables such as vibronic absorption spectra@ different argument, which depends on time, temperature, and
electronic dephasing rates, and electronic and vibrational energyPlanck’s constant. As a result, the moments of this modified
relaxation rates. In each case, our major interest was to comparel CF get closer to the true quantum values. However, such
the exact quantum result for a given observable with a mixed Prescriptions are ad hoc in nature, i.e., they cannot be derived
quantum-classical approximation to it, where (generally) the in @ rigorous andsystematicway. Indeed, our studies have
solute is treated quantum mechanically, and the bath classically. Shown that none of these procedures is robust enough to provide
For that reason, we have always modeled the condensed phas8ccurate results for vibrational relaxation rates for different

environment as a harmonic bath. solute-solvent interaction potential.

A. Vibrational Energy Relaxation. For the problem of B. Nonradiative Electronic Relaxation.For the problem of
vibrational energy relaxation, we have considered two specific €l€ctronic energy relaxation, we have considered a model with
models for the system-bath couplingilinear and exponential two PESs, corresponding to the two electronic states of the

and have found that in both cases a fully classical treatment SOlute- Due to afinite energy spacing between these two states,

gives more accurate results than the mixed quantum-classicafN® relevant time correlation function retains some quantum
one character, and the mixed quantum-classical approximation is

In the case of bilinear coupling (i.e., single-phonon relaxation) not unique. Specifically, there is a certain arbitrariness in the
: . ping {1.€., Single-p =7 choice of the Hamiltonian that is used to propagate the classical
the error in the mixed quantum-classical approximation is

. . . . .~ degrees of freedom.
entirely due to the incorrect thermal averaging, since classical . ) . .
and quantum dynamics for this model are the same. Concomi- We have considered a Wigner form for the appropriate time
tantly, the fully classical result for the relaxation rate in this correlation function, and have shown that the above arbitrariness

case agrees exactly with the quantum mechanical one. Thiscan be used to some advantage, i.e. one can attempt to find an

suggests that, for single-phonon processes, it is enough to correc?ptlmall propagation scheme for the classical degrees of freedom

only the initial distribution with which the averaging is :Egtcpargedlcj)?itsai?cectz)?tli?]grsgtTNeer:nV\;ﬁzi\r/]veo%usgéu(rinereigts.liior
performed. However, in highly anharmonic systems this may . piing . o piing
not be sufficient. independent of nuclear coordinates and momenta) we have

. . . shown that for our model the optimal propagation scheme
In the case of highly nonlinear systerbath coupling (that  i,yolves an arithmetic average of the nuclear Hamiltonians

is appropriate for multlphonon relaxation PVOCGSSGS) the MOst 4ssociated with the initial and final electronic states. In the case
severe breakdown of mixed quantum-classical and fully classical \yhen the two multidimensional harmonic surfaces corresponding
treatments occurs at high solute vibrational frequencies, whereiy tne two electronic states differ only with respect to the
these treatments can underestimate the relaxation rates by Sever@builibrium positions of individual modes (but the frequencies
orders of magnitude. This situation has been recently illustrated 5f these modes are the same and there is no mode mixing
with a particular physical example by Everitt et &,who involved), the above averaged quantum-classical treatment
studied vibrational energy relaxation in liquid oxygen, where produces the exact quantum result for the patevided it is

the vibrational frequency of the solute exceeds the temperaturecombined with the thermal averaging performed with the Wigner
of the solvent and its typical translational frequency by more jstribution. Once again, the error in the standard mixed
than 30 times. The above breakdown of mixed quantum-classicalquantum-classical approximation (i.e., the one based on the
approximation is a consequence of both incorrect thermal jnitial state classical propagation) arises both due to the incorrect
averaging and incorrect dynamics, with the latter factor ac- treatment of the dynamics (which can be fixed by choosing the
counting for the major part of the error. More specifically, the optimal propagation scheme) and due to the incorrect averaging
high-frequency vibrational relaxation rates are mostly sensitive (which can be fixed by using the Wigner distribution). In
to the short-time behavior of the relevant time correlation contrast to the case of vibrational energy relaxation, both factors
function. It can be shown that the mixed quantum-classical contribute nearly equally (about 1 order of magnitude for the
treatment produces large errors in the short-time expansioncase studied) to the error in the electronic relaxation rate. Given
coefficients of TCFs, which, in turn, leads to the errors in the the importance of performing thermal averaging with the Wigner
relaxation rates. The above errors arise primarily due to the distribution, we note that for anharmonic systems this can be
incorrect treatment of the dynamics, and to a much lesser extentachieved approximately by employing the same methodology
to the incorrect thermal averaging. Thus, employing a Wigner as the one used in the semiclassical initial value representation
initial distribution is not expected to improve the results method to treat the time dependence. However, the success of
significantly. One possible way of improving the results of the Wigner method for anharmonic systems is still open for
mixed quantum-classical treatment is to perform a systematic future investigations, and the overall good performance for the
expansion of the first few time-series expansion coefficients of presentharmonicsystem is likely to break down.
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For the case of adiabatic (i.e., momentum-dependent) cou- The above conclusions are consistent with our findings on
pling, the analysis of the Wigner form of the time correlation vibrational energy relaxation in the case of bilinear system
function is considerably more involved. The only conjecture bath coupling. Specifically, in the case of fast vibrational energy
we can make at this point is that the optimal propagation schemerelaxation, the vibrational relaxation rates contribute significantly
is likely to be different from the averaged Hamiltonian, however to the widths of individual spectral features, and the mixed
the later propagation scheme provides reasonably good agreequantum-classical treatment (quantum-solvetassical-sol-
ment for the quantum mechanical relaxation rates. vent) can be expected to give inaccurate results similar to the

