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1. INTRODUCTION

The hydrophobic effect plays a fundamental role in biology
and nanoscale engineering. Great strides have been made in our
understanding of the mechanism of hydrophobic assembly by
elucidating the behavior of solvent near interfaces of variable
length scale.1!18 In addition, the hydrophobic effect is crucial
to understanding the nature of surface friction in nanoscale fluid
transport.19!24 Surface friction characterizes the boundary con-
dition in the continuum description for fluid flow across inter-
faces of varying hydrophobicity.

Despite recent efforts to improve our understanding of the
hydrophobic effect, to our knowledge the role of hydrodynamic
interactions in hydrophobic assembly has not been considered.
Within the framework of Brownian dynamics, hydrodynamic
interactions are incorporated in the frictional force by means of a
resistance (friction) tensor that is dependent upon the degrees of
freedom of the Brownian bodies.25 Hydrodynamic interactions
are typically treated in the simulation of colloidal suspensions
within the continuum description of low Reynolds number
flow.26!29 Recently, polydisperse colloidal simulations intended
to mimic cytoplasm reported that hydrodynamic interactions
give rise to the slow diffusion of macromolecules observed in
crowded cellular environments.30

For small separations, the continuum description is domi-
nated by lubrication effects, which yield a friction constant that
diverges as two bodies come into contact. Such frictional forces
arise from the assumption that there is a fluid element present
even as the spacing approaches zero. Naturally, this description
breaks down when molecular-scale effects become important at
small length scales. The continuum description of the Navier!
Stokes equation is expected to be valid down to length scales of

approximately 1!2 nm.21,24 Therefore, molecular-scale effects
should be considered when only a few solvent layers separate the
solute.

The spatially dependent friction tensor can be extracted from
explicit molecular dynamics simulations where all bath degrees of
freedom are included. This may be achieved in either the
Brownian limit or when memory effects are included.31!36 To
our knowledge, the friction tensor between two bodies has only
been previously computed in Lennard-Jones fluids.33,36,37 Pre-
sently we consider the spatial dependence of the friction constant
as a function of the distance between two nonpolar spherical
bodies in explicit water. The spatial friction, in concert with the
(nonhydrodynamic) potential of mean force along the relative
direction, facilitates the modeling of two-body assembly in the
Brownian limit and an assessment of the importance of hydro-
dynamic and nonhydrodynamic forces.

This work aims to elucidate the role that hydrodynamics plays
in hydrophobic assembly. We take as our model solute two
fullerenes, either two C60s or two C240s. Unsubstituted full-
erenes are insoluble in water,38 and thus, to our knowledge there
are no experimental data on their transport in water. Never-
theless, they are a useful model for theoretically probing the
transport of nanoscale bodies. The hydrophobic collapse of two
bodies in explicit water10,12 and pathways for self-assembly of
hydrophobic spheres in a coarse-grained solvent model9,15 have
been previously studied. The potential of mean force of two
C60 molecules in water has also been computed.39,40 However,
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ABSTRACT: Solvent plays an important role in the relative
motion of nanoscopic bodies, and the study of such phenomena
can help elucidate the mechanism of hydrophobic assembly, as
well as the influence of solvent-mediated effects on in vivo
motion in crowded cellular environments. Here we study im-
portant aspects of this problem within the framework of
Brownian dynamics. We compute the free energy surface that
the Brownian particles experience and their hydrodynamic
interactions from molecular dynamics simulations in explicit
solvent. We find that molecular scale effects dominate at short
distances, thus giving rise to deviations from the predictions of
continuum hydrodynamic theory. Drying phenomena, solvent
layering, and fluctuations engender distinct signatures of the molecular scale. The rate of assembly in the diffusion-controlled limit is
found to decrease from molecular scale hydrodynamic interactions, in opposition to the free energy driving force for hydrophobic
assembly, and act to reinforce the influence of the free energy surface on the association of more hydrophilic bodies.
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the interplay between the free energy surface and hydrodynamic
interactions has not yet been considered. As we will show, solvent
fluctuations and drying phenomena manifest themselves as
hydrodynamic interactions within the Brownian framework.
We find that because slow relaxation times are associated with
the solvent at the drying transition the separation of solute and
solvent time scales required by a Brownian description of
hydrophobic assembly may not always be satisfied.

The solute!solvent interactions are described by both attrac-
tive and purely repulsive potentials. For the purely repulsive
model of the fullerene we observe a drying transition,5 one which
is more pronounced for C240 than C60, a finding which is in
agreement with the known length-scale dependence of drying
phenomena.7,10 The attractive spheres do not dry as they
approach each other, and water is expelled from the intersolute
region by means of steric repulsion. We find that the spatial
dependence of the friction constant is quite different in each of
these cases. In particular, drying phenomena and solvent layering
engendered by attractive potentials are shown to possess distinct
signatures in their respective friction tensor. Hydrodynamic
interactions at the molecular scale are related to the variability
of solvent density, fluctuations, and relaxation times in the
intersolute region as two bodies approach.

The rate constant for assembly is computed via a Smoluchowski
Analysis.33,41!45 We find that for two-body assembly the inclu-
sion of hydrodynamic interactions decreases the rate of reaction
in the diffusion-controlled limit by approximately 30!40%. In
the case of ideal hydrophobic assembly (that is when no
solute!solvent attraction is present), the frictional and mean
force can be said to have opposite effects. When solute!solvent
attraction is included, they tend to reinforce each ether’s impact
on the rate of assembly.

This paper is organized as follows. Section 2 reviews the
formalism of hydrodynamic interactions and Brownian motion.
Simulation details are given in Section 3. Results are given for the
friction coefficient on a single body in Section 4 and are com-
pared with the Stokes!Einstein relation with periodic boundary
corrections. In Section 5 an analysis of the assembly of two
nonpolar solutes within the framework of Brownian motion is
presented. Discussions and conclusions are given in Section 6.

