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The divergence as L - m in the first term on the right-hand side 
of eq A9 (which is propagated to (PEXTL(rj) in eq A5, and ulti- 
mately to UE&(rj)) is exactly canceled by the divergence in the 
first term on the right-hand side of eq A4. Thus, eq 1 is left as 
the contribution to the total configuration energy from the in- 
teraction between ion j and an infinite cylindrical polyion of charge 
density -q/b,  and eq 6 can be used to calculate aEXT(rJ) .  

The accuracy of the numerical determination of cPExTL(rs) from 
eq A6 and A9 is limited primarily by the magnitude of Ar, the 
thickness over which B(rf,rs;L) and hence @E&,) are assumed 
to be constant. Values of Ar less than the standard choice of 0.1 
nm were tested and found to produce no significant alteration in 
the counterion distribution computed for salt-free systems. 
However, at ratios of added salt to polyion monomer ([Na]/[P]) 
in excess of two, anomalous local inversions were observed in the 
computed distributions of the counterions and co-ions near the 
outer boundary ( R )  of the M C  cell. Similar “spurious boundary 
effects” apparently were observed by Rossky and co-workers,I8 
who stressed the importance of high accuracy in the numerical 
evaluation of the external potential. Anomalies in the ion dis- 
tribution near R were reduced (but not eliminated) by use of 
smaller values of the grid size Ar (0.05 nm, 0.025 nm) and/or 
by increasing the length of the central cell beyond 1.7 nm. For 
systems containing added salt, the external potential was not in 
general computed with the S C  method, because of the limited 
storage capability of the computer (Harris/7). Calculation of 
aEXT from the PB equation, which has been previously employed 
to approximate long-range interactions in M C  studies,l0-l6 sig- 
nificantly reduces the demands of these simulations on the com- 
puter memory. Therefore, the ion distributions in added salt 
reported in section V all were calculated from the PB external 
potential 

*EXTPB(rs) = ( 2 / e )  c B(r,,rs,) Jdrd+&pPB(r)r dr  ( ~ 1 0 )  

where pPB(r) is the net charge density predicted by the cylindrical 
PB equation, the grid size Ar = 0.5 nm, and 2h = 1.7 nm. To 
check the accuracy of this use of the PB equation in the MC 
simulations, the resulting ion distributions for a system with 
[Na]/[P] = 2.0 were compared with those computed by using 
the sc method to determine @EXT(rJ). The ion distributions 
obtained by these two methods are indistinguishable. Conse- 
quently, for systems containing higher levels of added salt 

S 

5’= I 

([Na]/[P] > 2.0),  where the effects of long-range interactions 
must be less significant, the PB equation was deemed to provide 
a sufficiently accurate alternative to the SC method of computing 
the external potential. The residual charge inversion near R (cf. 
Figure 5 )  is not expected to have any impact on the results dis- 
cussed in section V, which is focused on the characteristics of the 
counterion distribution function in the near vicinity of the polyion. 

In contrast to the methods described above for calculating the 
contribution of long-range interactions to the total configuration 
energy, the extended image (EI) method does not involve the 
calculation of an averaged external potential. Instead, all in- 
teractions among small ions within the central cell and all in- 
teractions of each of these ions with all of the ions in all the “image 
cells” are calculated explicitly. The potential energy of the in- 
teraction between i o n j  in the central cell (denoted by the subscript 
0) and ion k,  which may be in the central cell or in any of the 
m image cells, is 

UJO,km = qJoqkm/61fJo - ?kml 111 = 0, ..., kf; J ,  k = 1 ,  ..., lv 
(A1 1) 

provided that - fkml 2 6, the hard-sphere cutoff. To diminish 
correlations in the angular coordinates of the image ions with those 
of ions in the central cell, each odd-indexed image cell was rotated 
by 180°, so that 

