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A method for calculating the quantum canonical rate constant of chemical reactions in a many body system
by means of a short-time flux autocorrelation function combined with a maximum entropy numerical analytic
continuation scheme is presented. The rate constant is expressed as the time integral of the real-time flux
autocorrelation function. The real-time flux autocorrelation function is evaluated for short times fully quantum
mechanically by path integral Monte Carlo simulations. The maximum entropy approach is then used to
extract the rate from the short real-time flux autocorrelation data. We present two numerical tests, one for
proton transfer in harmonic dissipative environments in the deep tunneling regime and the other for the two-
level model of primary charge separation in the photosynthetic reaction center. The results obtained using the
flux autocorrelation data up to the time of no more tff&rare in excellent agreement with the exact quantum
calculation over a wide range of parameters including even the tunneling regime.

I. Introduction to an exponential increase in computational complexity with
. N ) the number of participating degrees of freedom. The Feynman
The classical transition state theory (TST) is based on threepath integral approaéf20 has been successfully used in
assumptions: the electronic adiabaticity of the reaction, the computing equilibrium properties because the evaluation of
adequacy of classical mechanics to describe the motion of themytidimensional integrals in imaginary time can make use of
nuclei, and the fundamental (dynamical) assumption of no gigchastic importance sampling technig&e2* However,
barrier recrossings. The latter implies that a reactive trajectory gyension of these methods to real time is still difficult because
originating on the reactant side must cross the dividing surface ¢ he oscillatory nature of the real-time propagator which leads
only once and proceed to products. With these assumptions,i; gramatic phase cancellation and failure of MC schemes,
classical TST gives an upper bound on the rate constant.,nown as the “sign problem’”. In recent years, efforts to develop
Although classical TST is often accurate at sufficiently low tem- \merical techniques for evaluating path integrals in real time
peratures, the correctl_on_factor fo_r '_I'ST rates due to recrossing,paye peen expanded significartfy 38 Early approaches to real-
!mown as the transmission coefficient, becomes smaller W",[h time path integrals were based on analytic continuation iéfeas,
increasing temperaiure becausp of the'breakdown of the th'rdbrute-force stochastic integration of the real-time propagator,
assumption, i.e., more recrossings at high temperature. coordinate rotatioR?2® or stationary phase based MC
Inspired by the success of classical TST, there have beenmethods%9‘31 in order to alleviate the sign problem.
numerous attempts to develop a quantum TST. These include
the instanton model of a periodic orbit in pure imaginary time,
a semiclassical TST involving the conserved classical action
variables at the transition stat@ath integral centroid density
approaches$;® and various semiclassical models for including
the effects of reaction path curvature on transition state tunneling
probabilities®—° Nevertheless, a uniquely well-defined quantum
version of TST is still lacking. The reason for this is that the
accurate treatment of tunneling through the dividing surface . oo
requires the solution of the quantum dynamics for motion near _scheme a_IIows _the use of Ia_rge _t|me steps, resulting in the path
the transition state thus making it necessary to perform a full mtegr_al dimensionality _that Is fairly small even for mod(_arately
quantum dynamics simulation. Several comprehensive reviews!Ond times. Although this method allows efficient sampling for
of theoretical studies of quantum rate processes are availableShort times, the statistical error nonetheless grows rapidly with
elsewherd?-12 the dimensionality of the integrét.Hence, other approximate
The formulation of the chemical reaction rate constant as a methodiﬁ)r evaluating quantum correlation functions are
time integral of the flux autocorrelation functi&n’ is one of neede
the most widely used theoretical models for predicting the rate  Rabani et af® recently presented the reactive flux analytic
constant of bimolecular chemical reactions in condensed phasecontinuation method, based on the quantum reactive flux

systems. Practical application of this scheme, however, leadsformalism combined with a numerical analytic continuation
approach to calculate quantum canonical rates in condensed

T Part of the special issue “William H. Miller Festschrift”. _phas_e systems With an explicit b_ath- Th?y t_axpressed the
*To whom correspondence should be addressed. imaginary-time reactive flux correlation function in terms of a

Topaler and Makri introduced the quasiadiabatic propagator
path integral (QUAPI) scher&3® based on constructing a
numerically exact quantum mechanical real-time path integral
scheme for calculating correlation functions. The modified path
integral expression involves one-dimensional propagators which
describe the exact dynamics of the system along the adiabatic
path, as well as a nonlocal influence functional that incorporates
the multidimensional nonadiabatic correctidAslhe QUAPI

10.1021/jp004307w CCC: $20.00 © 2001 American Chemical Society
Published on Web 03/07/2001



Quantum Rate Constants from Short-Time Dynamics J. Phys. Chem. A, Vol. 105, No. 12, 2002825

frequency dependent rate constant. The imaginary-time data wassynthetic bacterial reaction center in section V, followed by the
obtained by path integral Monte Carlo (PIMC) simulation and concluding remarks in section VI.

then analytically continued to real time using the maximum

entropy (ME) method to obtain the reaction rate. A similar |l. Rate Formulation

approach, using a numerical analytic continuation method, was According to Miller et al13the Boltzmann averaged quantum
studied by Plimak and Polle®,who used a short-time inverse 1 achanical canonical rate constant is given by

Laplace transform inversion technique. These approaches based

on the combination of the path integral formalism and numerical k= Z fw dt C(t) 1)
analytic continuation methot#fs*6give reasonably accurate rate ZJ0 F
constants while using only imaginary-time data for the quantum
rate calculations. whereCg(t) is a flux autocorrelation function
We have recently shown that the real-time correlation A e oA e
functions for finite temperature many body quantum systems Cet) = %Tr[F et g g (AN 2
can be easily obtained from analytic continuation of the short-
time (in most cases up f#h) symmetrized correlation functioh. ~ The rate constant expression in eq 1 is valid for any value of