2. LANGEVIN DYNAMICS AND HYDRODYNAMIC
INTERACTIONS

In this work, we seek to characterize solvent-mediated effects
on two spherical bodies. The Brownian limit is considered such
that the bodies evolve on a much slower time scale than the
solvent bath. The dynamics of such a system can be described by
an equation of motion that includes contributions from three
forces, a frictional force, a mean force, and an uncorrelated,
Gaussian random force. Due to the symmetry of the problem, the
relative distance r = |rB2 ! rB1| between the spheres is the only
coordinate necessary to characterize the approach of the two
solute bodies. In the present study, we concentrate on this
direction and will consider the friction along other degrees of
freedom in future work. When hydrodynamic interactions are
included in the frictional force, the Langevin equation for the
motion of the relative coordinate is given by25

μ€r ¼ !∇W ðrÞ ! ζðrÞ_r þ Rðr, tÞ ð1Þ

where μ is the reduced mass andW rð Þ is the potential of mean
force. In the Brownian limit the solvent (hydrodynamic) time

scale is separable from the motion of the solute, and so the
friction tensor may be computed at fixed solute positions.46 This
is analogous to the Born!Oppenheimer approximation, which
assumes a similar separation of time scales between nuclear and
electronic degrees of freedom. The (nonhydrodynamic) free
energy profile contains contributions from both direct solute!
solute interactions and induced solvent-mediated forces. In the
limit of large friction, the term on the left-hand side of eq 1 may
be neglected. The friction coefficient ζ(r) can be determined
from the full two-body tensor as reviewed in the Appendix. The
random force, R(r,t), is Gaussian, uncorrelated noise with zero
mean and a variance that is related to the friction coefficient via
the fluctuation!dissipation theorem

ÆRðr, tÞRðr, 0Þæ ¼ 2kbTζðrÞδðtÞ ð2Þ

As indicated by eq 1, when hydrodynamic interactions are
included the friction coefficient depends on the distance between
spheres. If hydrodynamic interactions are ignored, then ζ(r)f ζ0,
where ζ0 is taken to be the friction coefficient on the relative
coordinate at infinite separation where no spatial dependence is
assumed.

Hydrodynamic interactions that yield the spatial dependence
of the friction coefficient are typically computed by means of
approximate solutions of the linearized Navier!Stokes equation
valid for incompressible flow at low Reynolds number. A ubiqui-
tous formulation of hydrodynamics frequently utilized in colloi-
dal simulations is Stokesian dynamics.26,27 Stokesian dynamics
interpolates between an exact two-body solution for short-range
interactions47 and the long-range many-body result derived from
the Rotne!Prager tensor as applied to systems with periodic
boundary conditions.48 Other techniques may also be utilized to
compute continuum hydrodynamic interactions,28,29,49,50 and the
continuum formulation has been recently employed as a framework
for coarse-grained solvent models.51 In this work, we will compare
our molecular-scale results to both the expression of ref 47 and the
Oseen tensor computed with periodic boundary conditions.52,53

The Oseen tensor is the leading order term of the Rotne!Prager
expression.46

The continuum approach breaks down for small particle
separations, and in this work we seek to determine hydrodynamic
interactions at the molecular scale. The solvent bath is treated by
explicit Newtonian (microcanonical) molecular dynamics simu-
lation. All bath degrees of freedom and microscopic details are
present in our simulation. The friction coefficient is related to the
microscopic fluctuations in the linear response regime by means
of a Green!Kubo relation. This equates the friction tensor to the
correlation function of the fluctuations of the total force on each
Brownian body, δFi = Fi ! ÆFiæ.54

ζ__ij
¼ 1

kbT

Z ∞

0
dt lim

N f ∞
Æδ FBiðtÞδ FBjð0Þæ ð3Þ

Where ζij is a component of the friction tensor (see Appendix).
Unfortunately, this formula may only be directly applied in both
the Brownian limit (Msolute f ∞) and in the thermodynamic
limit where the number of solvent molecules, N, approaches
infinity.35,36,54 Although the former requirement may be satisfied
by fixing the positions of the Brownian particles, the latter
requirement gives rise to subtle complications in a finite simula-
tion. Utilizing the techniques developed by Bocquet et al., eq 3
may be employed to indirectly compute the two-body friction
coefficient; that is, the MD estimate of ζ__ij can be related to linear
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combinations of the submatricies of the friction tensor.36 Similar
complications are present in the computation of the friction on a
single body.35 Further details are provided in the Appendix.

3. SYSTEM SETUP AND SIMULATION DETAILS

To gauge the impact of size effects, we utilize two fullerenes,
C60 and C240, as our model nonpolar bodies. The twomolecules
and their relative sizes are depicted in panel (b) of Figure 1. The
solute!solvent interactions are described by two forms, a
Lennard-Jones (LJ) interaction with parameters σSS = 0.332 nm
and εSS = 0.423 kJ/mol, and a Weeks!Chandler!Andersen
(WCA) truncation of this potential.55 As will be shown below,
there is vastly different behavior when the potential is attractive
or purely repulsive. For the purpose of the friction analysis,
the fullerenes are treated as spheres, and the friction coefficient
is computed on their respective centers of mass. On the basis of
the choice of repulsive core, the estimated van der Waals
diameters for C60 and C240 are σ = 1.0 nm and σ = 1.7 nm,
respectively.

The friction is sensitive to periodic boundary conditions
(see Section 4), and we utilize as large a system as is computa-
tionally feasible. For runs containing C60, the base box length
prior to equilibration is 5.0 nm, and for C240 it is 6.0 nm. In
systems containing two fullerenes, a set of calculations was run
with the bodies frozen and set at a fixed distance apart from each
other. The box length is extended by the separation between
solute centers of mass in the axial direction of the starting
configuration of each computation. The number of water mol-
ecules utilized to represent the solvent varies between approxi-
mately 5000 and 11 000 depending on the size of the fullerene
and the size of the separation. Water is modeled with the TIP4P
potential.56 Snapshots57 of two C240 molecules fixed at three
different separations are shown in Figure 2. Each system was
equilibrated under NPT conditions for 2 ns and NVT conditions

for 1 ns. The barostat of Berendsen58 and a stochastic velocity
rescaling thermostat59 were employed during equilibration runs
to maintain a temperature of 300 K and a pressure of 1 bar. To
compute the friction coefficient, data were collected from 10!18
NVE runs of 4 ns in length at each fixed distance. All calculations
were performed using GROMACS version 4.5.3.60 As the friction
is a probe of the solvent momentum relaxation in the presence of
the solute bodies, its computation requires strict energy con-
servation in the microcanonical ensemble. NVE runs were
performed in double precision.