(This approach was taken by LeBret and Zimm” in their MC 
computations of ion distributions around DNA.) If the model 
polyion is assumed to have a continuous axial charge distribution, 
then the E1 expression for the total configuration energy is 

N N N M  

(A12) 
This form of the configuration energy was assumed in applying 
the E1 method to compute the values of &,“(O.l) given in Table 
I for various specifications of 2h and L. (All of these computations 
based on the E1 method were carried out by K. Kollenbrander 
and L. Bleam.32) 
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We evaluate the dissociation or recombination rate constant of a diatomic molecule using the impulsive collisional BGK 
model. In three dimensions the rate constant goes through a maximum as a function of the collision rate as in the case of 
isomerization reactions. For high collision rate it reduces to the classical Smoluchowski result for diffusion-controlled reactions. 
This model quantitatively fits experimental data on halogen recombination. The experimentally observed maximum has 
its dynamical origin in the competition of collisional activation and diffusion control as originally suggested by Kramers. 

1. Introduction 
Chemical reactions have been studied extensively within the 

framework of unimolecular rate theory in the gas phase1q2 and 
the theory of diffusion-controlled reactions3 in liquids. More 
general models based on Kramers’ ideas4 can be applied Over the 
whole density range. ~ h ~ ~ ~ ~ i ~ ~ l  studies of isomerization reactions 

using similar show that the rate constant as a function 
of the coupling Parameter (e.g., friction Or collision rate) goes 

(1) Troe, J. Annu. Reo. Phys. Chem. 1978, 29, 223. Haase, W. L. In 
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Species”; Fontiin, A,; Clyne, M. A. A,, Eds.; Academic Press: New York, 
1983. 
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through a characteristic maximum (turnover). Prompted by this 
theoretical work there was a substantial effort to observe this 
turnover experimentally.lOJ1 Even though such studies provided 
many interesting results a turnover was reported only in the case 
of cyclohexane isomerization.lo In this case however the important 
equilibrium solvent effect is hard to estimate quantitatively and 
the potential surface of cyclohexane is not accurately known. 
Comparison of the experimental data with dynamical theories is 
therefore problematic.s 

It is surprising that in spite of these difficulties the interest 
focused solely on isomerization reactions. Dissociation and re- 
combination reactions were never considered in this context even 
though it has been known for a decade that the rate constant of 
halogen recombination shows a turnover as a function of pres- 
sure.12-14 Therefore, one would like to compare these results with 
a physically interesting model of dissociation or recombination 
reactions valid for arbitrary coupling. 

In this study we consider one such model: the impulsive col- 
lisional BGK model having collision rate as the coupling param- 
eter!~~ For low coupling the BGK model resembles the “strong 
collision approximation” known in unimolecular rate theory.] At 
high coupling it shows the physically correct diffusive behavior. 
We evaluate explicitly the rate constant for dissociation or re- 
combination as a function of the collision rate. The rate constant 
shows the characteristic turnover and reduces correctly to the 
Smoluchowski diffusion-controlled recombination rate constant 
for high coupling. Troe’s experiments on halogen recombina- 
tionI2J3 can be explained by using this model. The analogous study 
of the original Kramers’ frictional model is more complicated and 
is considered in a separate p~b1ication.l~ 

2. Definition of the Model 
Consider the simplest dissociation reaction 

k(d)  

A B @ A + B  (1) k(’) 

where the two atoms are separated by 7 and carry a relative 
momentum 8. The classical Hamiltonian in the phase space r 
is16 

H ( r )  = ~ r 2 / 2 ~  + Vedr,J) (2) 
is the 

(3) 

where pr is the radial component of the momentum, 
reduced mass, and 

Ven(r,J) = V(r)  + J2/21LrZ 

is the effective rotational potential. The atoms interact by a 
potential V(r) which approaches the constant dissociation energy 
De (faster than 1/93) for large r. The effective potential Vcrr(r,J) 
as function t f  r has a maximum which depends on the angular 
momentum J.16 

Reactants and products are defined by a characteristic function 
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(6) Skinner, J. L.; Wolynes, P. G. J .  Chem. Phys. 1980, 72, 4913; 1978, 

69, 2143. Berne, B. J.; Skinner, J. L.; Wolynes, P. G. J. Chem. Phys. 1980, 
73, 4314. 

