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A method for calculating the quantum canonical rate constant of chemical reactions in a many body system
by means of a short-time flux autocorrelation function combined with a maximum entropy numerical analytic
continuation scheme is presented. The rate constant is expressed as the time integral of the real-time flux
autocorrelation function. The real-time flux autocorrelation function is evaluated for short times fully quantum
mechanically by path integral Monte Carlo simulations. The maximum entropy approach is then used to
extract the rate from the short real-time flux autocorrelation data. We present two numerical tests, one for
proton transfer in harmonic dissipative environments in the deep tunneling regime and the other for the two-
level model of primary charge separation in the photosynthetic reaction center. The results obtained using the
flux autocorrelation data up to the time of no more thanâp are in excellent agreement with the exact quantum
calculation over a wide range of parameters including even the tunneling regime.

I. Introduction

The classical transition state theory (TST) is based on three
assumptions: the electronic adiabaticity of the reaction, the
adequacy of classical mechanics to describe the motion of the
nuclei, and the fundamental (dynamical) assumption of no
barrier recrossings. The latter implies that a reactive trajectory
originating on the reactant side must cross the dividing surface
only once and proceed to products. With these assumptions,
classical TST gives an upper bound on the rate constant.
Although classical TST is often accurate at sufficiently low tem-
peratures, the correction factor for TST rates due to recrossing,
known as the transmission coefficient, becomes smaller with
increasing temperature because of the breakdown of the third
assumption, i.e., more recrossings at high temperature.

Inspired by the success of classical TST, there have been
numerous attempts to develop a quantum TST. These include
the instanton model of a periodic orbit in pure imaginary time,1

a semiclassical TST involving the conserved classical action
variables at the transition state,2 path integral centroid density
approaches,3-5 and various semiclassical models for including
the effects of reaction path curvature on transition state tunneling
probabilities.6-9 Nevertheless, a uniquely well-defined quantum
version of TST is still lacking. The reason for this is that the
accurate treatment of tunneling through the dividing surface
requires the solution of the quantum dynamics for motion near
the transition state thus making it necessary to perform a full
quantum dynamics simulation. Several comprehensive reviews
of theoretical studies of quantum rate processes are available
elsewhere.10-12

The formulation of the chemical reaction rate constant as a
time integral of the flux autocorrelation function13-17 is one of
the most widely used theoretical models for predicting the rate
constant of bimolecular chemical reactions in condensed phase
systems. Practical application of this scheme, however, leads

to an exponential increase in computational complexity with
the number of participating degrees of freedom. The Feynman
path integral approach18-20 has been successfully used in
computing equilibrium properties because the evaluation of
multidimensional integrals in imaginary time can make use of
stochastic importance sampling techniques.21-24 However,
extension of these methods to real time is still difficult because
of the oscillatory nature of the real-time propagator which leads
to dramatic phase cancellation and failure of MC schemes,
known as the “sign problem”. In recent years, efforts to develop
numerical techniques for evaluating path integrals in real time
have been expanded significantly.25-38 Early approaches to real-
time path integrals were based on analytic continuation ideas,25

brute-force stochastic integration of the real-time propagator,26

coordinate rotation,27,28 or stationary phase based MC
methods,29-31 in order to alleviate the sign problem.

Topaler and Makri introduced the quasiadiabatic propagator
path integral (QUAPI) scheme10,39 based on constructing a
numerically exact quantum mechanical real-time path integral
scheme for calculating correlation functions. The modified path
integral expression involves one-dimensional propagators which
describe the exact dynamics of the system along the adiabatic
path, as well as a nonlocal influence functional that incorporates
the multidimensional nonadiabatic corrections.33 The QUAPI
scheme allows the use of large time steps, resulting in the path
integral dimensionality that is fairly small even for moderately
long times. Although this method allows efficient sampling for
short times, the statistical error nonetheless grows rapidly with
the dimensionality of the integral.34 Hence, other approximate
methods for evaluating quantum correlation functions are
needed.40-44

Rabani et al.45 recently presented the reactive flux analytic
continuation method, based on the quantum reactive flux
formalism combined with a numerical analytic continuation
approach to calculate quantum canonical rates in condensed
phase systems with an explicit bath. They expressed the
imaginary-time reactive flux correlation function in terms of a
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frequency dependent rate constant. The imaginary-time data was
obtained by path integral Monte Carlo (PIMC) simulation and
then analytically continued to real time using the maximum
entropy (ME) method to obtain the reaction rate. A similar
approach, using a numerical analytic continuation method, was
studied by Plimak and Pollak,46 who used a short-time inverse
Laplace transform inversion technique. These approaches based
on the combination of the path integral formalism and numerical
analytic continuation methods45,46give reasonably accurate rate
constants while using only imaginary-time data for the quantum
rate calculations.