The computation of the spatially dependent friction coefficient
requires constant energy simulations, and three-dimensional
periodic boundary conditions are necessary for comparison
with long-range periodic continuum hydrodynamics. Therefore,
behavior at the drying transition must be studied at constant
volume and in the absence of an interface. The number of solvent
molecules we chose is large enough to accommodate the study of
a dewetting transition, and although the behavior is modestly
perturbed by this choice of ensemble, the qualitative features of
the friction at the critical distance for dewetting are not expected
to suffer. As the two solutes are fixed throughout all computa-
tions, direct solute!solute interactions are not a component of
the simulations described above. Direct interactions between
fullerenes are included in the computation of the rate constant in
Section 5.3, and the solute!solute potential has the parameters
σ = 0.35 nm and ε = 0.276 kJ/mol.

4. FRICTION ON A FULLERENE IN SOLVENT

The strength of nonpolar attractions plays an important role in
the degree of particle hydrophobicity (see, e.g., ref 8). This is
readily seen in panel (a) of Figure 1, where the pair correla-
tion function of the solvent with respect to the center of mass of
the fullerene is plotted. Whereas the attractive fullerenes exhibit
significant structuring of the first solvation shell, the water

Figure 1. (a) Pair-correlation function from the center of C240 (top panel) or C60 (bottom panel) to the oxygen site on the water molecule depicted for
the cases when the solute!solvent potential is purely repulsive (dashed black curve) or includes attraction (solid red curve). (b) The two fullerenes
utilized to model nonpolar spherical bodies, C60 (left) and C240 (right), are visualized with VMD.57 The estimated diameter for each species is 1.0 and
1.7 nm, respectively. (c) Two spherical bodies of diameter σ are placed a distance r from each center. A cylindrical probe volume (blue lines) is chosen
such that its length is r!σ and its diameter determined by the angle ϕ = 90!. This volume can be further partitioned into an inner-tube (red lines) whose
diameter is determined by the angle θ = 60! and an outer shell that is the difference between the two probe volumes.
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density is depleted near the surface of the repulsive bodies. The
pair correlation function for C60 is in good agreement with
previous studies of hydration around fullerenes.61 Furthermore,
depletion becomes more prominent with increasing solute size, a
finding that is in agreement with prior theoretical predictions and
simulation.7,14

The friction coefficient of a single C60 and C240 molecule is
computed utilizing both the LJ and WCA solute!solvent
potentials. These values may be related to the Stokes radius via
the Stokes!Einstein relation corrected for periodic boundary
conditions (PBCs).52,62 As noted in the cited works, PBCs have a
large impact on the measured friction. The leading order of this
correction, as formulated in ref 62, is given by the following
expression

1
ζiso

¼ 1
ζPBC

þ ξ
6πηL

ð4Þ

where ξ = 2.837297; L is the periodic box length; and η is the
shear viscosity. The value of the viscosity of the TIP4P model
used in this work has been taken from the literature.63

Once the friction coefficient of the isolated sphere, ζiso, has
been computed, it can be related to the Stokes radius, which is
given by

rstokes ¼
ζiso
cπη

ð5Þ

where c is equal to 4 or 6 for slip or stick boundaries, respectively.
Studies relating eq 5 to the results of molecular dynamics
simulation have appeared in the literature,64!66 and subtleties
associated with the appropriate hydrodynamic radius and bound-
ary choice should be addressed for a complete understanding of
how this continuum expression applies at the molecular scale.
Furthermore, we note that if our model solutes were perfect
spheres (which they are not) then the slip boundary condition
holds unless solute!solvent attractions are so large that solvent
molecules become entrenched on the surface.65 Presently, we

simply assume either a stick or slip boundary condition and
compute the stokes radii of the fullerenes with the LJ and WCA
solute!solvent potentials. The results are presented in Table 1
and compared with the estimated van der Waals radii. One can
see that the Stokes radii of the purely repulsive spheres with slip
boundary conditions are in very good correspondence with the
van derWaals radii. As themolecules becomemore attractive, the
friction coefficient increases as does in this sense the “stickiness”
of the surface. This is in agreement with studies of water at
interfaces, which have shown that there is a correlation between
hydrophobicity and the friction tangential to the surface.19,20

Furthermore, studies of particle diffusion in a Lennard-Jones
fluid have exhibited similar trends as a function of solute!solvent
attraction.65,66

In the following analysis, we determine the friction coefficient
along the relative coordinate in units of ζ0 = ζPBC/2 for each
respective fullerene and solute!solvent potential. The two-body
simulations utilize a periodic box of dimensions (L + d)& L& L,
and therefore this choice accounts for the impact of periodic
conditions. Changes relative to ζ0 are a result of hydrodynamic
interactions and not PBC artifacts.

5. TWO-BODY RELATIVE FRICTION

The friction coefficient on the relative coordinate has been
computed as a function of the distance between two spherical
bodies where the solute!solvent interaction is either attractive

Figure 2. Friction coefficient plotted as a function of the distance between two C240molecules when theWCA potential and LJ potential are utilized to
model solvent!solute interactions (black dotted line with circles and red dashed line with squares, respectively). The two-body (continuum)
hydrodynamics result of ref 47 (solid blue line) and the periodic Oseen tensor (dashed green line) are plotted against the molecular-scale computation.
The three right-hand panels depict snapshots at separations (increasing from top to bottom) where, in the case of the WCA spheres the intersolute
region is dry and the friction coefficient is low (violet circle), at the dewetting transition where the friction coefficient peaks (orange circle), and for large
distances where the friction coefficient decays toward the baseline result (green circle). Water molecules within 0.6 nm of the fullerene surface are
depicted by a ball-and-stick representation. All others are represented as lines. The snapshots were visualized with VMD.57

Table 1. Table of Computed Stokes Radii for C60 and C240
with Differing Solute!Solvent Interactions

Stokes radius

(slip)