(7) Montgomery, J. A.; Chandler, D.; Berne, B. J .  J .  Chem. Phys. 1979, 
70, 4065. 

(8) Grote, R. F.; Hynes, J. T. J .  Chem. Phys. 1980, 73, 2715. Hinggi, 
P.; Weiss, U. Phys. Rev. A 1984, 29, 2265. 

(9) Hinggi, P.; Moitabai, F. Phys. Rev. A 1982, 26, 1168. Hinggi, P. J .  
Srat. Phys. 1983,30,401. Bagchi, B.; Oxtoby, D. W. J. Chem. Phys. 1983, 
78, 2735. 

(10) Hasha, D. L.; Eguchi, T.; Jonas, J. J .  Am. Chem. SOC. 1982, 204, 
2290. 

(1 1) Rothenberger, G.; Negus, D. K.; Hochstrasser, R. M. J .  Chem. Phys. 
1983,79,5360. Velsko, S .  P.; Waldeck, D. H.; Fleming, G. R. J .  Chem. Phys. 
1983,78,249. Courtley, S .  H.; Fleming, G. R. Chem. Phys. Left. 1984,103, 
443. Eisenthal, K.; Millar, A., preprint. Eisenthal, K., private communication. 

(12) Otto, B.; Schoeder, J.; Troe, J. J .  Chem. Phys. 1984, 81, 202. 
(13) Hippler, H.; Schubert, V.; Troe, J. J .  Chem. Phys. 1984, 81, 3931. 
(14) Hippler, H.; Troe, J. I n f .  J .  Chem. Kiner. 1976, 8, 501. 
(15) Borkovec, M., Berne, B. J., in preparation. 
(16) Goldstein, H. “Classical Mechanics”; Addison-Wesley: Reading, MA, 

1981; Chapter 3. 

The Journal of Physical Chemistry, Vol. 89, No. 19, 1985 3995 

(4) 

where O(x) is the Heaviside step function. HAB(r) is 1 for a bound 
diatomic molecule and vanishes for dissociated atoms. We denote 
by rmT the fixed position of the transition-state dividing surface 
(see section 3). 

Consider now a collection of AB molecules interacting with a 
heat bath of interest (Le., the solvent). We are interested in the 
dynamics of the decay of some initial nonequilibrium macroscopic 
state to equilibrium. Although this problem is severely complicated 
by many-body effects3J7 the dynamics in three dimensions can 
be approximated quite accurately by the solution of the standard 
chemical kinetic equations involving the dissociation and recom- 
bination rate constants ked) and k(r).3918 

We evaluate the dissociation rate constant k(d) using the fol- 
lowing idea: let us imagine that we modify our potential V(r)  
by putting a hard wall a t  r = L ( L  >> + S T ) .  Then there is no 
difference between this reaction and an isomerization reaction 
whose forward and backward rate constants are obtained from 
the equilibrium constant and the correlation time of the correlation 
function7J9 

where 6HAB denotes the deviation of HAB from equilibrium value 
and (...) the canonical equilibrium average over full space (0 I 
r I L ) .  Using this modified potential we calculate the forward 
rate constant from this formalism. If the limit L - m of this rate 
constant exists we assume that the forward rate constant is equal 
to the dissociation rate constant k(d) of eq 1. 

is determined the recombination rate constant k(‘) 
of eq 1 follows from detailed balance. 