The short symmetrized real-time and the imaginary-time sym- from 0 toj. In this study, we chose the value bf= /2. This
metrized correlation functions were evaluated directly using the choice of4 leads to a symmmetric form of the flux autocorre-
PIMC technique and this was followed by a ME numerical lation function involving forward and backward complex time
analytic continuation to obtain the real-time correlation function. Propagators analogous to the symmetrized correlation function
The computed real-time correlation functions were found to be introduced by Berne and co-worket$?

in good agreement with exact results over several multiples of 1 a e A i

phin time and exhibited a significant improvement over ME Ge(t) = zTr[F ghte/h g ef'HtC’h] 3)
analytic continuation using only imaginary-time correlation

data?” The quality of the inverted real-time correlation function HereF is the symmetrized flux operator

considerably depends on the stability of the inversion kernel in

the numerical analytic continuation process. The inversion kernel E= L[f’s 0 + (3 pd (4)

of the imaginary-time correlation data decays exponentially 2mg

leading to highly unstable operation, whereas that of the S -
symmetrized correlation data provides for more stable inversion. anq, for the sqke of s!mpllcny, the.d|V|d|ng surfacg through
which the reactive flux is measured is located at 0. Finally,

It was also found that the quantum coherences of a complex """ iBh/2 is a complex time that arises from combining
condensed phase system dissipate rather rapidly and the accura{%e time evolution operator with the Boltzmann operator And

quantum dynamics for times of ordéh is sufficient to describe = 1/kgT. Z andZ; denote the total canonical partition function

quantum effects in barrier crossing dynanitghus, the use . o X .
. - i and the reactant side partition function, respectively, such that
of an analytic continuation scheme to compute the power

spectrum of a quantum time correlation function over the entire 7 Tr[efﬁE]
frequency range from the short-time dynamic data obtained 2= (5)
using PIMC indeed seems to be a plausible alternative to solving r o Trle "h]

the full quantum dynamics problem for various systems.

In this paper, we present the short-time analytic continuation
by entropy maximization (STACEM) method for calculating
the quantum canonical rate constant from the flux autocorre-
lation functions evaluated by path integral simulation for times k= }foo dt Gi(t) ©)
considerably shorter than the plateau time. Starting with the flux 2/~ F
correlation function formalism of Millet,we derive working
relations for the path integral expression for the flux autocor-
relation function for the case of a system coupled to a bath
described by a continuous spectral density. If the path integral 1 oo (Ot
ie expressed in terms of the discrete variable representation k(w) :§f_m dt e G(t) )
(DVR),*8-%0 the propagator can be represented in a configura-
tional space of significantly reduced dimensionality. It is possible such that the zero frequency valuekg) corresponds to the
to choose a DVR basis which allows the System propagator to rate in eq 6. To relate the frequency dependent rate to the short-
be calculated exact8t Employing a combination of such time flux autocorrelation data, we invert eq 8:
system-specific DVR quadratures and MC methods, we were 1 oo ,
able to obtain fairly accurate quantum results for thermally GHt) == f_ ,, do e_'“"k(a)) (8)
averaged rate constants under the various conditions relevant T
in chemical reactions, i.e., the crossover and deep tunnelingTypically, in practice, the integration range in eq 1 extends to
regimes. We compare the rate constant obtained using thethe conventional plateau time. Although various numerical
STACEM method with the “exact” results of QUAM.In techniques provide accurate short-time quantum correlation
section Il, a brief description of the quantum canonical rate functions, evaluating a quantum correlation function for long
formulation is presented. The details of the path integral times (i.e., the order of plateau time) is not possible for most
formalism for calculation of the flux autocorrelation function condensed phase systems. However, by inverting eq 8, one can
and the ME approach are discussed in sections Ill and 1V, calculate the frequency dependent rate constant from short-time
respectively. We present the results for two test systems correlation function data. Therefore, estimatif@) by analytic
including proton transfer and charge separation of the photo- continuation of short-timeGi(t) data tot = o presents a

with h, being the reactant side projection operator. Because the
correlation function is an even function of time, one can change
the integration range and the rate is given by

whereGg(t) includes the partition function ratio prefactor. One
can then define a frequency dependent rate conktant
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practical alternative means of rate calculation. The details of
path integral representation of the symmetrized flux autocor-
relation function and the inversion technique used in this study
will be discussed in the following sections.

lll. Path Integral Formulation of Flux Autocorrelation
Function

Consider a one-dimensional quantum mechanical system
interacting with a thermal bath, which is represented by
Q-harmonic oscillators. The bath modes do not interact with
each other directly but only through the interaction with the
system such that

H = Hs) + H,(X) + V,(s,X) 9)
where the interaction between the system and bath has linea
form

Q
Vi(sX) = —s

chxn
&

with s being the system coordinate are= {x,, n=1, ...,Q}
the bath coordinates.

For the case of the Hamiltonian in eq 9, evaluating the trace
in eq 3 including the partition function ratio gives

(10)

h2
() = ———[K(A,A,0,01) — K(0OAL0ASL) +
20 4Zm$2A2[ ( J — K( )

T S

K(0,0A,Agt) — K(AL0A,01)]  (11)
whereAg arises from the finite difference derivatives, such that,
Asis a coordinate point sufficiently close to the dividing surface.
Note that the right-hand side of the equation can be further
simplified to twice the real part of the first two propagators.