Stokes radius

(stick)

estimated

vdW radius

C60 WCA 0.53 nm 0.35 nm 0.50 nm

C60 LJ 0.66 nm 0.44 nm 0.50 nm

C240 WCA 0.84 nm 0.56 nm 0.85 nm

C240 LJ 1.06 nm 0.70 nm 0.85 nm
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or purely repulsive. We find starkly different behavior in each
case, as will be discussed below. In both cases, there is significant
deviation from continuum hydrodynamic predictions at small
separations. In Figure 2 we plot the relative friction coefficient as
a function of the sphere separation r!σ for C240 where solute!
solvent interactions are purely repulsive or include attraction.
Two expressions from continuum hydrodynamics, the two-body
result valid at small separations and the result of the Oseen tensor
corrected for periodic boundary conditions that is valid at long
range, are also plotted.47,52,53,50 One can see that although the
friction coefficient for r!σ > 1 nm approaches the long-range
continuum result the short-range value does not diverge at the
point of contact as predicted by the expression of ref 47. Instead,
the frictional profile exhibits distinctive features of molecular-
scale effects. For purely repulsive bodies, the friction coefficient
peaks at a distance that corresponds to the critical distance for
drying (see Section 5.1). This distance increases with solute
length scale,10 and such drying phenomena are not encom-
passed by continuum hydrodynamics. In the case of bodies that
strongly attract solvent, drying does not occur, and water is
expelled by steric repulsion. This result is dependent upon the
chosen value of εSS. More weakly attractive spheres can exhibit
dewetting. As discussed in Section 5.2, distinctive molecular-
scale behavior in which the friction coefficient exhibits signatures
of solvent layering is observed as solvent is expelled from the
intersolute region. Furthermore, we note that the values of the
long-range molecular-scale results plotted in Figure 2 appear to
approach the description given by the periodic Oseen tensor.
However, data points at larger separations would be necessary to
make more definitive comparisons.

The occupancy and fluctuations of solvent molecules in a
particular region of space may be monitored in a probe volume.
This technique is a standard tool to study the hydrophobic effect
(see, e.g., ref 4). Nested cylindrical probe volumes are presently
employed to study the water density and fluctuations in the
intersolute region. The probe cylinder is partitioned into an outer
shell and an inner-tube. Due to the curvature of the hydrophobic
surfaces, the density may be significantly different in the two
shells, a finding that is particularly true in the case of the
fullerenes which attract solvent. A diagram of the boundaries of
the probe volume is sketched out in panel (c) of Figure 1. The
length of the cylinder is determined by the separation of the
surfaces of bodies. The diameter of the cylinder is formed by a
line tangent to the effective spherical surface of the fullerene and
opposite an angle of 90!. The inner-tube is bounded in the same
fashion except the angle opposite the tangent segment is 60!.
5.1. Purely Repulsive Solute!Solvent Interactions. In this

section, the results when only repulsive interactions with the
solvent are present are discussed. The frictional profiles for C60
and C240 are given alongside their respective solvent-induced
potentials of mean force (PMF) in panels (a) and (b) of Figure 3.
It can be seen that the hydrophobic collapse along the relative
coordinate is essentially barrierless. This finding is in agreement
with previous simulations of the assembly of two hydrophobic
bodies in both coarse-grained and explicit solvent models.10,12,15

The density and fluctuations of water in the intersolute regions
are depicted in Figure 4. The onset of drying is at larger distances
with increasing solute size, an observation which is in agreement
with prior work.10 The drying transition for the approach of two
C240 molecules occurs when approximately two layers of water
would be present in the intersolute region if only steric effects
were considered. Upon inspection of Figure 4, it is apparent that

the ratio of density of solvent to its bulk value is less than unity
even at large separations when the region is wet, an indication
that water is depleted near the surface of the hydrophobe, a result in
agreement with the pair-correlation function shown in Section 4.
The fluctuations of water in the probe volume are plotted in

the lower panels of Figure 4. The chosen metric of fluctuations
ÆδN2æ/ÆNæ for a bulk fluid is proportional to the isothermal

Figure 3. Spatial friction coefficient (panel a) and solvent-induced
potential of mean force (panel b) as two C60 (red curve) and two
C240 (black curve) approach each other when the solute!solvent
interactions are purely repulsive. As expected, there is a greater driving
force for assembly with increasing solute length scale. Panels (c) and (d)
depict, respectively, the spatial friction and solvent-induced potential of
mean force as two C60 (red curve) and two C240 (black curve)
approach each other when the solute!solvent interactions include
attraction. In this case, no drying is observed, and there is a barrier for
desolvation of two water layers as the two bodies approach each other.
The friction coefficient is not given at the point of contact for the WCA
spheres due to the substantial uncertainty in the correlations of the force
fluctuations when the mean force is large.

Figure 4. Relative density of water (top row) and the ratio of the
variance to the average of the number of water molecules (bottom row)
in the probe volume plotted for C240 (left column) and C60 (right
column) when the solute!solvent interaction is purely repulsive. The
probe region is divided into an outer shell (red dashed line) and an
inner-tube (blue dashed line). The squares indicate the separation at
which the friction coefficient is maximum.
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compressibility in the limit of large probe volumes, which
naturally does not presently apply. The fluctuations peak as the
drying transition occurs. These findings are consistent with the
understanding of dewetting phenomena that have been put forth
in previous studies.10

To gain an understanding of how molecular-scale effects
manifest themselves in the spatially dependent friction coeffi-
cient, we now show how the value of the friction coefficient
relates to drying phenomena. The frictional profile is depicted
in panel (a) of Figure 3 and is strongly peaked at the dewetting
transition. For larger solutes such as C240, this may be defined
as the separation where the intersolute region fluctuates be-
tween “wet” and “dry” states.10 The histogram of the number
of waters in the probe volume at rc is shown in the top panel of
Figure 5. There is a bimodal distribution where the difference
between maxima is≈10 water molecules. The distributions at
r = rc ( 0.1 nm are also shown, and at these separations the
intersolute region is predominantly wet or dry. Although
drying occurs as two C60 fullerenes approach each other, a
bimodal distribution as exhibited in Figure 5 is less apparent.
In addition, the critical separation is near the inflection point
of the density curve and the maximum of the solvent fluctua-
tions as determined by the chosen metric. The point at which
the friction coefficient peaks is marked in the graphs plotted in
Figure 4.
In addition to large static fluctuations (see Figure 4), slow