Once 

The equilibrium constant iszo 

where = l /kBT and 

(7) 

the configurational partition function of the bound diatomic. 
In this communication we study the dissociation rate constant 

k(d) for the simple collisional BGK model acting on the relative 
coordinates. The transition rate is characterized by a collision 
kernel6*’ 

(9) 

where Pq@) is the Maxwell-Boltzmann distribution. The col- 
lisions of mean frequency a: randomize the momentum 8 but not 
the position 7. This corresponds physically to the case of most 
favorable energy transfer by a heavy hard collider. 

3. Evaluation of the Dissociation Rate Constant 
Unfortunately, it is not possible to evaluate the dissociation rate 

constant for arbitrary collision rate a: analytically. However, 
this becomes feasible in three limiting cases, and these results can 
be used to approximate accurately the overall behavior. 

The dynamics of the isolated molecule determines the maximal 
rate constant which is given by transition-state theory. It can be 
evaluated from the initial slope of the correlation function C(t).19 
In our case we obtain a dissociation rate constant 

(10) kY& = ( ~ ~ A B ) - ’ ( ~ ( ~ T s T  - r )@r/c~)f~(Pr) )  

(17) Kapral, R. Adv. Chem. Phys. 1981, 48, 71. 
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(19) Chandler, D. J .  Chem. Phys. 1978, 68, 2959. Berne, B. J. In 

“Multiple Time Scales”; Brackbill, J. U., Cohen, B. I., Eds.; Academic Press: 
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Figure 1. Comparison of simulation data with the approximate analytical 
expression eq 20. The rate constant k is plotted vs. the collision rate a 
in dimensionless units where T = (&9)1/2. The error bars represent 95% 
confidence intervals. 

tables.zs The collision rate a was chosen to reproduce the relative 
diffusion coefficient eq 15 of the two iodine atoms which is D = 
2D1 in the dilute solution in question. Using eq 6-8 we can reduce 
the diffusion-controlled recombination rate constant eq 18 (for 
deep wells) to the correct result for interacting particles3 

where V(r) = V(r) - De. The evaluation of eq 11, 13, and 26 
requires simple numerical analysis. The transition-state rate 
constant eq 11 must be reduced by a factor of to take the 
indistinguishability of the iodine atoms into account.26 The 
transition state is located at  rTST = 3.51 A in this particular 
example. Then we use eq 20 to obtain the rate constant for any 
diffusion coefficient. Note that there are m adjustable parameters. 
The result is displayed together with experimental datal2 in Figure 
2. The two different temperatures of measurements (298 and 
314 K) produced virtually identical graphs. 

6. Conclusions 
We have evaluated the dissociation or recombination rate 

constant for a classical diatomic molecule as a function of collision 
rate for the impulsive collisional BGK model. It is possible to 
calculate the rate constant analytically in three limiting cases. 
These quantities are sufficient to construct approximately the 
overall rate constant (see Figure 1 for comparison with simulation). 
In the high coupling limit we correctly obtain the Smoluchowski 
result for diffusion-controlled reactions. This model was applied 
to interpret Troe's recent measurements12 of recombination rate 
constants of iodine over a wide density range. The result which 
does not contain any adjustable parameters is compared with 
experimental data in Figure 2. The experimentally observed 
maximum has its dynamical origin in the competition of collisional 
activation and diffusion control as proposed originally by Kramers.4 

We would like to emphasize the importance of the correct 
number of the degrees of freedom which enter the model: the 
diffusion-controlled regime for a dissociation reaction behaves 
completely differently in one2' and two2* dimensions in contrast 
to three dimensions treated here. In these cases the analogues 
of eq 18 diverge in the L -+ m limit. 