However, using four propagator terms as shown above makes

the sampling function smoother which improves the efficiency
of MC simulation.
The path integral expression for the propagator in eq 11 is
given by
K(SorSwSurvSontito)
= f:o d°%, DZO|E7N+1|e_iHWh|S,\,+1D
= Joos fdse [ dss e [ doy

ﬂ § e s, 0
k=N+1

00

00

N
ﬂ@Ie"“ﬁ‘dhl%liﬂ(s@---SZNH:Atc) (12)

which results from symmetric Trotter splitting of the total
Hamiltoniard® into a system dependent part and a bath part
including the systembath interaction such that

EXexpiHAt /RIS X C=
fj:o dQT(H Dzle*iH'b(S)A[cIwa—)ZH D]§D| e7|HSAtCIh|s’ D
l:Xrnle—iH'b(S’)AIC/Zﬁ|$(>!D (13)

where H = Hp + V. This type of splitting ensures that
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Figure 1. Schematic representation of the propagation contour
appearing in the symmetrized time correlation function in the complex
time plane. Discretized time points resulting from the symmetrized
splitting of the propagator (see text) are denoted. Note the half time
step near end points. The arrows indicate the direction of propagation.

propagators are accurate over large time staps= t/N, so

the total number of time slices and thus the dimension of the
discretized path integral is relatively small. Implementation of
QUAPI® allowed the use of even larger time steps with a
counter-term  corrected reference system  potential.
[(S0,....Son+1; Ate) is an influence functional that arises from the
coupling to the environment. Because there is no direct
interaction between bath modes, the influence functional
produced by the environment can be written in product féftm:

Q
(S Sonr AL =[ 11(Sore- Son13AL) (14)
=
where
: = [ Hi Aty/2h
In(%v---ySZN_'.l,At() = ffoo dxﬂ,O Rﬂ,olel b (Son+1)
HbnsA ., dHba(Su AR GHbA(SwDAL2A
dHon(SIAL2 (i)W ., =iHbA(SDAUR |
eﬁlH'b,n(SO)Atclzlﬁ-lanOD (15)

where the Hamiltoniaﬂ-l[,yn(xn;s) is a function ofnnth bath
mode coordinate and the system coordinate. The closed form
of the influence functional integral exists only for the very
special case of a harmonic bath with linear coupling. For
nonlinear couplings the integral in eq 15 cannot be computed
exactly even with the harmonic bath. However, if the coupling
is weak and the anharmonicity is not large, one may compute
the influence functional perturbative®y.

The influence functional computed exactly for the case of
the harmonic bath with bilinear coupling has the form

| = exp{ —%1 [dty [ty oty ty) S(ty) S(tz)} (16)

where the subscripl’ indicates that the time integration is
performed over the complex time contour shown in Figure 1.
The bath response function for the interaction potential in eq
10is
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Q

1
att) = Z G Bkt X(t) O B,

Q ¢ cos,At + ifwhl2)

= (17)
= 2mo, sinhBo fil2)

whereAt = t, — t; with t, being the later time point thatg in

the direction of the contour. The averages are performed over

thenth bare bath mode at inverse temperaffrén this paper,

the characteristics of the bath are captured by the continuous

spectral density

J Q an
Jw)==) — (0w — w,)
2Emoe

(18)

n= n
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whereAt = t/N and A = /2N. The diagonal coefficients of
the influence functional exponent are computed as follows:

_ 2 o J(w)
Aw=2fo do w? sinh@iwf/2)
sinfw(t,, — t + iK)/2] sinfo(t,,, — t)/2] (23)

whereas the offdiagonal coefficients are given by
oo J(w
éj(‘) do —— (w)
7 o* sinhiwf3/2)
coso (s + b =ty — te +iAf)/2] sinfw(t.; — /2]
sinfo(te4; — t)/2],

A

k=K (24)

Even though in some cases full discretized space integration

To take advantage of compact representation of a smaller basidS Possible, most problems still require stochastic sampling. The

set size provided by the use of the DV we discretize the
path integral expression of the propagator in eq 12 as follows:

M M
K(So:SuSvtvrSontaited) = % kz (Soner g, Lk, [Sv42H]
2N+1
2N )
x [y|u, I |50 m,ﬁﬂ|éHsA"é’ﬁ|u,ﬁD
j=N+1

N—-1
X |‘! m;,ﬁﬂ|e*iHSAtc’*‘|ulﬁm(s%,...sﬁm;mc) (19)
L

where{u} and{§} are the DVR eigenstates and eigenvalues,
respectively, that are obtained by diagonalizing the position
matrix of theM lowest energy eigenstatesp;; E, | = 1, ...,

M}. In addition to a tremendous reduction of configuration

space, a system-specific DVR also has the benefit of allowing

the exact calculation of the short-time system propagator in an

exact manner as shown
e Ay o= Ze"EtA‘c’hm|c1>lm>l|u'D (20)

The transformation coefficients|®,Clare obtained automatically
during the construction of DVR states. The total number of
integrals that need to be evaluated is equali®y™. It is thus
essential thaM be as small as possible.