relaxation times are also indicative of the drying transition. The
autocorrelation function of the fluctuations in the number of
water molecules in the probe volume, ÆδN(t)δN(0)æ, may be
decomposed into a product of the variance ÆδN2æ and some

time-dependent function h(t) that characterizes the relaxation

ÆδNðtÞδNð0Þæ ¼ ÆδN2æhðtÞ ð6Þ

The normalized time correlation function h(t) and the variance
are plotted in the bottom panel of Figure 5. One can see that, in
addition to a large variance, slow relaxation times are associated
with collective water dynamics at the critical distance for drying.
In this way both static and dynamic terms contribute to the
solvent behavior that engenders a large friction coefficient. The
relaxation of the correlation function is markedly faster when r =
rc ( 0.1 nm, and the friction coefficient at these separations is
lower by a factor of ≈4. The computation of the hydrodynamic
interactions is a probe of the momentum relaxation of the solvent
(see Appendix), and slow collective motion of water molecules
exiting and entering the intersolute region gives rise to, in part,
the large friction that is observed. However, as the time scale of
solvent relaxation approaches that of the solute, the separation of
time scales essential to the (Markovian) Langevin description
will not hold. Such possibilities will be discussed in Section 6.
The distribution of water molecules in the same size probe

volume used at r = rc is given near the surface of a single C240 and
in the bulk in Figure 6. The depletion of water density at the
surface is indicated by the differences in the bulk and single
surface distributions. Furthermore, the enhancement in fluctua-
tions near the surface is indicated by the broader distribution.
These findings are in broad agreement with prior work.17,18 The
faster relaxation of the number correlation function is seen in the
bulk and near the surface. This indicates not only the slow
collective motions associated with the bistability of the drying
transition but also that the more general effect of confinement
between the two solutes lengthens the relaxation times in the
probe volume.
5.2. Attractive Solute!Solvent Interactions.Given the high

density of carbon sites and the value of εSS chosen for the
Lennard-Jones potential, the solutes possess a sizable affinity for
water when attractive interactions are included. The solvent
density is plotted in Figure 7. The curvature of the surface has a
significant impact on water density and fluctuations. For small
separations where solvent in the intersolute region can experi-
ence attraction from two bodies, the density is enhanced in areas

Figure 5. (Top panel) Distribution of number of water molecules
present in the probe volume at the critical distance for drying, rc!σ =
0.6 nm (black curve) and at r = rc( Δ where Δ = 0.1 nm (red and blue
dashed lines). (Bottom panel) At the critical distance there is a slow
relaxation observed in the autocorrelation function of the number of
molecules in the probe volume as compared to states that are primarily
dry or wet. The inset depicts the variance of the number of waters in the
probe volume as a function of Δ. All data in this figure pertain to the
C240 system when solute!solvent interactions are purely repulsive.

Figure 6. Distribution of water molecules in a probe volume of length
rc!σ near the surface of a single C240 molecule (solid black curve) and
in the bulk (dashed red curve) when the solute!solvent potential is
purely repulsive. The inset depicts the autocorrelation function of the
number of waters in the probe volume in the respective environments.
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in the outer probe region where steric repulsion does not
dominate. High densities are accompanied by large fluctuations
of the number of water molecules in the outer shell. Due to
surface curvature, water is first squeezed out from the inner probe
volume as the density decreases in this region as the second layer
is vacated, and subsequently, the density falls to zero as the final
layer of water is removed. In analyzing the trends in the friction
coefficient and potential of mean force, the inner probe volume is
more indicative of solvent layering.
The induced potential of mean force depicted in the panel (d)

of Figure 3 exhibits minima at separations where one and two
water layers are stable at the narrowest portions of the intersolute
region, as indicated by monitoring the inner probe volume. As
the spheres come into contact, there is a maximum in the solvent-
induced PMF. Prior calculations of the PMF for a pair of C60
molecules are in qualitative agreement.40 Prior computations of
the PMF as two graphene plates approach exhibit barriers for the
removal of each solvent layer,67 although the curvature of the
spheres gives rise to different behavior than plates at small
separations. Namely, as the spheres are curved, the intersolute
region never fully desolvates, and the induced mean force
opposes assembly until the point of contact.
Upon examination of the spatial dependence of the friction

coefficient (panel (c) of Figure 3), evidence of layering is
exhibited by the nonmonotonic behavior of the friction coeffi-
cient for small separations r!σ < 0.5 nm. The friction coefficient
peaks as the PMF rises and the second layer of solvent is
removed. At smaller separations, the friction coefficient falls at
the minimum of both the induced PMF and solvent fluctuations
(r!σ = 0.3 nm), and then as the final water layer vacates the
intersolute region both the PMF and friction coefficient rise
sharply, with the size of the latter abating rapidly as solvent
density in the inner region decreases. These trends are also
witnessed in the water statistics. The point at which the friction
coefficient is maximum corresponds to a point where the density
is near a maximum, and the fluctuations are large and increasing.
The values of the density and fluctuation at the separation of

maximum friction coefficient are marked on the curves presented
in Figure 7. In the case of C240, these trends are more clearly
observed upon study of the smaller probe volume. It stands to
reason that in the case of attractive spheres the friction exhibits
some direct relation to both the density and fluctuations of
solvent in the intersolute region.
The spatial dependence of the friction coefficient is in stark

contrast to the predictions of continuum hydrodynamics in the
short-range limit, where the friction coefficient is predicted to
monotonically increase and diverge as the bodies are brought
into contact. This discrepancy is engendered by the layering and
granularity of liquids over small length scales. The increase in
friction coefficient may have its molecular origins in the confined
rattling in the intersolute region as the water is squeezed out,36 as
is indicated by the large fluctuations in the probe volume
(Figure 7). It is also observed that the spatial friction coefficient
plotted in panel (c) of Figure 3 scales with particle size; that is,
the curves for C60 and C240 nearly superimpose upon each
other when the difference in effective molecular radius is taken
into account.
5.3. Diffusion-Controlled Rate. In the high friction limit, a

radial Smoluchowski equation describes the motion along the
relative coordinate, r. The diffusion-controlled rate of reaction
can be computed from the following expression33,41!45