We have recently shown that the real-time correlation
functions for finite temperature many body quantum systems
can be easily obtained from analytic continuation of the short-
time (in most cases up toâp) symmetrized correlation function.47

The short symmetrized real-time and the imaginary-time sym-
metrized correlation functions were evaluated directly using the
PIMC technique and this was followed by a ME numerical
analytic continuation to obtain the real-time correlation function.
The computed real-time correlation functions were found to be
in good agreement with exact results over several multiples of
âp in time and exhibited a significant improvement over ME
analytic continuation using only imaginary-time correlation
data.47 The quality of the inverted real-time correlation function
considerably depends on the stability of the inversion kernel in
the numerical analytic continuation process. The inversion kernel
of the imaginary-time correlation data decays exponentially
leading to highly unstable operation, whereas that of the
symmetrized correlation data provides for more stable inversion.
It was also found that the quantum coherences of a complex
condensed phase system dissipate rather rapidly and the accurate
quantum dynamics for times of orderâp is sufficient to describe
quantum effects in barrier crossing dynamics.11 Thus, the use
of an analytic continuation scheme to compute the power
spectrum of a quantum time correlation function over the entire
frequency range from the short-time dynamic data obtained
using PIMC indeed seems to be a plausible alternative to solving
the full quantum dynamics problem for various systems.

In this paper, we present the short-time analytic continuation
by entropy maximization (STACEM) method for calculating
the quantum canonical rate constant from the flux autocorre-
lation functions evaluated by path integral simulation for times
considerably shorter than the plateau time. Starting with the flux
correlation function formalism of Miller,1 we derive working
relations for the path integral expression for the flux autocor-
relation function for the case of a system coupled to a bath
described by a continuous spectral density. If the path integral
ie expressed in terms of the discrete variable representation
(DVR),48-50 the propagator can be represented in a configura-
tional space of significantly reduced dimensionality. It is possible
to choose a DVR basis which allows the system propagator to
be calculated exactly.51 Employing a combination of such
system-specific DVR quadratures and MC methods, we were
able to obtain fairly accurate quantum results for thermally
averaged rate constants under the various conditions relevant
in chemical reactions, i.e., the crossover and deep tunneling
regimes. We compare the rate constant obtained using the
STACEM method with the “exact” results of QUAPI.10 In
section II, a brief description of the quantum canonical rate
formulation is presented. The details of the path integral
formalism for calculation of the flux autocorrelation function
and the ME approach are discussed in sections III and IV,
respectively. We present the results for two test systems
including proton transfer and charge separation of the photo-

synthetic bacterial reaction center in section V, followed by the
concluding remarks in section VI.

II. Rate Formulation

According to Miller et al.,13 the Boltzmann averaged quantum
mechanical canonical rate constant is given by

whereCF(t) is a flux autocorrelation function

The rate constant expression in eq 1 is valid for any value ofλ
from 0 toâ. In this study, we chose the value ofλ ) â/2. This
choice ofλ leads to a symmmetric form of the flux autocorre-
lation function involving forward and backward complex time
propagators analogous to the symmetrized correlation function
introduced by Berne and co-workers52,53

Here F̂ is the symmetrized flux operator

and, for the sake of simplicity, the dividing surface through
which the reactive flux is measured is located ats ) 0. Finally,
tc ) t - iâp/2 is a complex time that arises from combining
the time evolution operator with the Boltzmann operator andâ
) 1/kBT. Z andZr denote the total canonical partition function
and the reactant side partition function, respectively, such that

with ĥr being the reactant side projection operator. Because the
correlation function is an even function of time, one can change
the integration range and the rate is given by

whereG′F(t) includes the partition function ratio prefactor. One
can then define a frequency dependent rate constantk(ω):

such that the zero frequency value ofk(ω) corresponds to the
rate in eq 6. To relate the frequency dependent rate to the short-
time flux autocorrelation data, we invert eq 8:

Typically, in practice, the integration range in eq 1 extends to
the conventional plateau time. Although various numerical
techniques provide accurate short-time quantum correlation
functions, evaluating a quantum correlation function for long
times (i.e., the order of plateau time) is not possible for most
condensed phase systems. However, by inverting eq 8, one can
calculate the frequency dependent rate constant from short-time
correlation function data. Therefore, estimatingk(ω) by analytic
continuation of short-timeG′F(t) data to t ) ∞ presents a

k ) Z
Zr
∫0

∞
dt CF(t) (1)

CF(t) ) 1
Z

Tr[F̂ e-λH eiĤt/p F̂ e-iĤt/p e-(â-λ)H] (2)

GF(t) ) 1
Z

Tr[F̂ eiĤt*c /p F̂ e-iĤtc/p] (3)

F̂ ) 1
2ms

[p̂s δ(ŝ) + δ(ŝ) p̂s] (4)

Z
Zr

)
Tr[e-âE]

Tr[e-âEĥr]
(5)

k ) 1
2∫-∞

∞
dt G′F(t) (6)

k(ω) ) 1
2∫-∞

∞
dt eiωtG′F(t) (7)

G′F(t) ) 1
π∫-∞

∞
dω e-iωtk(ω) (8)
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practical alternative means of rate calculation. The details of
path integral representation of the symmetrized flux autocor-
relation function and the inversion technique used in this study
will be discussed in the following sections.

III. Path Integral Formulation of Flux Autocorrelation
Function

Consider a one-dimensional quantum mechanical system
interacting with a thermal bath, which is represented by
Q-harmonic oscillators. The bath modes do not interact with
each other directly but only through the interaction with the
system such that

where the interaction between the system and bath has linear
form

with s being the system coordinate andxb ) {xn, n ) 1, ...,Q}
the bath coordinates.