Despite the agreement between theory and experiment the 
quantitative success of the BGK model should be judged with 
caution. The model involves many approximations which are 

(25) Herzberg, G. "Molecular Spectra and Molecular Structure", 2nd ed.; 

(26) Pechukas, P. In "Modern Theoretical Chemistry"; Miller, W. H., Ed.; 

(27) Torney, D. C.; McConnell, H. M. J.  Phys. Chem. 1983, 87, 1941. 
(28) Keizer, J. J .  Phys. Chem. 1981, 85, 940. 
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Figure 2. Troe's experimental data of recombination rate constants k(') 
of iodine as function of the diffusion coefficient of a single iodine atom, 
D,, in different solvents (dots);'* the prediction of the impulsive collisional 
BGK model without adjustable parameters (full line) and the value of 
the transition-state rate constant (dashed line). 

presumably justified for higher pressures only. The precise 
quantitative agreement in the low-pressure region is probably 
fortuitous. We will discuss the approximations which enter the 
BGK model in the order of decreasing importance. 

(1) From the trajectory studiesz9 of 2A + B - A2 + B type 
reactions in the low-pressure regime it is known that two reaction 
channels are of importance: the bound complex (BC mechanismz9) 
and the energy-transfer mechanism (ET mechanism29) considered 
in this study. In the BC mechanism a host gas molecule forms 
a complex with one of the recombining radicals which can form 
the products upon a collision with a second radical. This reaction 
channel becomes dominant at lower temperatures (- 300 K) and 
is responsible for the experimentally observed30 decrease of the 
low-pressure recombination rate constant with temperature 
(roughly as T3).  The E T  mechanism corresponds to energy 
activation and deactivation of the reacting molecule by the inert 
gas molecules and becomes important a t  high temperatures 
(- loo0 K).29 This ET mechanism is described by the BGK model 
for example. Trajectory calculationsm show that the rate constant 
of the ET mechanism decreases weakly with temperature (slower 
than TI). Using the Lennard-Jones expression for the diffusion 
coefficientZo or the true collision frequency* the BGK model 
predicts a too large recombination rate constant with no tem- 
perature dependence. This is not surprising however since the 
BGK model corresponds to the maximum possible energy transfer. 
In reality the energy transfer will be much less efficient and 
described rather by a weak-collision model which results in a 
smaller rate constant which decreases with temperature. The 
original Kramers model applied to this particular probleml5 shows 
roughly a correct temperature dependence (close to 
However, a realistic model must take the non-Markovian nature 
of soft collisions into account. 

(2) We have to address the electronic degeneracy factors u 
included usually in more accurate s t u d i e ~ ~ ~ ? ~ ~  but omitted in our 
model for simplicity. The ground state of iodine atom is 2P3jz 
(4-fold degenerate) and the ground state of the iodine molecule 
is 'Eg+ (n~ndegenera te ) .~~  If the reaction proceeds adiabatically 
(slow intersystem crossing) the recombination rate constant will 
be reduced by a factor of u = '/16. However if the reaction is 
nonadiabatic (fast intersystem crossing) all electronic states lead 
to recombination and u = 1. A continuous transition is to be 

(29) Clarke, A. G.; Burns, G. J.  Chem. Phys. 1972, 56,4636. Chang, D. 
T.; Burns, G. Cun. J .  Chem. 1976, 54, 1535. 
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Phys. 1972,56, 3155. Antrim, R. E.; Burns, G.; Ip, J. K. K. Can. J .  Chem. 
1977, 55, 149. 

(31) Stace, A. J.; Murrell, J. N. Mol. Phys. 1977, 33, 1. 
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expected between these extreme situations depending on the ratio 
of the intersystem crossing times to the lifetimes of closely sep- 
arated radicals during recombination. It is established that in 
radicals the hyperfine (hf) interactions are the major mechanism 
for intersystem crossing.32 In halogen atoms the time scale for 
intersystem crossing will probably lie in the picosecond range 
(hf-coupling constants - lo4 G33).  Usually in organic radicals 
this time scale is of the order of nanoseconds (hf-coupling constants - 10 G).32 In the case of halogen atoms one therefore expects 
u = ‘ / I6  in the low-pressure region because the duration of one 
collision is too short for recrossing. Rate constants obtained from 
trajectory studies without adjustable parameters ( T  300 K) 
come out too low with u = 1/16.29,31 This could be explained either 
by recrossings in long-lived collision complexes which move on 
weakly attracting potential surfaces or by inaccuracies in the 
potential surfaces used in the trajectory studies. In the diffusive 
regime on the other hand the radicals stay cloe to each other for 
the lifetime of solvent cage (i.e., the time of diffusional escape) 
which is in the picosecond range. This allows enough time for 
intersystem crossing leading to u = 1 in the high-pressure regime 
for iodine recombination. On the other hand in organic radical 
reactions u < 1 is experimentally observed34 even in the diffusive 
regime. This is naturally explained by the long intersystem 
crossing times. 