k!1 ¼ 1
4πkbT

Z ∞

σ
dr

Q ðrÞ
r2

ð7Þ

where σ is the contact diameter of the Brownian bodies and

Q ðrÞ ¼ ζðrÞ
gðrÞ

ð8Þ

is the ratio of the friction coefficient to the pair-correlation
function gðrÞ ¼ e!W ðrÞ=kbT , whereW ðrÞ is the total potential of
mean force that includes contributions from both direct and
(induced) solvent-mediated interactions. The full PMF is plotted
in panels (b) and (d) of Figure 8 and for C60 is in good agreement
with prior work.40 The function Q(r) is plotted in panels (a) and
(c) of Figure 8 for all combinations of fullerene sizes and
interaction potentials presently considered. It is compared with
its value if hydrodynamic interactions are neglected, that is, when
ζ(r) = ζ0, where ζ0 is one-half the friction coefficient on the single
body under periodic conditions (see Section 4).
In the case of purely repulsive solute!solvent interaction,

Q(r) has a markedly different form that depends on whether or
not hydrodynamic interactions are included. In particular, due to
the fact that the PMF is virtually barrierless when solute!solvent
interactions are purely repulsive, hydrodynamic interactions give
rise to a maximum in Q(r), as exhibited in panel (a) of Figure 8.
In the case of bodies that attract solvent, Q(r) is also larger when
hydrodynamic interactions are included. However in contrast to
ideal hydrophobes, the inclusion of spatially dependent friction
coefficient tends to “reinforce” the extrema engendered by the
PMF.Consistentwith the frictional profiles presented in Figure 3,
the impact of hydrodynamic interactions is greatest at separa-
tions where drying or desolvation occurs. The function Q(r) is
found to increase at small separations, r!σ < 0.1 nm, as direct
repulsive interactions dominate in this region.
To evaluate eq 7, the spatial friction coefficient is approxi-

mated for large separations via a switching function68 that
smoothly reduces its value to a plateau of ζ0 at a distance
0.5 nm further than the farthest separation for which the friction

Figure 7. Relative density of water (top row) and the ratio of the
variance to the average of the number of water molecules (bottom row)
in the probe volume are plotted for C240 (left column) and C60 (right
column) when the solute!solvent interaction includes attraction. The
probe region is divided into an outer shell (red dashed line) and an
inner-tube (blue dashed line). Triangles and squares denote the separa-
tion at which the friction coefficient is maximum.
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coefficient was computed. Although the computed rate constant
exhibits weak dependence on the choice of cutoff, this does not
alter the observed trends. We note that ζ0 depends on the
periodic boundary conditions adopted (see Section 4), and
moreover, due to the small relative separations studied in our
work, our calculations do not capture the long-range decay of the
hydrodynamic interactions. Thus the rate constant for associa-
tion presently computed accurately reflects the short-range
hydrodynamic interaction at the molecular scale but not the
contribution of the long-range hydrodynamic interactions.
If both the potential of mean force and hydrodynamic inter-

actions are neglected, the diffusion-controlled rate constant
reduces to the familiar expression

k0 ¼ 4πkbTσ
ζ0

ð9Þ

The ratio of the rates to k0 computed by means of eq 7 with and
without the inclusion of hydrodynamic interactions or the
potential of mean force is given in Table 2. The values of
k0 are nearly independent of molecular diameter, which is a
consequence of the Stokes!Einstein relation and the direct
proportionality of friction coefficient to solute diameter. It can
be seen that if the potential of mean force is considered and
hydrodynamic interactions are not included (that is ζ(r) = ζ0),
then the rate of “ideal” hydrophobic assembly (when the solute
only excludes volume) is increased. In the case of the attractive
solutes, there are barriers to assembly and an attractive basin at
short-range that serve to only modestly impact the rate. The
inclusion of hydrodynamic interactions reduces the diffusion-
controlled rate by approximately 30!40% from its respective
value across all systems presently considered. If the potential of
mean force (both direct and solvent-induced) is not included in
the computation of the rate constant, then one can clearly see

that hydrodynamic interactions reduce the rate of association
almost uniformly across the four systems studied, this despite the
different physics in their separate behaviors (see Figure 8). This is
probably due to the fact that the main quantitative impact of
molecular-scale hydrodynamics is to increase the value ofQ(r) at
separations slightly larger than required for desolvation of the
intersolute region.
Continuum hydrodynamic theory has been utilized to com-

pute the rate of assembly of two bodies.42,43,69,70 As is well-
known, the strong divergence of the friction coefficient exhibited
by the short-range lubrication expression utilized in Stokesian
dynamics and plotted in Figure 2 prohibits contact, and thus the
computed rate constant from eq 7 would be zero.26,27,47 The
lubrication limit for the case of slip boundary conditions as derived
by Wolynes and Deutch43 is integrable, and hydrodynamic inter-
actions were found to decrease the rate constant by ≈30%.
Recently, hydrodynamics were included by means of the Rotne!
Prager tensor in the evaluation of protein!protein association rates
and found to decrease the rate of association by ≈35!80%.70

Although these results generally appear in agreement with our
work, as noted above, the present estimates only adequately gauge
the impact of short-range hydrodynamic interactions and therefore
do not readily lend themselves to detailed comparisons.
As stated above, if the spatial dependence of the friction

coefficient is neglected, the rate constant for reaction is larger
than k0 for ideal hydrophobes, as the solvent-induced potential of
mean force is attractive. This rate constant is reduced by
hydrodynamic interactions which, in some sense, capture the
time scale associated with dewetting fluctuations (see Section
5.1). As drying fluctuations are relatively slow (see Figure 5), this
raises the question of whether or not the separation of time scales
within the Brownian limit is a good description of systems near a
drying transition.