For the case of the Hamiltonian in eq 9, evaluating the trace
in eq 3 including the partition function ratio gives

where∆s arises from the finite difference derivatives, such that,
∆s is a coordinate point sufficiently close to the dividing surface.
Note that the right-hand side of the equation can be further
simplified to twice the real part of the first two propagators.
However, using four propagator terms as shown above makes
the sampling function smoother which improves the efficiency
of MC simulation.

The path integral expression for the propagator in eq 11 is
given by

which results from symmetric Trotter splitting of the total
Hamiltonian10 into a system dependent part and a bath part
including the system-bath interaction such that

where H′b ) Hb + VI. This type of splitting ensures that

propagators are accurate over large time steps,∆tc ) tc/N, so
the total number of time slices and thus the dimension of the
discretized path integral is relatively small. Implementation of
QUAPI33 allowed the use of even larger time steps with a
counter-term corrected reference system potential.
I(s0,...,s2N+1; ∆tc) is an influence functional that arises from the
coupling to the environment. Because there is no direct
interaction between bath modes, the influence functional
produced by the environment can be written in product form:54

where

where the HamiltonianH′b,n(xn;s) is a function of nth bath
mode coordinate and the system coordinate. The closed form
of the influence functional integral exists only for the very
special case of a harmonic bath with linear coupling. For
nonlinear couplings the integral in eq 15 cannot be computed
exactly even with the harmonic bath. However, if the coupling
is weak and the anharmonicity is not large, one may compute
the influence functional perturbatively.55

The influence functional computed exactly for the case of
the harmonic bath with bilinear coupling has the form

where the subscriptΓ indicates that the time integration is
performed over the complex time contour shown in Figure 1.
The bath response function for the interaction potential in eq
10 is

H ) Hs(s) + Hb(xb) + VI(s,xb) (9)

VI(s,xb) ) -s∑
n)1

Q

cnxn (10)

G′F(t) ) p2

4Zrms
2 ∆s

2
[K(∆s,∆s,0,0;tc) - K(0,∆s,0,∆s;tc) +

K(0,0,∆s,∆s;tc) - K(∆s,0,∆s,0;tc)] (11)

K(s0,sN,sN+1,s2N+1;tc)

≡ ∫-∞

∞
dQxb0 〈xb0|〈s2N+1|e-iHt*c/p|sN+1〉

〈sN|e-iHtc/p|s0〉xb0〉

) ∫-∞

∞
ds1 ‚‚‚ ∫-∞

∞
dsN-1∫-∞

∞
dsN+2 ‚‚‚ ∫-∞

∞
ds2N

∏
k)N+1

2N+1

〈sk|eiHs∆t*c/p|sk-1〉

∏
k)1

N

〈sk|e-iHs∆tc/p|sk-1〉I(s0,...,s2N+1;∆tc) (12)

〈sxb|exp(-iH∆tc/p|s′xb′〉 )

∫-∞

∞
dQxb′′ 〈xb|e-iH′b(s)∆tc/2p|xb′′〉〈s|e-iHs∆tc/p|s′〉

〈xb′′|e-iH′b(s′)∆tc/2p|xb′〉 (13)

Figure 1. Schematic representation of the propagation contour
appearing in the symmetrized time correlation function in the complex
time plane. Discretized time points resulting from the symmetrized
splitting of the propagator (see text) are denoted. Note the half time
step near end points. The arrows indicate the direction of propagation.

I(s0,...,s2N+1;∆tc) )∏
n)1

Q

In(s0,...,s2N+1;∆tc) (14)

In(s0,...,s2N+1;∆tc) ) ∫-∞

∞
dxn,0 〈xn,0|eiH′b,n(s2N+1)∆t*c/2p

eiH′b,n(s2N)∆t*c/p ‚‚‚ eiH′b,n(sN+2)∆t*c/p eiH′b,n(sN+1)∆t*c/2p ×
eiH′b,n(sN)∆tc/2p e-iH′b,n(sN-1)∆tc/p ‚‚‚ e-iH′b,n(s1)∆tc/p ×
e-iH′b,n(s0)∆tc/2p|xn,0〉 (15)

I ) exp{-1
p
∫Γ

dt1 ∫Γ

t1 dt2 R(t1,t2) s(t1) s(t2)} (16)
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where∆t ) tb - ta with tb being the later time point thanta in
the direction of the contour. The averages are performed over
thenth bare bath mode at inverse temperatureâ. In this paper,
the characteristics of the bath are captured by the continuous
spectral density

To take advantage of compact representation of a smaller basis
set size provided by the use of the DVR,10,50 we discretize the
path integral expression of the propagator in eq 12 as follows:

where{ul} and{s̃l} are the DVR eigenstates and eigenvalues,
respectively, that are obtained by diagonalizing the position
matrix of theM lowest energy eigenstates,{Φl; El, l ) 1, ...,
M}. In addition to a tremendous reduction of configuration
space, a system-specific DVR also has the benefit of allowing
the exact calculation of the short-time system propagator in an
exact manner as shown

The transformation coefficients〈u|Φl〉 are obtained automatically
during the construction of DVR states. The total number of
integrals that need to be evaluated is equal toM2N+2. It is thus
essential thatM be as small as possible.