In similar fashion, the influence functional can be rewritten
in a discretized form as the following:

N+L

1G5, AL =7, exp{ - ;11 J; JZO A & sﬁ] (21)
where§; = ¥(t;)) along the contour shown in Figure 1, which is
discretized as follows:

t,=0
t=(—12)At—iAph), 1<j=N
ty =t =t —iBA2

Zj—_3)(At +iABR) — ik,

2
N+2<j<2N+1
(22)

tj=(2N—

toni2 = —iph

discretized representation of the flux autocorrelation function
involves 2\ + 2 integrations. The Boltzmann factors in eq 3
lead to damped propagators, so that the integrand has significant
amplitude only in certain localized regions of thisN(22)
dimensional space. This property allows the use of MC sampling
methods to evaluate the quantum correlation functions. Still the
convergence of such schemes depends critically on the smooth-
ness of the integrand as well as on the dimensionality of the
integral.

For simplicity, we rewrite the discretized symmetrized flux
autocorrelation function path integral expression as

GH(D) =
2 M

M
m% Z AKos KKt 15Kon1) P(Kos- - Kon-1:AL)

Kon+1

(25)

The operatoA includes the end-point projection operators of
four propagators in eq 11 and is given by

Alko KKy 1Ko 1) = O[uy O [OCTAJuy (T |AL]
— AJu,, [T, [OCTAJu, [, 00
+ A Ju,, O |ALTO|u, (1, 00
_ m)|ukzwmmkwmsmtmukNDm;kﬂm(sZDG)

whereafP(ko, ..., kan+1;Ate) includes the rest of system propaga-
tors as well as the influence functional. Using similar notation,
the reactant partition function is

M M
zZ= % z B(Ko KnsKnt 1:Kon+ 1) P(Koy-- Kony 1AL
Kon+1 (27)

with

Blko Kok Kon1) = O MHK)Ok i, (28)
wheredyx represents Kronecker delta function amds equal
to 1 for§, < 0 and is zero otherwise.

To compute the real-time flux autocorrelation function, we
perform two separate open chain PIMC simulations on a
(2N + 2) dimensional DVR grid. The one-dimensional system
propagator is calculated according to eq 20 and stored as a
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complex valued matrix on a DVR grid. The indices of the DVR such, the method is well-suited for solving ill-posed mathemati-
states are incremented (or decremented) during each MC stegal problems.

by a randomly selected index spacing. For the purpose of The methods of ME have been successfully applied in the
simulation, we write the symmetrized flux autocorrelation context of analytic continuation for a variety of quantum systems

function as such as various quantum lattice mod®lshe study of light
absorption spectrd;°8-50 and vibrational line shapeg:0-62
e A2 More recently, the method was successfully applied to analytic
Gty =———x¢ (29) ; . ; . : .
4ZrmsZA 2 continuation of the imaginary-time flux autocorrelation func-
S tions45

For the purpose of the ME approach, we rewrite the integral

The simulation consists of two stages. First, as specified in )
equation, eq 8, as

Thirumalai and Berné?3 the sign of numeratoy is evaluated
by using the absolute value of the real part of the numerator as

the unnormalized sampling function: D) = f do K(t,w) A(w) (34)
e[AP| In this notationD(t) = GK(t) is the data (in this case the short-
X = %D (30) time flux autocorrelation functionk(t,w) is the Fourier kernel,
Pr %, andA(w) is the solution, referred to as the map, corresponding

to k(w). ME principles provide a way to choose the most

where probable solution which is consistent with the data through the
) _ ) methods of Bayesian inference. Typically, the data is known
Piko---Kon 1AL = |Rewko’"'kzNH)P(kO’“'k2N+1’AtC)]| only at a discrete set of poin{g;}, and we likewise seek the

(31) solution at a discrete set of poidt®y}. The ME method selects
the solution which maximizes the posterior probability or the
probability of the solutiorA given a data sdd. Using the Bayes
theorem, one can show tR&t’the posterior probability is given

(By/p20), by

In the second stage, the ratioof the normalization integral
divided by the reactant partition function is computed, and

6= [BPY/ p,), (32) P (AID) O exp@S— 3%2) = €2 (35)
where Herey? is the standard mean squared deviation from the data
ook Kenys 5AL) = |Re[R( )Pl oy AL (33) 2= 30 Y K AICTO Y Kah) (39

The artificial factorQ(ky) is introduced so that the effect of whereCy is the covariance matrix
system operatoA is included in the sampling function:

o . 1 M
o e if S, Is near the dividing surface Cy = —Z(DDJD_ Dj('))(EleD— DE)) (37)
() = 1, if otherwise Nir(Ney = 1)
ande is an adjustable constant parameter. with Np, being the number of measurements. In this study, the
) data points are calculated independently so the covariance matrix
IV. Maximum Entropy Method is diagonal, and therefore the expressionféreduces to
In the approach described above, the determination of the 5
guantum canonical rate from short real-time data requires the 2 (Dj — 2K A)
inversion of the integral eq 8 to solve for the frequency X = 2 (38)

J Oi

dependent rate constak(w). The frequency zero mode value
k(0) then corresponds to the experimentally observable reaction
rate. In this study, the flux autocorrelation functi@p(t) is
known only for a short-time interval (generalty< fh), and
therefore, the inversion of eq 8 represents a numerical analytic
continuation of the flux autocorrelation function to= oo,
Because the data obtained from simulations is incomplete and

noisy, the analytic continuation of eq 8 is an ill-posed problem. S= Z Aw

whereg; are the standard deviations of each data point, i.e., the
square root of the diagonal elements of the covariance matrix.

Sis the information entropy, the form of which is axiomati-
cally chosen to be
I A 39

In other words, there is an infinite number k{fv) that satisfy A M= Adn (39)
eq 8 within statistical noise limits for a given set of short-time
flux autocorrelation data. Hence, there is clearly a need for a In this formulation, the entropy is measured relative to a default
way of selecting the “best solution” from the set of possible model m(w) which can contain prior information about the
solutions. solution anda. is a positive regularization parameter.