(3)  We approximate the interaction between the iodine atoms 
by a Morse potential a t  all densities. Since the calculated rate 
constants are not too sensitive to changes of the parameters en- 
tering the Morse potential we believe that this is adequate a t  low 
pressure. A more stringent test would involve the study of different 
functional forms of the potential which we omitted in light of the 
more serious approximations stated above. Furthermore, as one 
increases the density the reactants feel the solvent-averaged po- 
tential of mean force. Since the species in question are unpolar 
the magnitude of this solvent effect can be estimated by ap- 
proximating the potential of mean force using the cavity distri- 
bution function of hard spheres.35 Tabulated Lennard-Jones 

(32) Molin, Yu N., Ed. ‘Spin Polarization and Magnetic Effects in Rad- 
ical Reactions”; Elsevier: Amsterdam, 1984. Kapstein, R. In “Chemically 
Induced Magnetic Polarization”; Muus, L. T., Atkins, P. W., McLauchlan, 
K. A., Pedersen, J. B., Eds.; D. Reidel: Boston, 1977. 

(33) Hudson, A.; Root, K. D. J. Adu. Magn. Reson. 1971, 5, 1 .  
(34) Lipcher, J.; Fisher, H. J.  Phys. Chem. 1984,88, 2555. Schuh, H.; 

Fischer, H. Inr. J .  Chem. Kine?. 1976, 8, 341. 

parameters can be used to obtain the hard-sphere diameters. We 
find only minor changes ( - 10%) in the diffusive rate constant36 
and in the transition-state rate constant. Therefore, we feel that 
this effect is probably of minor importance in this particular case. 

We also applied the same model on data for bromineI3 and 
chlorine14 recombination. The data obtained on bromine are very 
similar to those on iodine and show also a good agreement with 
the BGK model. We are puzzled by chlorine however where the 
turnover appears a t  substantially lower densities than in iodine 
or bromine and is in disagreement with the BGK model. 

The density dependence of the recombination of polyatomic 
molecules or radicals can be analyzed by similar methods. Because 
of the large number of degrees of freedom involved one has to 
expect much larger low-pressure rate constants in this case.1s22 
In this case the maximum of the rate constant vs. pressure will 
be substantially broadened and shifted toward lower pressures. 
Therefore, experimental study of such recombination reactions 
over a wide pressure range could supplement the studies on 
isomerization reactions. It would also be interesting to perform 
such studies in very viscous solvents. In organic radical reaction 
one might observe the approach of the electronic degeneracy factor 
u to 1 with increasing viscosity. Also non-Markovian effects on 
the diffusive falloff as considered in isomerization  reaction^^^^^^ 
could be addressed in recombination reactions. 

In conclusion we summarize the most important results. We 
have evaluated the rata constant for the dissociation or recom- 
bination of a diatomic using the impulsive collisional BGK model 
for arbitrary coupling. The rate constant as a function of the 
collision rate goes through a maximum and reduces to the classical 
Smoluchowski result for diffusion-controlled reactions for high 
collision rate. The simple BGK model is able to reproduce the 
recent measurements of iodine recombination by Troe12 without 
adjustable parameters (see Figure 2). The physical reason for 
the turnover observed by Troe has the dynamical origin in the 
competition between collisional activation and diffusion control 
as originally suggested by K r a m e r ~ . ~  
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