In similar fashion, the influence functional can be rewritten
in a discretized form as the following:

wheres̃kj ) s̃(tj) along the contour shown in Figure 1, which is
discretized as follows:

where∆t ) t/N and∆â ) â/2N. The diagonal coefficients of
the influence functional exponent are computed as follows:

whereas the offdiagonal coefficients are given by

Even though in some cases full discretized space integration
is possible, most problems still require stochastic sampling. The
discretized representation of the flux autocorrelation function
involves 2N + 2 integrations. The Boltzmann factors in eq 3
lead to damped propagators, so that the integrand has significant
amplitude only in certain localized regions of this (2N+2)
dimensional space. This property allows the use of MC sampling
methods to evaluate the quantum correlation functions. Still the
convergence of such schemes depends critically on the smooth-
ness of the integrand as well as on the dimensionality of the
integral.

For simplicity, we rewrite the discretized symmetrized flux
autocorrelation function path integral expression as

The operatorA includes the end-point projection operators of
four propagators in eq 11 and is given by

whereasP(k0, ...,k2N+1;∆tc) includes the rest of system propaga-
tors as well as the influence functional. Using similar notation,
the reactant partition function is

with

whereδk,k′ represents Kronecker delta function andhr is equal
to 1 for s̃kN < 0 and is zero otherwise.

To compute the real-time flux autocorrelation function, we
perform two separate open chain PIMC simulations on a
(2N + 2) dimensional DVR grid. The one-dimensional system
propagator is calculated according to eq 20 and stored as a

R(t1,t2) )
1

p
∑
n)1

Q

cn
2{〈xn(t1)xn(t2)〉 - 〈xn〉

2}

) ∑
n)1

Q cn
2 cos(ωn∆t + iâωnp/2)

2mnωn sinh(âωnp/2)
(17)

J(ω) )
π

2
∑
n)1

Q cn
2

mnωn

δ(ω - ωn) (18)

K(s0,sN,sN+1,s2N+1;tc) ) ∑
k0

M

‚‚‚ ∑
k2N+1

M

〈s2N+1|uk2N+1
〉 〈ukN+1

|sN+1〉

× 〈sN|ukN
〉 〈uk0

|s0〉 ∏
j)N+1

2N

〈ukj+1
|eiHs∆t*c/p|ukj

〉

× ∏
j)0

N-1

〈ukj+1
|e-iHs∆tc/p|ukj

〉 I(s̃k0
,...,s̃k2N+1

;∆tc) (19)

〈u|e-iHs∆tc/p|u′〉 ) ∑
l)1

M

e-iEt∆tc/p〈u|Φl〉〈Φl|u′〉 (20)

I(s̃k0
,...,s̃k2N+1

;∆tc) ) Zb exp{-
1

p
∑
j)0

2N+1

∑
j′)0

j

Akjkj′
s̃kj

s̃kj′} (21)

t0 ) 0

tj ) (j - 1/2)(∆t - i∆âp), 1 e j e N

tN+1 ) tc ) t - iâp/2

tj ) (2N - 2j - 3
2 )(∆t + i∆âp) - iâp,

N + 2 e j e 2N + 1

t2N+2 ) -iâp (22)

Akk ) 2
π∫0

∞
dω

J(ω)

ω2 sinh(pωâ/2)
sin[ω(tk+1 - tk + ipâ)/2] sin[ω(tk+1 - tk)/2] (23)

Akk′ ) 4
π∫0

∞
dω

J(ω)

ω2 sinh(pωâ/2)
cos[ω(tk+1 + tk - tk′+1 - tk′ + ipâ)/2] sin[ω(tk+1 - tk)/2]

sin[ω(tk′+1 - tk′)/2],
k * k′ (24)

G′F(t) )

p2

4Zrms
2 ∆s

2
∑
k0

M

‚‚‚ ∑
k2N+1

M

A(k0,kN,kN+1,k2N+1) P(k0,...,k2N+1;∆tc)

(25)

A(k0,kN,kN+1,k2N+1) ) 〈0|uk2N+1
〉 〈ukN+1

|0〉 〈∆s|ukN
〉〈uk0

|∆s〉

- 〈∆s|uk2N+1
〉 〈ukN+1

|0〉 〈∆s|ukN
〉〈uk0

|0〉

+ 〈∆s|uk2N+1
〉 〈ukN+1

|∆s〉 〈0|ukN
〉〈uk0

|0〉

- 〈0|uk2N+1
〉 〈ukN+1

|∆s〉 〈0|ukN
〉〈uk0

|∆s〉
(26)

Zr ) ∑
k0

M

‚‚‚ ∑
k2N+1

M

B(k0,kN,kN+1,k2N+1) P(k0,...,k2N+1;∆tc)

(27)

B(k0,kN,kN+1,k2N+1) ) δk0,k2N+1
hr(kN)δkN,kN+1

(28)
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complex valued matrix on a DVR grid. The indices of the DVR
states are incremented (or decremented) during each MC step
by a randomly selected index spacing. For the purpose of
simulation, we write the symmetrized flux autocorrelation
function as

The simulation consists of two stages. First, as specified in
Thirumalai and Berne,53 the sign of numeratorø is evaluated
by using the absolute value of the real part of the numerator as
the unnormalized sampling function:

where

In the second stage, the ratioú of the normalization integral
divided by the reactant partition function is computed, and

where

The artificial factorΩ(kN) is introduced so that the effect of
system operatorA is included in the sampling function:

andε is an adjustable constant parameter.