6. DISCUSSION AND CONCLUSIONS

The spatial dependence of the friction coefficient in the
Brownian limit has been computed as two nonpolar bodies come
into contact. The system is analyzed within the framework of
Brownian dynamics, and hydrodynamic interactions are included
via explicit molecular dynamics simulation. We find that the fric-
tion coefficient deviates from continuum hydrodynamic predic-
tions at small separations and dramatically depends on the nature
of solute!solvent interactions. For purely repulsive spheres, we
find that the friction coefficient peaks at the critical distance
for dewetting and decreases as the intersolute region dries. For
attractive solutes, water is expelled by steric repulsion, and the
effects of solvent layering are apparent in the nonmonotonic
dependence of the friction coefficient on separation. The variation

Table 2. Table of the Ratio of the Diffusion-Controlled Rate
Constants with and without the Inclusion of Hydrodynamic
Interactions or the Potential of Mean Force to the Quantity
k0 = 4πkbTσ/ζ0

k/k0
(HI)

k/k0
(no HI)

k/k0
(no PMF)

k0
(1010 M!1 s!1)

C60 LJ 0.66 1.02 0.68 1.16

C240 LJ 0.60 0.95 0.74 1.10

C60 WCA 0.93 1.27 0.72 1.54

C240 WCA 0.99 1.37 0.64 1.51

Figure 8. Ratio of the friction coefficient to pair-correlation function,
Q(r), is plotted with and without the inclusion of hydrodynamic
interactions (HI) as two C240 (black curves that are dotted with squares
and dashed, respectively) and two C60 (red curves that are dotted with
circles and dashed, respectively) molecules approach when the solute!
solvent interactions include attraction (panel a) and for the case when
the solute!solvent interactions are purely repulsive (panel c).Q(∞) = ζ0
is defined as the value of Q for large separations when the potential of
mean force and hydrodynamic interactions are negligible. The potential
of mean force including the direct interactions between a pair of C240
and C60 molecules with solute!solvent interactions that are purely
repulsive (panel b) and include attraction (panel d) is also depicted.
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of friction coefficient with separation is due to solvent occupation
and fluctuations in the intersolute region. Large solvent fluctua-
tions and slow relaxation times are associated with increasing
friction coefficient, and in this way both static and dynamical
solvent-mediated effects contribute to the frictional force. Under
certain circumstances, slow solvent fluctuations in the near drying
regime may give rise to non-Markovian effects.

In their study of hydrophobic assembly, Willard and Chandler
found that not only the relative separation but also solvent
degrees of freedom, namely, the occupancy of the intersolute
region, are necessary to characterize the process.15 Such behavior
has also been observed in the assembly of hydrophobic plates.10,12

As our analysis is in the framework of Brownian dynamics, only
solute degrees of freedom are explicitly treated in the rate
calculation presented in Section 5.3. However, solvent fluctuations
engender the peak in the spatially dependent friction coefficient
observed at the dewetting transition. In this way, the drying
phenomenonmanifests itself whenmolecular-scale hydrodynamic
interactions are included in the Brownian limit.

The Brownian description is valid if the motion of the solute
occurs on a much slower time scale than the solvent dynamics.
We find that relatively slow solvent motions are present at the
critical separation for dewetting, which raises questions about the
validity of the Markovian assumption. We found the correlation
time for water fluctuations in the intersolute region at the critical
separation to be≈25 ps for C240 (see Figure 5). Prior work has
shown that the time scale for hydrophobic assembly depends not
only on the size of the solutes but also on the nature of the
interactions,10,12 and the time scale for solvent fluctuations can
be much longer than 25 ps. In the case where solvent fluctuations
cannot be considered fast with respect to solute diffusion, one
may consider alternative formulations that include dynamical
disorder71 and the use of techniques for extracting the spatially
dependent memory kernel within the framework of the general-
ized Langevin equation.31!33 Naturally, the time scales will
depend upon the size of the solute, and future studies may be
designed to more fully probe this observation.

Recently, hydrodynamic interactions have been shown to
significantly decrease in vivo diffusion in cellular environments.30

As the present computation is limited to two bodies in a solvent
bath, one can only draw limited parallels to behavior in crowded
systems. With this caveat in mind, we find some correspondence
in our study where we find that inclusion of hydrodynamic
interactions leads to a decrease of the diffusion-controlled rate
constant for assembly by approximately 30!40%. For barrierless
“ideal” hydrophobic assembly along the relative coordinate,
hydrodynamic interactions introduce a frictional “barrier” that
retards the rate of assembly (see Figure 8), whereas in the case of
attractive solvents the main effect is to enhance the maxima
engendered by the potential of mean force. In this way, the
interplay between hydrodynamic interactions and the free energy
surface strongly depends on solvent!solute coupling. Future
work will be aimed at exploring these insights and applying them
to study diffusive phenomena in nanoscopic systems.

A. CALCULATION OF THE SPATIALLY DEPENDENT
FRICTION COEFFICIENT

A.1. Two-Body Friction Tensor. In this work, we study the
spatially dependent friction coefficient along the relative distance
between two bodies, r = |rB2 ! rB1|. The complete friction
coefficient tensor is related to the motion of all 3N degrees of

freedom. The tensor relates the frictional force to the particle
velocities. For N = 2 this can be expressed as

δ FB1

δ FB2

 !

¼
ζ__11

ðrÞ ζ__12
ðrÞ

ζ__21
ðrÞ ζ__22

ðrÞ

0

@

1

A vB1
vB2

 !

ð10Þ

where δFB is the deviation of the force on the sphere from its
mean value. The friction coefficient tensor ζ__ðrÞ has a dimension
of 6 & 6 and may be decomposed into four blocks that
correspond to self and cross interactions between the bodies.
Each submatrix is a diagonal 3 & 3 matrix

ζ__ ¼
ζ|| 0 0
0 ζ^ 0
0 0 ζ^

0

BB@

1

CCA ð11Þ

if the coordinate system is defined such that one direction is
parallel and two directions are perpendicular to the line of centers.
The two spheres are identical so by symmetry ζ__11

ðrÞ ¼ ζ__22
ðrÞ

and ζ__12
ðrÞ ¼ ζ__21

ðrÞ. The friction coefficient along the relative
coordinate, r = r2, )-r1, ), may be obtained from manipulation of
eq 10. The following relation can then be extracted

ζrelðrÞ ¼ 1
2
ðζ11, ||ðrÞ ! ζ12, ||ðrÞÞ ð12Þ

and associated to the Langevin equation given by eq 1.
A.2. Review of Techniques Relating the Friction Coeffi-

cient to Molecular Dynamics Simulation. Here we review the
techniques developed in refs 35 and 36 for the extraction of the
Brownian friction coefficient from molecular dynamics simula-
tions. First consider a single Brownian sphere of mass, M, in a
bath of N solvent molecules of mass, m. This comprises an
isolated system. Next we consider the limit,Mf∞, in which the
solute particles are fixed. In this case, the total solvent momen-
tum is not a conserved quantity. As shown below, the computa-
tion of the friction coefficient is essentially a probe of the total
momentum relaxation.
We begin by relating the rate of change of the total solvent

momentum P(t) to the force acting on the soluteF ðtÞ bymeans
of Newton’s third law.