Recently, Bayesian ideas have been used to deal with the Obtaining the ME solution then involves finding a map
ill-posed nature of analytically continuing the noisy imaginary- which maximizes the posterior probability and is therefore a
time MC data to real time. One of the most widely used maximization problem iN, variables, wheré\, is the number
approaches is the ME meth8&dThe method requires only that  of points{wy} at which the solution is evaluated. The solution
the transformation which relates the data and the solution be obtained in this way is still conditional on the arbitrary parameter
known. Furthermore, ME allows the inclusion of prior knowl- «, which can be interpreted as a regularization parameter
edge about the solution in a logically consistent fashion. As controlling the smoothness of the map. Large values t#fad
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to a result primarily determined by the entropy function and, V. Numerical Examples
hence, the default model. Small valuescoin turn lead to a
map determined mostly by thé and thus to a closer fitting of
the data. The principal drawback is that, along with the data,
the errors would be fit as well.

In this section, we present examples that illustrate the
advantages of the STACEM method discussed in this paper,
including proton transfer in condensed media and charge
separation of the photosyntheric bacterial reaction center. In both

In this study, o is selected according to the L-curve cases, the bath is described by the spectral density with the
method®3®4 In this context, we regard the entropy as the Onmic form

regularizing function parametrically dependentcarThe value

of a is selected by constructing a plot of legf(A)] vs log 2 _ W

This curve has a characteristic L shape, and the corngr of the Jw) = no exp{ _Jt} (41)

L, or the point of maximum curvature, corresponds to the value

of a which is the best compromise between fitting the data and A, Proton Transfer. We model a typical proton transfer

obtaining a smooth solution. It should be noted that there are reaction as a double well linearly coupled to a harmonic

other possible ways of selecting the regularization parameter,environment. This particular system was chosen to allow

such as a Bayesian approach of classic ¥M&.However, in comparison of the results obtained by our method with those

general, we observed that provided the data is of sufficient obtained from the exact quantum mechanical calculdfidine

quality, the inversion result is fairly insensitive to the particular potential along the reaction coordinats a symmetric double

choice of the regularization parameter, exhibiting only minor well:

variations over several orders of magnitudeoofin addition,

the L-cu_rve methpd provides a way of qualitatively a}ssgs_sing V= —lalsz + 1a234 (42)

the quality of the input data, with a sharper L curve signifying 2 4

better quality data. The quality of the data in general depends

on the accuracy of the data itself (the size of the error bars) as

well as on how well the error bars themselves are estimated.
We employ a maximization algorithm due to Bry&nwhich a, = mswa’ a,=-—

reduces the space in which the search for the solution is =

performed. The kernel is first factored using singular value ) ) )

decompositiork = VZUT. Because the space spanned by the Wherems is the system massu, is the barrier frequency and

rows of K is the same as that spanned by the columngof ~Ev IS the barrier height. This potential has minima at

associated with nonsingular eigenvalues, the search for theS = & (&1/a2)"?and a barrier a$ = 0. Corresponding potential

solution can be performed in this singular space of dimensional- Parameters are the proton mass= 1836 auwp = 500 e,

ity N5, whereNs is the number of nonsingular eigenvalues. The andEp = 2085 cni* (this is the same potential referred to as

solution in singular space is expressed in terms of the vaigtor DW1 in ref 10). The bath is described by a spectral density of

which is related to thél, dimensional map space via ohmic form given in eq 41 with the cutoff frequency of =
500 cntl. The rate is studied as a function of the friction

Ne constant as well as the temperature.
_ The bath Hamiltonian which includes the renormalization
. =m ex U,u 40
A=m p(; ) (40) term is given by

with the potential parameters

2
i (43)

. . L . Q csS |2
This exponential transformation is useful because it ensures the H, = Z }M an n }M w2 X, — n
n n=’n

positivity of the solution. 5|2 2 M. .2
Prior knowledge of the solution may be used to select a map mn

m(w) that resembles the true solution, which may improve the A physically relevant description of the problem should include
quality of the inversion. However, in doing this, there is a danger another renormalization term in the system potential. In this
of introducing a bias which may significantly reduce the quality study, however, we deliberately removed the extra renormal-
of the inversion in some cases, such as if the true solution differsjzation potential in order to explore the dynamic effect of the

appreciably from the expectation based on prior knowledge. friction strength without changing the barrier height of the
Hence, care must be taken in selecting a specific model. To reaction coordinate.
avoid this problem, in this study, we use a flat default map,  piMC sampling is performed to calculate the short-time
which satisfies a known sum rule, such as the integrd @) symmetrized flux autocorrelation functioB(t) as discussed
over w, which does not bias the solution toward a particular n section Ill. Depending on temperature and friction strength,
feature. This model was found to be adequate for the purposewe found that 512 DVR states and 57 time slices are
of this study. In addition, we found that the solution does not syfficient to achieve the converged results. The MC trajectories
vary significantly with the number of input data points. In  consisted of 5x 108—1C° MC steps per time slice. At each
particular, doubling the number of data points at whg(t) is MC step, a segment of path is selected randomly and the indices
evaluated within a given time range leads to an inversion that of DVR states corresponding to time slices of that path segment
differs very slightly (less than one percent) from that obtained are shifted by a randomly chosen integer fremm to mwhere
using a smaller number of data points. m < M. Using the compact basis set of DVR states leads to
Because of the nature of the ME method it is not possible to error bars that are bounded rather than the unbounded expo-
assign error bars to values of the map at specific frequencies.nential growth of statistical error that characterizes real-time
Therefore, it was not possible to assign an error bar to the rateMC simulations using a continuous coordinate representation.
constant, which corresponds to a particular map poirt &t Figure 2 shows typical reactive flux correlation functions
0. Instead, we estimate the accuracy through comparison withcomputed by the ME method to illustrate the validity of using
the exact results. analytic continuation of short-time dynamic data for extracting