IV. Maximum Entropy Method

In the approach described above, the determination of the
quantum canonical rate from short real-time data requires the
inversion of the integral eq 8 to solve for the frequency
dependent rate constantk(ω). The frequency zero mode value
k(0) then corresponds to the experimentally observable reaction
rate. In this study, the flux autocorrelation functionG′F(t) is
known only for a short-time interval (generallyt < âp), and
therefore, the inversion of eq 8 represents a numerical analytic
continuation of the flux autocorrelation function tot ) ∞.
Because the data obtained from simulations is incomplete and
noisy, the analytic continuation of eq 8 is an ill-posed problem.
In other words, there is an infinite number ofk(ω) that satisfy
eq 8 within statistical noise limits for a given set of short-time
flux autocorrelation data. Hence, there is clearly a need for a
way of selecting the “best solution” from the set of possible
solutions.

Recently, Bayesian ideas have been used to deal with the
ill-posed nature of analytically continuing the noisy imaginary-
time MC data to real time. One of the most widely used
approaches is the ME method.56 The method requires only that
the transformation which relates the data and the solution be
known. Furthermore, ME allows the inclusion of prior knowl-
edge about the solution in a logically consistent fashion. As

such, the method is well-suited for solving ill-posed mathemati-
cal problems.

The methods of ME have been successfully applied in the
context of analytic continuation for a variety of quantum systems
such as various quantum lattice models,57 the study of light
absorption spectra,47,58-60 and vibrational line shapes.47,60-62

More recently, the method was successfully applied to analytic
continuation of the imaginary-time flux autocorrelation func-
tions.45

For the purpose of the ME approach, we rewrite the integral
equation, eq 8, as

In this notation,D(t) ≡ G′F(t) is the data (in this case the short-
time flux autocorrelation function),K(t,ω) is the Fourier kernel,
andA(ω) is the solution, referred to as the map, corresponding
to k(ω). ME principles provide a way to choose the most
probable solution which is consistent with the data through the
methods of Bayesian inference. Typically, the data is known
only at a discrete set of points{tj}, and we likewise seek the
solution at a discrete set of points{ωk}. The ME method selects
the solution which maximizes the posterior probability or the
probability of the solutionAB given a data setDB. Using the Bayes
theorem, one can show that56,57the posterior probability is given
by

Hereø2 is the standard mean squared deviation from the data

whereCjk is the covariance matrix

with Nm being the number of measurements. In this study, the
data points are calculated independently so the covariance matrix
is diagonal, and therefore the expression forø2 reduces to

whereσj are the standard deviations of each data point, i.e., the
square root of the diagonal elements of the covariance matrix.

S is the information entropy, the form of which is axiomati-
cally chosen to be

In this formulation, the entropy is measured relative to a default
model m(ω) which can contain prior information about the
solution andR is a positive regularization parameter.

Obtaining the ME solution then involves finding a mapAB
which maximizes the posterior probability and is therefore a
maximization problem inNa variables, whereNa is the number
of points{ωk} at which the solution is evaluated. The solution
obtained in this way is still conditional on the arbitrary parameter
R, which can be interpreted as a regularization parameter
controlling the smoothness of the map. Large values ofR lead

G′F(t) ) p2

4Zrms
2 ∆s

2
øú (29)

ø ) 〈Re[AP]
F1

〉
F1

(30)

F1(k0,...,k2N+1;∆tc) ) |Re[A(k0,...,k2N+1)P(k0,...,k2N+1;∆tc)]|
(31)

ú )
〈F1/F2〉F2

〈[BP]/F2〉F2

(32)

F2(k0,...,k2N+1;∆tc) ) |Re[Ω(kN)P(k0,...,k2N+1;∆tc)]| (33)

Ω(kN) ) {ε, if s̃kN
is near the dividing surface

1, if otherwise

D(t) ) ∫ dω K(t,ω) A(ω) (34)

P (AB|DB) ∝ exp(RS- ø2/2) ) eQ (35)

ø2 ) ∑
j,k

(Dj - ∑
l

Kjl Al)[C
-1] jk(Dk - ∑

l

Kkl Al) (36)

Cjk )
1

Nm(Nm - 1)
∑
l)1

Nm

(〈Dj〉 - Dj
(l))(〈Dk〉 - Dk

(l)) (37)

ø2 ) ∑
j

(Dj - Σ lKjl Al)
2

σj
2

(38)

S) ∑
k

∆ω(Ak - mk - Ak ln
Ak

mk
) (39)
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to a result primarily determined by the entropy function and,
hence, the default model. Small values ofR in turn lead to a
map determined mostly by theø2 and thus to a closer fitting of
the data. The principal drawback is that, along with the data,
the errors would be fit as well.

In this study, R is selected according to the L-curve
method.63,64 In this context, we regard the entropy as the
regularizing function parametrically dependent onR. The value
of R is selected by constructing a plot of log[-S(AB)] vs log ø2.
This curve has a characteristic L shape, and the corner of the
L, or the point of maximum curvature, corresponds to the value
of R which is the best compromise between fitting the data and
obtaining a smooth solution. It should be noted that there are
other possible ways of selecting the regularization parameter,
such as a Bayesian approach of classic ME.57,65 However, in
general, we observed that provided the data is of sufficient
quality, the inversion result is fairly insensitive to the particular
choice of the regularization parameter, exhibiting only minor
variations over several orders of magnitude ofR. In addition,
the L-curve method provides a way of qualitatively assessing
the quality of the input data, with a sharper L curve signifying
better quality data. The quality of the data in general depends
on the accuracy of the data itself (the size of the error bars) as
well as on how well the error bars themselves are estimated.