Motivated by the finding that for vibrational relaxation vibrati(_)nal relaxation model of Bader_ and Bern_e. On thg other
problem in the case of bilinear coupling a fully classical hand, in the case of the fa_st electronic dephasing the widths of
treatment provided more accurate results than the mixed SPectral features are dominated by low-frequency two phonon

guantum-classical approximation, we performed a fully classical processes, as can be. easny.seen by transforming the Hamllto.nlan
treatment of the electronic relaxation problem. We have for the nuclear coordinates into the normal mode representation.

formulated the problem using the Meyévliller Hamiltonian, Lt tl:rr;s OL\%??’ Irn tglsmti:gs;e,dtrz)e mdthls Otfr ";?'Véduil SﬁfCtrratl
which we treated classically, in combination with the Wigner eatures (which are dominated by the electronic dephasing rate)

form of the appropriate initial distribution. The results for the are given sufficiently accurately by all mixed quantum-classical

rates obtained with the above method were in good agreemem’treatments. However, the performance of the different methods

. is very different in determining the peak positions (or the shifts)
with the exact quantum result§, though _the per_formance Qf the of the vibronic spectral features. The dynamic classical treatment
averaged classical propagation combined with the Wigner

e . _displaces the spectral features significantly compared to the
dlstrlbutlon was somewhat bet'ger. However, the success of th'squantum results, while the other two approximations provide
particular mixed quantum-classical scheme (the averaged pmpaTairIy accurate results
gation scheme) might be limited to the case O.f harmonic models, Turning now to the ramifications of our findings on radiative
and for anharmonic systems the.f.ully classical trgatment may processes for realistic physical systems, we can make the
well prove to be superior. Ir_] addition, we WOUI(_j like to pO.Int following remarks. Firstly, when the experimentally measured
out that in contrast to the mixed quantum-classical approxima-

. h ¢ . f the Hamiltonian i he M spectrum is featureless (which is likely to occur for high
thn, the transformation of the Hami tonla_n into the Meyer temperatures and/or strong systebath couplings), any of the
Miller scheme does not suffer from nonuniqueness. Therefore

> ) . X A 'mixed quantum-classical treatments will produce sufficiently
we believe that this treatment is superior to the mixed quantum- 5. rate results. Secondly, when the vibronic structure is clearly
classical approximations. pronounced in the spectrum, the choice of the best mixed
While our primary interest in considering nonradiative quantum-classical approximation is dictated by the relative
electronic processes was the calculation of multiphonon energymagnitude of vibrational relaxation and electronic dephasing
relaxation rates (i.e., large gap limit), we note that the same rates. It would be safe to conjecture that in the majority of
methodology can be applied to study electron transfer reactionsphysical systems the electronic dephasing will dominate over
in condensed phases. However, in the latter case the energyibrational relaxation, and the mixed (quantum primary mede
gaps involved are typically smaller than those involved in the classical solvent) treatment would be the optimal one. However,
electronic energy relaxation processes. Therefore, the appropriatethe above two rates differ markedly in their temperature
criterion for choosing the best mixed quantum-classical ap- dependence, and it is conceivable that for certain temperatures
proximation for electron transfer reactions should be based onand system-bath couplings the opposite situation will be realized,
its performance at small and intermediate energy gaps ratherin which case the averaged classical treatment (at least for
than at large energy gaps. We will return to this point below harmonic systems) is the method of choice.
after the discussion of radiative processes. Finally, going back to our remark on the electron transfer
C. Vibronic Absorption Spectrum. We have also assessed ~reactions, we note that the rates for these processes can be
the accuracy of mixed quantum-classical approximations in calculated using the same methodology as the one employed to
treating radiative processes in condensed phases, taking as §alculate the vibronic absorption spectrum. Hence, the mixed
test case the calculation of the vibronic absorption spectrum of (quantum primary modeclassical bath) treatment is generally
a diatomic molecule bilinearly coupled to a harmonic bath. To likely to give the most accurate results for the electron transfer
establish contact with our work on nonradiative processes, we "at€s-
have considered separately two situations: the case when the o
electronic dephasing is fast compared to vibrational relaxation, V!- Future Directions
and the opposite case of vibrational relaxation faster than the |, tnis article we have reviewed our recent work on the