(44)
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Figure 2. Analytically continued results of reactive flux correlation  Figure 4. Logarithm of the rate constant as a function of inverse
functions, eq 45, in arbitrary units as a function of tim& at 200 K. temperature for the friction strength/mswy, = 0.05. Hollow circles

The friction strengthy/mswy, of the solid line is 0.05, the dashed line  are the numerically exact results from Figure 12 of ref 10 and the rates
0.3752, and the detdashed line 1.0. Dotted line indicates the time up obtained by the method presented in this paper are shown by solid
to which the symmetrized correlation function data was computed by squares. For each temperature point, the flux autocorrelation function
simulation and analytically continued. Note the recrossing and crossing is used up tq3h = A/ksT au. Note the temperature independence of

events predicted by ME method occur after the cutoff tjfhe the rate in deep tunneling regime.
5 T T
is the classical TST rate given by
O Exact
4+ u = STACEM | w
000 —_ b BB
o Og kisgt=—e (46)
17 | V2
a
“ b O- o Our results are in excellent agreement with the QUAPI
2 o . numerical result§ over the entire range of frictions. Note that
" o we only used the real-time flux autocorrelation function up to

ph = 1578 au. Near the turnover friction, the STACEM method
slightly overestimates the transmission coefficient; however, it
does capture the turnover from energy to spatial diffusion. Still,
0 , . by increasing the included PIMC data rangée te25h, we were
able to obtain the correct quantum transmission coefficient

. - - = 3.74 even at the turnover friction. In the high friction regime,
Figure 3. Quantum transmission coefficient of proton transfer as a N Sy S
function of the friction strength af = 200 K. Hollow circles are the the recrossing is inhibited by Fhe rapid d|SS|pat|on. becausg of
numerically exact results from Figure 9b of ref 10. The rates obtained the bath. As a result, the real-time flux autocorrelation function
by the method presented in this paper are shown by solid squares usinglecays on a fast-time scale ensuring that the calculation of the
path integral Monte Carlo data of the flux autocorrelation function up rate using short-time data is accurate. More importantly, the
to fh = 1578 au. rates estimated by the STACEM method exhibit excellent
agreement with the exact quantum results in the weak coupling
regime as well, even though significant recrossing is possible
under these conditions.

An Arrhenius plot of the rate constant for a very weak friction
strength is shown in Figure 4. At the temperatures higher than
the crossover temperature (estimatedgs 100 K), we observe
a linear behavior characteristic of activated barrier crossing.
Conversely, at lower temperatures, tunneling dominates the
t dynamic process and the rate constant becomes temperature

R(t) = [, dt GK(t) (45) independent. For these low-temperature calculations, MC data

with a cutoff time less tharph was used for the analytic

For the purpose of comparison, the units of the reactive flux continuation. For example, fof = 50 K, the data up ta =
correlation functions in Figure 2 are arbitrarily scaled. Note that 1500 au~ 0.253h was used to compute the rate. Note that the
there are dynamically important events that occur after the time correct temperature independent tunneling rates are obtained at
t = ph and all three friction strength cases well illustrate that low temperatures, which additionally confirms the applicability
the long-time behavior of crossing and recrossing events of of the analytic continuation method even in the deep tunneling
reactive flux is successfully predicted by the analytic continu- regime.
ation procedure. B. Primary Charge Separation in the Photosynthetic

Figure 3 shows the transmission coefficient as a function of Reaction Center.In contrast to the typical adiabatic reaction
the static friction coefficienty/mswy, in comparison with the studied in the previous section, we consider a nonadiabatic
results from the exact quantum calculation. The quantum reaction in this section. The primary charge separation of
transmission coefficient is the ratio of the true rate constant photosynthesis in bacterial reaction centers involves electron
divided by the classical TST rate, i.&.= kikrst, wherekrst transfer from an excited special chlorophyll pair (the donor) to

n/mo,

the long-time dynamics. The long-time behavior of the reactive
flux correlation functions (to the right side of the vertical dotted
line) is determined by analytically continuing the simulation
data available up tbo= ph (left side of the vertical dotted line).
The reactive flux correlation function is a time integral of the
symmetrized flux autocorrelation function
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a bacteriopheophytin of the L branch (the acceptor). Despite whereVy, = 22 cnt?, Vi3 = 135 cnt?, andE, = 500 cnt?!
the large (17 A, center-to-center) distance between these tworesulting inVer = 6 cnl. Finally the driving force of the
sitesb” the electron transfer is characterized by a time constant reaction isAG = —400 cnt. The solvent reorganization energy
of about 3 ps and a quantum yield close to unity. Understanding of the system is estimated to be 2000 éyrso that, in the case
the specifics of this highly efficient electron-transfer process of the wild-type reaction center, the free energy surfaces for
has been the subject of numerous experimental and theoreticathe donor and acceptor intersect at the activationless geoffietry.
studies. Following the work of Makri and co-workéfs?it is The reorganization energdyis defined as the integral of spectral
now generally accepted that the mechanism of this primary density divided by the frequency
charge transfer is sequential with a low energy bridge of
bacteriochlorophyll monomer located between the donor and 1= ﬂf” do M (51)
the acceptor. A series of experiments with subpicosecond 7/ 0
resolution have been performed on the reaction centers of
Rhodopseudomonadgridis and Rhodobacter sphaeroide®
determine the kinetic features of the primary charge separation
process and its temperature dependéfcé. Among many
studies involving mutants of the reaction center, Holten and co-
workerg” have studied a double mutant with an aspartic acid
introduced near ring V of bacteriochlorophyll monomer in a
Rhodobacter capsulatus which bacteriopheophytin is also
replaced by bacteriochlorophyll. This double mutant exhibited 12
a slower primary electron transfer to the L-side chromophores G(t) = Z%