We employ a maximization algorithm due to Bryan,66 which
reduces the space in which the search for the solution is
performed. The kernel is first factored using singular value
decompositionK ) VΣUT. Because the space spanned by the
rows of K is the same as that spanned by the columns ofU
associated with nonsingular eigenvalues, the search for the
solution can be performed in this singular space of dimensional-
ity Ns, whereNs is the number of nonsingular eigenvalues. The
solution in singular space is expressed in terms of the vectorub,
which is related to theNa dimensional map space via

This exponential transformation is useful because it ensures the
positivity of the solution.

Prior knowledge of the solution may be used to select a map
m(ω) that resembles the true solution, which may improve the
quality of the inversion. However, in doing this, there is a danger
of introducing a bias which may significantly reduce the quality
of the inversion in some cases, such as if the true solution differs
appreciably from the expectation based on prior knowledge.
Hence, care must be taken in selecting a specific model. To
avoid this problem, in this study, we use a flat default map,
which satisfies a known sum rule, such as the integral ofk(ω)
over ω, which does not bias the solution toward a particular
feature. This model was found to be adequate for the purpose
of this study. In addition, we found that the solution does not
vary significantly with the number of input data points. In
particular, doubling the number of data points at whichG′F(t) is
evaluated within a given time range leads to an inversion that
differs very slightly (less than one percent) from that obtained
using a smaller number of data points.

Because of the nature of the ME method it is not possible to
assign error bars to values of the map at specific frequencies.
Therefore, it was not possible to assign an error bar to the rate
constant, which corresponds to a particular map point atω )
0. Instead, we estimate the accuracy through comparison with
the exact results.

V. Numerical Examples

In this section, we present examples that illustrate the
advantages of the STACEM method discussed in this paper,
including proton transfer in condensed media and charge
separation of the photosyntheric bacterial reaction center. In both
cases, the bath is described by the spectral density with the
Ohmic form

A. Proton Transfer. We model a typical proton transfer
reaction as a double well linearly coupled to a harmonic
environment. This particular system was chosen to allow
comparison of the results obtained by our method with those
obtained from the exact quantum mechanical calculation.10 The
potential along the reaction coordinates is a symmetric double
well:

with the potential parameters

wherems is the system mass,ωb is the barrier frequency and
Eb is the barrier height. This potential has minima at
s ) ( (a1/a2)1/2 and a barrier ats ) 0. Corresponding potential
parameters are the proton massms ) 1836 au,ωb ) 500 cm-1,
andEb ) 2085 cm-1 (this is the same potential referred to as
DW1 in ref 10). The bath is described by a spectral density of
ohmic form given in eq 41 with the cutoff frequency ofωc )
500 cm-1. The rate is studied as a function of the friction
constant as well as the temperature.

The bath Hamiltonian which includes the renormalization
term is given by

A physically relevant description of the problem should include
another renormalization term in the system potential. In this
study, however, we deliberately removed the extra renormal-
ization potential in order to explore the dynamic effect of the
friction strength without changing the barrier height of the
reaction coordinate.

PIMC sampling is performed to calculate the short-time
symmetrized flux autocorrelation functionG′F(t) as discussed
in section III. Depending on temperature and friction strength,
we found that 5-12 DVR states and 5-7 time slices are
sufficient to achieve the converged results. The MC trajectories
consisted of 5× 108-109 MC steps per time slice. At each
MC step, a segment of path is selected randomly and the indices
of DVR states corresponding to time slices of that path segment
are shifted by a randomly chosen integer from-m to m where
m < M. Using the compact basis set of DVR states leads to
error bars that are bounded rather than the unbounded expo-
nential growth of statistical error that characterizes real-time
MC simulations using a continuous coordinate representation.

Figure 2 shows typical reactive flux correlation functions
computed by the ME method to illustrate the validity of using
analytic continuation of short-time dynamic data for extracting

Aj ) mj exp(∑
l)1

Ns

Ujlul) (40)

J(ω) ) ηω exp{- ω
ωc

} (41)

Vs ) -1
2
a1s

2 + 1
4
a2s

4 (42)

a1 ) msωb
2, a2 )

a1
2

4Eb
(43)
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2Mnωn
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the long-time dynamics. The long-time behavior of the reactive
flux correlation functions (to the right side of the vertical dotted
line) is determined by analytically continuing the simulation
data available up tot ) âp (left side of the vertical dotted line).
The reactive flux correlation function is a time integral of the
symmetrized flux autocorrelation function

For the purpose of comparison, the units of the reactive flux
correlation functions in Figure 2 are arbitrarily scaled. Note that
there are dynamically important events that occur after the time
t ) âp and all three friction strength cases well illustrate that
the long-time behavior of crossing and recrossing events of
reactive flux is successfully predicted by the analytic continu-
ation procedure.