F ðtÞ ¼ ! _PðtÞ ð13Þ

To simplify the notation we only consider one dimension,
although the expressions for three dimensions are readily obtain-
able. Next, consider the integral that in the t f ∞ and N f ∞
limit yields the Green Kubo relation for the friction coefficient.
This can be expressed in terms of the total solvent momentum

ζðtÞ ¼ 1
kbT

Z t

0
dτÆF ð0ÞF ð ! τÞæ ð14Þ

¼ ! 1
kbT

Æ _PðtÞPð0Þæ ð15Þ

Onsager’s principle linearly relates the force acting on the solute
to the total solvent momentum in the long time limit

F ðtÞ ¼ ζ
Nm

PðtÞ ð16Þ

_PðtÞ ¼ ! ζ
Nm

PðtÞ ð17Þ
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where eq 17 arises from combining eq 13 and eq 16. Utilizing
eq 15, it can be readily shown that ζ(t) has the simple form

ζðtÞ ¼ ζe!ζt=Nm ð18Þ

Both the tf∞ and Nf∞ limits must be applied to calculate
the friction coefficient in the linear response regime (see eq 3). If
the time limit is taken first, as is necessarily the case when
computing the property in a simulation of finite size, then
ζ(∞) f 0. However, if the thermodynamic limit is taken first
(N f ∞), then a finite and correct value for the friction
coefficient may be recovered. Prior work has shown that instead
of directly applying the Green!Kubo relation the friction
coefficient may be recovered by probing the relaxation of ζ(t).
Presently, this was achieved by an analysis of the Laplace trans-
form of eq 18 developed in ref 35.
In the case of the two-body friction coefficient, we begin by

defining the integral of the naiveMD estimate for each submatrix
of the friction coefficient tensor that one arrives from the direct
application of the Green!Kubo relation

ζðNÞ
11 ðtÞ ¼ 1

kbT

Z t

0
dτÆδF1ðtÞδF1ð0Þæ ð19Þ

ζðNÞ
12 ðtÞ ¼ 1

kbT

Z t

0
dτÆδF1ðtÞδF2ð0Þæ ð20Þ

The superscript N denotes the number of solvent molecules
present in the simulation. When two Brownian bodies are
present, the solvent momentum relaxation is related to the
sum of the fluctuations of forces on the two spheres, _P(t) =
!(δF1(t) + δF2(t)). Analogous to the case of a single body in a
bath reviewed above, when the long time limit is taken for finite
N, it was shown in ref 36 that

ζðNÞ
11 ð∞Þ þ ζðNÞ

12 ð∞Þ ¼ !
Z ∞

0
dτÆ _PðtÞδF1ð0Þæ ð21Þ

¼ 0 ð22Þ

This spurious result is due to finite size effects and is demon-
strated numerically in Figure 9. Although the measured for-
ce!force correlation functions of eq 19 and eq 20 plateau to
nonzero values, their sum does indeed decay to zero. Bocquet
et al. proceed to relate the integrals of the force!force auto-
correlation functions with their properNf∞ limits. Details are
given in ref 36. This analysis yields relations of the plateaus of the
components of ζ_

ðNÞ
_

ðtÞ to a linear combination of components of
the friction coefficient tensor ζ__ that correctly approach the
thermodynamic limit.

1
2
ðζ__11 ! ζ__12

Þ ¼ ζ__
ðNÞ
11

ð∞Þ ¼ ! ζ__
ðNÞ
12

ð∞Þ ð23Þ

It can be readily seen that the component of the linear combina-
tion parallel to the axis of centers can be identified with the
friction coefficient in the relative direction that is reported in

Figure 9. Time integral of the self (black curve) and cross (red curve)
force!force autocorrelation functions and the sum of these two func-
tions (green curve) are plotted as two C240 molecules approach each
other and interact with the solvent purely by means of repulsion. The
top, center, and bottom panel depict this quantity at different separa-
tions. One can see that the self and cross autocorrelation functions
plateau at a nonzero value, though their sum decays to zero, in
agreement with the finding of Bocquet et al.36 The friction coefficient
is plotted in units of (kJ/mol) 3 (ps/nm

2).

Figure 10. Unique components of the friction coefficient tensor as two
C240 molecules approach each other and interact with the solvent with
attractive (top panel) or purely repulsively (bottom panel) forces. The
self-term parallel (black circles) and perpendicular (blue squares) to the
line of solute centers is plotted alongside the cross friction coefficient in
the parallel (red circles) and perpendicular (green squares) direction.
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Figure 3. To obtain the full friction coefficient tensor, one more
relation must be identified

! 2
NmkbT

ðζ__11 þ ζ__12
Þt ¼ ln

ζ__
ðNÞ
11

ðtÞ þ ζ__
ðNÞ

12
ðtÞ

ζ__
ðNÞ
11

ð0Þ þ ζ__
ðNÞ

12
ð0Þ

0

B@

1

CA ð24Þ

which characterizes the relaxation of the sum of the force!force
correlation functions plotted in Figure 9 to zero. The resulting
friction coefficient tensor for the C240 fullerene model with
purely repulsive and attractive solute!-solvent interactions is
plotted in Figure 10. It can be seen that the friction coefficient is
primarily perturbed in the direction of the relative coordinate;
the perpendicular components of the self sub-matrix (ζ11,^) have
limited spatial dependence; and their values are closer to the
single-body result. Concurrently, the value of ζ12,^ remains
near zero.
There is less than a 10% error in the estimation of the friction

coefficient provided by ref 36. Estimates of error have been
obtained from the variance of the measured plateau or from the
difference between elements of the full friction coefficient tensor
that are equivalent by symmetry.
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