electronic dephasing. We have found that in the first case the ajigity of mixed quantum-classical approximations for treating
approximation where the primary (diatomic) nuclear mode is gynamical processes in condensed phases. Our results have
treated quantum mechanically and the solvent is treated clas-yemonstrated that these approximations have to be used with
sically provides the best overall agreement with the quantum extreme caution. For problems involving a single potential
mechanical spectrum. This is expected since in the case of anenergy surface (such as vibrational energy relaxation) the mixed
isolated molecule (i.e., for vanishing systetrath coupling),  quantum-classical approximation is unique, and for solute
it is necessary to treat all degrees of freedom quantum frequency large compared to the thermal energy it fails to
mechanically to obtain the proper FraregRondon overlaps.  provide accurate results. For problems with multiple surfaces
Hence, for small systerrbath coupling, when the electronic  (such as electronic relaxation and vibronic spectra) the mixed
dephasing dominates the absorption spectrum, a fully quantumquantum-classical approximations are not uniquely defined, and
treatment of the subsystem is required. In the second case, thelue to the arbitrariness in the choice of the propagation scheme,
best mixed quantum-classical approximation is provided by the the accuracy of the mixed quantum-classical treatment can be
averaged classical treatment, and the quantum-sedlassical- improved. However, in order to achieve accurate results, one
solvent approximation breaks down completely. needs to perform thermal averaging with the Wigner initial
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distribution instead of the classical one. While for harmonic

systems considered in the present work this can be readily done,

for anharmonic systems this is a highly nontrivial problem.
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rule, and therefore the later treatment neglects the feedback (11) Tully, J. C. Nonadiabatic processes in molecular collisions. In

between the quantum and classical subsystems. One possibl%m

way to go beyond the lowest order perturbation theory and
include the feedback is provided by the surface hopping
technique? However, similar to the approximate treatments
considered in this work, the surface hopping method also relies
on the mixed quantum-classical description of the system. When
the coupling between the quantum states involved is weak, the
perturbation theory is valid, and therefore the results from the
surface hopping calculations are expected to be similar to those
obtained from the mixed quantum-classical perturbative ap-
proach taken in this work. The methods for improving these
results (i.e., “mixed state propagation” and thermal averaging
with the Wigner distribution) can be readily incorporated into
a surface hopping method, although the same limitations as
discussed in the previous Section would also apply.

In the case where mixed quantum-classical approximations
fail, one needs to resort to a higher level of approximation such
as the semiclassical methods. One such possibility is to employ
the linearized semiclassical initial value representation method.
We have applied this method to the calculation of electronic
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relaxation rates based on the reactive-flux approach and obtained_(31) Webster, F. J.; Rossky, P. J.; Friesner, R.Gamput. Phys.

very good agreement with the fully quantum mechanical result
even for large energy gap3. The use of the reactive-flux
formalism implies that the method is not limited to the weak
coupling regime. The main limitation of this approach is that it
requires the knowledge of the Wigner distribution, which is
difficult to obtain for anharmonic systems. Another possibility
is the rigorous forwaretbackward semiclassical formulation of
many-body dynamic® More work is needed before this
approach will become practical for many-body systems.
Finally, we would like to mention that there exists and is
currently being developed an entirely different approach to

Commun.1991 63, 494.

(32) Webster, F. J.; Schnitker, J.; Friedrichs, M. S.; Friesner, R. A;;
Rossky, P. JPhys. Re. Lett. 1991, 66, 3172.

(33) Schwartz, B. J.; Rossky, P.J.Chem. Phys1994 101, 6902.

(34) Schwartz, B. J.; Rossky, P.J.Chem. Physl1996 105 6997.

(35) Minay, P.; Turi, L.; Rossky, P. J. Chem. Phys1999 110, 10953.

(36) Thirumalai, D.; Bruskin, E. J.; Berne, B. J. Chem. Phys1985
83, 230.

(37) Heller, E. JJ. Chem. Phys1975 62, 1544,

(38) Heller, E. JJ. Chem. Phys1981, 75, 2923.

(39) Ben-Nun, M.; Levine, R. DChem. Phys1995 201, 163.

(40) Ben-Nun, M.; Levine, R. D.; Jonas, D. M.; Fleming, G.Ghem.
Phys. Lett.1995 245 629.

(41) Jungwirth, P.; Fredj, E.; Zdanska, P.; Gerber, RCBmput. Chem.

S ! 1997, 21, 419.
quantum dynamics in conden_sed p.hase.S t.hat !S baS.Ed on (42) Jungwirth, P.; Fredj, E.; Gerber, R. J. Chem. Physl997, 107,
performing the fully quantum simulations in imaginary time 8963.

(thus obviating the sign problem), and performing an analytic
continuation to the real time using various meth#dsuch as
maximum entropy/®172 singular value decompositidri3174
etc. The above analytic continuation is a well known ill- defined
problem, which makes it extremely difficult to obtain accurate
real-time information from the simulated quantum imaginary-
time data with realistic levels of noise. To achieve this goal,
much further work is required.
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