Figure 3 shows the transmission coefficient as a function of
the static friction coefficientη/msωb in comparison with the
results from the exact quantum calculation. The quantum
transmission coefficient is the ratio of the true rate constant
divided by the classical TST rate, i.e.,κ ) k/kTST, wherekTST

is the classical TST rate given by

Our results are in excellent agreement with the QUAPI
numerical results10 over the entire range of frictions. Note that
we only used the real-time flux autocorrelation function up to
âp ) 1578 au. Near the turnover friction, the STACEM method
slightly overestimates the transmission coefficient; however, it
does capture the turnover from energy to spatial diffusion. Still,
by increasing the included PIMC data range tot )2âp, we were
able to obtain the correct quantum transmission coefficientκ

) 3.74 even at the turnover friction. In the high friction regime,
the recrossing is inhibited by the rapid dissipation because of
the bath. As a result, the real-time flux autocorrelation function
decays on a fast-time scale ensuring that the calculation of the
rate using short-time data is accurate. More importantly, the
rates estimated by the STACEM method exhibit excellent
agreement with the exact quantum results in the weak coupling
regime as well, even though significant recrossing is possible
under these conditions.

An Arrhenius plot of the rate constant for a very weak friction
strength is shown in Figure 4. At the temperatures higher than
the crossover temperature (estimated asTc ≈ 100 K), we observe
a linear behavior characteristic of activated barrier crossing.
Conversely, at lower temperatures, tunneling dominates the
dynamic process and the rate constant becomes temperature
independent. For these low-temperature calculations, MC data
with a cutoff time less thanâp was used for the analytic
continuation. For example, forT ) 50 K, the data up tot )
1500 au≈ 0.25âp was used to compute the rate. Note that the
correct temperature independent tunneling rates are obtained at
low temperatures, which additionally confirms the applicability
of the analytic continuation method even in the deep tunneling
regime.

B. Primary Charge Separation in the Photosynthetic
Reaction Center. In contrast to the typical adiabatic reaction
studied in the previous section, we consider a nonadiabatic
reaction in this section. The primary charge separation of
photosynthesis in bacterial reaction centers involves electron
transfer from an excited special chlorophyll pair (the donor) to

Figure 2. Analytically continued results of reactive flux correlation
functions, eq 45, in arbitrary units as a function of time atT ) 200 K.
The friction strength,η/msωb, of the solid line is 0.05, the dashed line
0.3752, and the dot-dashed line 1.0. Dotted line indicates the time up
to which the symmetrized correlation function data was computed by
simulation and analytically continued. Note the recrossing and crossing
events predicted by ME method occur after the cutoff timeâp.

Figure 3. Quantum transmission coefficient of proton transfer as a
function of the friction strength atT ) 200 K. Hollow circles are the
numerically exact results from Figure 9b of ref 10. The rates obtained
by the method presented in this paper are shown by solid squares using
path integral Monte Carlo data of the flux autocorrelation function up
to âp ) 1578 au.

R(t) ) ∫0

t
dt′ G′F(t′) (45)

Figure 4. Logarithm of the rate constant as a function of inverse
temperature for the friction strength,η/msωb ) 0.05. Hollow circles
are the numerically exact results from Figure 12 of ref 10 and the rates
obtained by the method presented in this paper are shown by solid
squares. For each temperature point, the flux autocorrelation function
is used up toâp ) p/kBT au. Note the temperature independence of
the rate in deep tunneling regime.

kTST )
ωb

x2π
e-âEb (46)
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a bacteriopheophytin of the L branch (the acceptor). Despite
the large (17 Å, center-to-center) distance between these two
sites,67 the electron transfer is characterized by a time constant
of about 3 ps and a quantum yield close to unity. Understanding
the specifics of this highly efficient electron-transfer process
has been the subject of numerous experimental and theoretical
studies. Following the work of Makri and co-workers,68,69 it is
now generally accepted that the mechanism of this primary
charge transfer is sequential with a low energy bridge of
bacteriochlorophyll monomer located between the donor and
the acceptor. A series of experiments with subpicosecond
resolution have been performed on the reaction centers of
RhodopseudomonasViridis and Rhodobacter sphaeroidesto
determine the kinetic features of the primary charge separation
process and its temperature dependence.70-76 Among many
studies involving mutants of the reaction center, Holten and co-
workers77 have studied a double mutant with an aspartic acid
introduced near ring V of bacteriochlorophyll monomer in a
Rhodobacter capsulatusin which bacteriopheophytin is also
replaced by bacteriochlorophyll. This double mutant exhibited
a slower primary electron transfer to the L-side chromophores
with a kinetic constant of 20 ps,77 which results from the bridge
free energy increase from its native value. It was observed that
the changes in the energetics induced by the chemical modifica-
tion of Heller et al.77 lead to slower kinetics. Sim and Makri69

estimated the free energy of the reduced accessory bacterio-
chlorophyll monomer and its coupling to the donor and the
acceptor of the double mutant by performing real-time path
integral computations of the time evolution of the reduced
density matrix. In this study, we adapt the parameters estimated
by Sim and Makri69 and use them to model a discrete two-
level system coupled to a harmonic bath model.