T

2N

To satisfy this condition, the friction constant of the ohmic
spectral density is set equal to 2.62 and the cutoff frequency is
taken to baw. = 600 cntl.

The PIMC simulations performed for this system were slightly
different from those described in section Ill. The path integral
expression of the symmetrized flux autocorrelation function eq
3 for a discrete two-level system Hamiltonian is

2
> FiokoiFokun

Kan+1

with a kinetic constant of 20 pg,which results from the bridge
free energy increase from its native value. It was observed that

the changes in the energetics induced by the chemical modifica- x i |e‘HSAt*°’h|ukiD

tion of Heller et al’” lead to slower kinetics. Sim and Maggi =Nt

estimated the free energy of the reduced accessory bacterio- N _

chlorophyll monomer and its coupling to the donor and the x |_| EL|k]_|e7'H9A‘°’ﬁ|ukj71DI G-, AL (52)
acceptor of the double mutant by performing real-time path =

integral computations of the time evolution of the reduced
density matrix. In this study, we adapt the parameters estimated
by Sim and Makf® and use them to model a discrete two-
level system coupled to a harmonic bath model.

The simplest model of nonadiabatic electron transfer is that

In this case, we used a random uniform sampling function for
MC simulations.
The experimentally measured time constant for this system
is 20 ps’” whereas the theoretically predicted time constant from
. . the three-state reduced density matrix calculation is 2% ps.
of a discrete two-state system coupled to a harmonic model ofUsin the STACEM method the time constant obtained from
the medium. In this model, the two states, donor and acceptor,the t\%\]/o-state superexchanae model was found to be 28 ps. The
are coupled to each other as well as to a harmonic bath that P nange - ps. 1
; . o . same result was obtained using a different spectral density
describes collective modes of polarization fluctuations of the : . R .
. . - obtained numerically from molecular dynamics simulations by
medium surrounding the reaction complex, such that the ; 80 . S
Marchi et al®® The reason for this slower kinetics is the

Hamiltonian has the form ; i
assumption of the superexchange electron-transfer mechanism

_ Q1 1 of the two-state model. It has been shown that the bridge state
H =( 3 eff )+ Z{_M“X"Z - Mo, xnz} (l 0) participates in the electron-transfer resulting in a sequential
Vet AG| 4|2 01 electron-transfer mechani§h$® so that the superexchange
Q 10 model of this study using the effective coupling of the
- Z CoXn ( 0 1) 47) superexchange transféf®was expected to give a slower rate,
n= i.e., a larger time constant.
The flux operator is written as VI. Concluding Remarks
P PN Motivated by the recent work of Rabani et*@land Krilov
F= fl[Hsa hyl (48) et al#” we presented the STACEM method for calculating the

. guantum canonical rate constant from the path integral simula-
whereH;s corresponds to the system Hamiltonian{(2 matrix tion of short real-time flux autocorrelation functions. The
in this case) and, is the product side projection operator. frequency dependent canonical rate constant was expressed as
Therefore matrix representation of the flux operator becomes a Fourier transform of the flux autocorrelation functiewhich
was calculated for short times by a discretized PIMC sampling
Fo Vet (0 —1) (49) technique related to that proposed by Thirumalai and B&me.
A\l O Taking advantage of accurate short-time quantum correlation

T del the t tate eleciron t ¢ that i functions obtained by the PIMC sampling method, the ME
0 model the two-state electron transier, we assume that in analytic continuation approach was employed to predict long-
long-distance tunneling the electronic coupling is due to

. . time behavior of correlation functions. Numerical test cases
super_exc_hange. The simplest expression for the SupereXCham‘:’Sresented in section V indicate that the STACEM method
coupling is the McConnell product of the foff®