The simplest model of nonadiabatic electron transfer is that
of a discrete two-state system coupled to a harmonic model of
the medium. In this model, the two states, donor and acceptor,
are coupled to each other as well as to a harmonic bath that
describes collective modes of polarization fluctuations of the
medium surrounding the reaction complex, such that the
Hamiltonian has the form

The flux operator is written as

whereĤs corresponds to the system Hamiltonian (2× 2 matrix
in this case) andĥp is the product side projection operator.
Therefore matrix representation of the flux operator becomes

To model the two-state electron transfer, we assume that in
long-distance tunneling the electronic coupling is due to
superexchange. The simplest expression for the superexchange
coupling is the McConnell product of the form78,79

whereV12 ) 22 cm-1, V13 ) 135 cm-1, andEb ) 500 cm-1

resulting in Veff ) 6 cm-1. Finally the driving force of the
reaction is∆G ) -400 cm-1. The solvent reorganization energy
of the system is estimated to be 2000 cm-1, so that, in the case
of the wild-type reaction center, the free energy surfaces for
the donor and acceptor intersect at the activationless geometry.68

The reorganization energyλ is defined as the integral of spectral
density divided by the frequency

To satisfy this condition, the friction constant of the ohmic
spectral density is set equal to 2.62 and the cutoff frequency is
taken to beωc ) 600 cm-1.

The PIMC simulations performed for this system were slightly
different from those described in section III. The path integral
expression of the symmetrized flux autocorrelation function eq
3 for a discrete two-level system Hamiltonian is

In this case, we used a random uniform sampling function for
MC simulations.

The experimentally measured time constant for this system
is 20 ps,77 whereas the theoretically predicted time constant from
the three-state reduced density matrix calculation is 21 ps.69

Using the STACEM method the time constant obtained from
the two-state superexchange model was found to be 28 ps. The
same result was obtained using a different spectral density
obtained numerically from molecular dynamics simulations by
Marchi et al.80 The reason for this slower kinetics is the
assumption of the superexchange electron-transfer mechanism
of the two-state model. It has been shown that the bridge state
participates in the electron-transfer resulting in a sequential
electron-transfer mechanism68,69 so that the superexchange
model of this study using the effective coupling of the
superexchange transfer78,79was expected to give a slower rate,
i.e., a larger time constant.

VI. Concluding Remarks

Motivated by the recent work of Rabani et al.45 and Krilov
et al.47 we presented the STACEM method for calculating the
quantum canonical rate constant from the path integral simula-
tion of short real-time flux autocorrelation functions. The
frequency dependent canonical rate constant was expressed as
a Fourier transform of the flux autocorrelation function45 which
was calculated for short times by a discretized PIMC sampling
technique related to that proposed by Thirumalai and Berne.53

Taking advantage of accurate short-time quantum correlation
functions obtained by the PIMC sampling method, the ME
analytic continuation approach was employed to predict long-
time behavior of correlation functions. Numerical test cases
presented in section V indicate that the STACEM method
provides very accurate quantum results for thermally averaged
rate constants of nonadiabatic as well as adiabatic chemical
reactions under various conditions relevant in chemical reactions,
i.e., the crossover and deep tunneling regimes.
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In complex condensed phase systems subject to conditions
of overdamped friction, quantum coherences dissipate rapidly.
Therefore, the description of quantum effects obtained by
numerical analytic continuation of short-time dynamical data
is expected to be accurate.47 Thus under the overdamped friction
the use of numerical analytic continuation methods for extracting
the frequency dependent rate constant from the short-time
dynamic data is indeed possible. For the case of underdamped
friction, on the other hand, evaluating the exact quantum time
correlation function which is stable and free of statistical errors
for long times becomes less plausible and it is extremely difficult
to determine the plateau time. Nevertheless, the STACEM
method seems to provide a practical and reliable way of
predicting quantitatively accurate canonical quantum mechanical
rate constant provided that the accurate short-time description
is available.

It was also found that, despite the bridge free energy being
higher than that of the donor state, the nonadiabatic electron
transfer in the double mutant of the photosynthetic reaction
center still follows (at least partly) the sequential mechanism.
Although it has been shown that the bridge state participates in
the electron transfer in the wild-type reaction center,68,69 one
cannot rule out the possibility that both superexchange and
sequential electron-transfer mechanisms contribute to the elec-
tron transfer in the double mutant reaction center which has a
high-lying bridge state. The kinetic time constant of the two-
state superexchange model was larger than the experimentally
measured time constant supporting the argument that the
sequential mechanism played a crucial role in the electron
transfer when high-lying bridge states are present.

Further applications of the STACEM method are possible
for more complicated problems of adiabatic and nonadiabatic
reactions in condensed matter,39 including excitation transfer,
energy migration, and superexchange phenomena with multiple
barriers.79,81,82 It likewise would be of interest to study the
dependence of the reaction rate on quantum coherence effects,
friction, electronic coupling constant between bridges, exother-
micity, and temperature. The influence functional approach that
appears in this paper is still limited to the harmonic bath with
linear coupling. A possible extension allowing for treatment of
anharmonic baths is the use of cumulant expansions of the
influence functional for the implicit bath modes.55 In addition,
following Rabani et al.,45 one may treat the bath explicitly thus
avoiding the limitation of the harmonic bath assumption in the
real-time path integration. In combination with an improved
numerical analytic continuation technique and more efficient
sampling techniques which provide stable results over long
times, it is believed that the study of chemical reactions within
a more general environment is possible using the STACEM
method presented in this paper. All of these problems will be
the subject of future investigation.
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