provides very accurate quantum results for thermally averaged

V..V, rate constants of nonadiabatic as well as adiabatic chemical
o = 12z (50) reactions under various conditions relevant in chemical reactions,
E, i.e., the crossover and deep tunneling regimes.
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In complex condensed phase systems subject to conditions  (7) Truhlar, D. G.; Garrett, B. CAnnu. Re. Phys. Chem1984 35,
it ‘aai iy 159.
ofhovefrdampﬁd fnctlor_l, quanttfjm coherencmfafs d|SS|pate_ rapidly. (8) Truhlar, D. G.: Garrett, B. CJ. Phys. Chem1992 96, 6515.
Therefore, the description of quantum effects obtained by  (g) wjiller, w. H.; Handy, N. C.; Adams, J. EL. Chem. Phys198Q
numerical analytic continuation of short-time dynamical data 72, 90. _
is expected to be accurat€Thus under the overdamped friction (10) Tc?l?aleh M. Makr('j N.J. Chem. Phys1994 101, 7500.
the use of numerical analytic continuation methods for extracting 83 m:”g;’ w : JF aﬁ,yiy 8;15:;55;383 %ég %93
the frequency dependent rate constant from the short-time (13) wmiller, W. H.; Schwartz, S. D.; Tromp, J. W. Chem. Phy<1983
dynamic data is indeed possible. For the case of underdamped’9, 4889.
friction, on the other hand, evaluating the exact quantum time ~ (14) Yamamoto, TJ. Chem. Physl96Q 33, 281.
lation function which is stable and free of statistical errors (19) Fischer, S. FJ. Chem. Phys197Q 53, 3199.
correlatic \ € erl (16) Chandler, DJ. Chem. Phys1978 68, 2959.
for long times becomes less plausible and it is extremely difficult ~ (17) Wolynes, P. GPhys. Re. Lett. 1981, 47, 968.
to determine the plateau time. Nevertheless, the STACEM  (18) Feynman, R. PRev. Mod. Phys194§ 20, 367.
method seems to provide a practical and reliable way of MC%?;W':_ES;I?”‘SQWR\'(E&H&%% Auantum Mechanics and Path Integrals
predicting quantitat.ivew accurate canonical quantum meCh?‘nilcm (20) Feynman, R. Fstatistical MechanicsAddison-Wesley: Reading,
rate constant provided that the accurate short-time descriptionMA, 1998.
is available (21) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
’ . . . N.; Teller, E.J. Chem. Phys1953 21, 1087.
It was also found that, despite the bridge free energy being (22) valleau, J. P.; Whittington, S. G. Modern Theoretical Chemistry
higher than that of the donor state, the nonadiabatic electronBerne, B. J., Ed.; Plenum: New York, 1977; Vol. 5, p 137.
transfer in the double mutant of the photosynthetic reaction = (23) Berne, B. J.; Thirumalai, DAnnu. Re. Phys. Chem1986 37,
center still follows (at least partly) the sequential mechanism.
Although it has been shown that the bridge state participates in
the electron transfer in the wild-type reaction cefi#é® one o0 Bline. R. E. 31 Wol b Q. Chem. Physi988 88, 4334
il ine, R. E., Jr.; Wolynes, P. Q. Chem. Phy: , .
cannot rule out the possibility that.both supgrexchange and (27) Doll, 3. D.; Coalson. R. D.: Freeman, D. L. Chem. Phy<1987
sequential electron-transfer mechanisms contribute to the elecg7 1641,
tron transfer in the double mutant reaction center which has a  (28) Chang, J.; Miller, W. HJ. Chem. Phys1987, 87, 1648.
high-lying bridge state. The kinetic time constant of the two- ggg EIIEQV'NV' l\sll-,l’l\‘uc'\-NP’:_inj Béggﬁ 2;?; zllgéa 89, 2170
. akri, N.; Miller, . RLd. em. Y A .
state supergxchange model was Igrger than the experimentally (31) Mak, C. H.: Chandler, DPhys. Re. A 1991 44, 2352.
measured time constant supporting the argument that the (32) Egger, R.: Mak, C. HPhys. Re. B 1994 50, 15210.
sequential mechanism played a crucial role in the electron (33) Makri, N.Chem. Phys. Let1992 193 435.
transfer when high-lying bridge states are present. (34) Makri, N.J. Chem. Phys1993 97, 2417.
LT . (35) Topaler, M.; Makri, NJ. Chem. Phys1992 97, 9001.
Further applications of the STACEM method are possible  (36) Makri, N.; Makarov, D. EJ. Chem. PhysL995 102, 4600, 4611.
for more complicated problems of adiabatic and nonadiabatic ~ (37) Sim, E.; Makri, N.Chem. Phys. Letl996 249, 224.
reactions in condensed mattrincluding excitation transfer, gg; ?Lm’al'i}; '\l\clak;;l/lyalﬁﬁccl)\lrt]]pu;hPsl’]yé.hgr?ﬁngnslém]?gg 2258’35-
energy migration, and superexchange phenomena with multiple ;4 W‘fng’ H.: Sun, X.: Miller, V\)’ HJ. Chem. Phys1998 108 9726.
barriers’®8182t |ikewise would be of interest to study the (41) Sun, X.; Wang, H. B.; Miller, W. HJ. Chem. Phys1998 109,
dependence of the reaction rate on quantum coherence effects}190. _ o
friction, electronic coupling constant between bridges, exother- __(42) Sun, X.; Wang, H. B.; Miller, W. HJ. Chem. Phys1998 109
micity, and temperature. The influence functional approach that
appears in this paper is still limited to the harmonic bath with
linear coupling. A possible extension allowing for treatment of
anharmonic baths is the use of cumulant expansions of the
influence functional for the implicit bath modésIn addition,
following Rabani et al*> one may treat the bath explicitly thus
avoiding the limitation of the harmonic bath assumption in the
real-time path integration. In combination with an improved
numerical analytic continuation technique and more efficient
sampling techniques which provide stable results over long
times, it is believed that the stL_ldy of c_hemlca_l reactions within (55) Makri, N.J. Phys. Chem. B999 103 2823,
a more general environment is possible using the STACEM  (56) Skilling, J., Ed.;Maximum Entropy and Bayesian Methods

method presented in this paper. All of these problems will be Klu(v5v7e)r: GDclJ)rdrecht, }hg r\ilethelrllal\r}ld5,3%989.Fe N Sivia. DRSve. R

; i iyati ubernatis, J. E.; Jarrell, M.; Silver, R. N.; Silvia, DPys. Re.
the subject of future investigation. B 1001 44 6011.
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