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On Determining Reaction Kinetics by Molecular Dynamics Using Absorbing Barriers 
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The absorbing barrier method for using molecular dynamics to determine rate constants for activated barrier crossing is 
generalized to allow determination of the full reactive flux. This method requires much less CPU time than the straightforward 
simulation of the reactive flux in the low- and high-friction regimes. When applied to the Langevin equation the absorbing 
barrier method gives excellent agreement with the results of Kramers’ theory. 

Introduction 

is important to simulate reactions 
There are many instances in chemistry and physics where it 

kf 
A - 0  

kb 

involving a transition between stable species separated by an energy 
barrier. If the activation energy, E*,  is large compared to kT,  
barrier crossing is infrequent and a straightforward computer 
simulation will result in too few barrier crossings to allow de- 
termination of the rate constants. To avoid this problem one 
determines the reactive fluxla* 

where (...) indicates a canonical or microcanonical average, x is 
the reaction coordinate, x = 0 is the position of the barrier (Le., 
the transition state), and 1 = dx/dt; O(x) is the unit step function; 
O(x(t))  is unity only if the system at  time t is to the right of the 
transition state (that is, in well B). 

If E* >> kT,  k ( t )  will decay on two widely different time 
scales.ld There will be a fast transient decay from the initial value, 
followed by a very slow decay 

where XpLAT is the “plateau value” of the reactive flux 

k f  + kb - k - -  - 
( k f  + kb)TST kTST 

XPLAT = (3) 

k = k f  + kb is the exact kinetic rate constant, and kTsT = ( k f  + 
kb)T,$T is the transition-state theory (TST) approximation to k ,  
given by kTsT = ( X 6 ( x ) e ( X ) ) / X A X B  where X, and X, are the 
equilibrium mole fractions for wells A and B, respectively. 

It is possible to express the reactive flux asIe 

(4) 

where 

y e  normalized phase space distribution functions. To calculate 
k(t) one samples points in phase space from these distribution 
functions, and runs molecular dynamics trajectories for each of 
the sampled  point^.^-^ Given the 6 function and step functions 
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we see that in all sampled states the reaction coordinate starts 
at the barrier maximum; that is, a t  the transition state. In the 
flf)(r) distribution the velocity i is positive and the system starts 
out moving toward well B whereas in P(-)(l’), x is negative and 
the sytem moves toward well A. ( B ( x ( t ) ) ) ,  and ( 6 ( x ( t ) ) ) -  are 
the fractions of sampled trajectories which are in well B at time 
t given that a t  time t = 0, x = 0 and the initial velocity is either 
1 > 0 or x C 0, respectively. 

Thus to simulate a reacting system5-’ one can use Monte Carlo 
techniques to sample icitial states from f i * ) ( I ’ )  and molecular 
dynamics to calculate k(t) using eq 4. This procedure requires 
following a large number of trajectories for a sufficiently long time 
to determine XPLAT. To determine k = kf + kb from XPLAT a 
separate Monte Carlo simulation is required to determine 

where S(0) is the probability distribution of finding the reaction 
coordinate a t  the transition state x = 0. Alternatively, one could 
follow the trajectories for_ a very long time and thereby determine 
the exponential decay of k(t) but this requires an enormous amount 
of computer time. Since all trajectories needed to determined 
XPUT originate a t  the top of the barrier, this reactive flux method 
avoids the need for trajectories to be activated. 

The reactive flux approach requires much less computer time 
than other methods. It has already been used to simulate reactions 
in the liquid Nevertheless, for very small or very large 
friction, the trajectories recross the transition state many times 
before becoming trapped and even the reactive flux becomes very 
costly in CPU time. 

Recently we proposed an approximate method in which the 
initial states are sampled according to P(*)(I’) after which each 
trajectory is computed only until it is absorbed by an “absorbing 
barrier” at the transition state.8 This method allows determination 
of XpLAT and requires much less CPU time than does the full 
reactive flux calculation outlined above when applied to very low 
and very high friction regimes (i.e., when there are large deviations 
from the transition-state rate constant). However, this method 
still requires an additional simulation to determine kTsT and 
thereby k = kf + kb. 

In this paper we present a generalization of the absorbing barrier 
method for determining both XpLAT and the time dependence of 
the reactive flux, and use it to determine both kf + kb and (kf + 
kb)TST in one simulation. It is very efficient and leads to con- 
siderable savings in CPU time over previously used methods. Its 
accuracy is demonstrated by applying it to a simulation of one- 
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dimensional Langevin dynamics in a symmetric double well. The 
resulting rate constant as a function of the friction constant agrees 
with Kramers' theoretical predictions over a very wide density 
regime. We also compare the full time dependence of the reactive 
flux in a two-dimensional system with that determined by the 
absorbing barrier method. The agreement is very good and the 
method agrees with both the transition-state rate and the real rate 
constants. 

Absorbing Barrier Method 
For simplicity consider a symmetric double-well potential with 

wells A and B. Let P(t  - t') be the fraction of trajectories which 
at  time t' are a t  the transition state (TS) (x = 0) moving toward 
well B (x > 0) and by time t have not yet recrossed x = 0. The 
flux crossing x = 0 for the first time is then j ( t  - t') = - P ( t  - 
t ' ) /a t .  If it is assumed that when recrossing the barrier the 
distribution of particles at the transition state is given by fl*)(I') 
then the population of particles that recross the TS at time t' which 
have not recrossed a second time by time t is just P(t - t').  If 
we assume that on every recrossing the distribution of particles 
a t  the TS is fl*)(I'), then ( e ( ? ) ) +  can be expressed in terms of 
P ( t )  and j ( t )  as 

( O ( t ) ) +  = P( t )  + Sf dt2 I " d t ,  P(t - t 2 ) j ( t ,  - tl)j(tl) + 
0 0 

i f d t 4  S" dt, S" dt, S " d t l  0 P(t  - r4)j(t4 - t , )  X 
0 0 

The first term on the right represents the fraction of trajectories 
still in B a t  time t .  The second term represents the fraction of 
trajectories that have crossed once from B to A, then crossed back 
to B and got trapped. The quantity j ( t , )  dt, is the fraction of 
trajectories crossing for the first time from B to A between t ,  and 
t ,  + dt,, the quantityj(t2 - t , )  dt, is the fraction of trajectories 
that having arrived in well A at  time t l  cross for the first time 
back into B between t 2  and t 2  + dt,, and the quantity P(t - t 2 )  
is the fraction of trajectories that have never left B by time t given 
that they first entered B at  time t2.  It follows that & dt, yd 
dt, P(t - t2) j ( t ,  - t l ) j ( t l )  is simply the fraction of trajectories 
that have undergone the sequence of transitions B - A - B in 
time t .  The third term in eq 7 represents trajectories making the 
sequence of crossings B - A - B - A - B in the time t .  In 
this way it is easy to write the term corresponding to the sequence 
B - (A - B)". Equation 7 represents the summation of all such 
terms for n = 1 to m. Laplace transformation of eq 7 gives 

(8) 

where P(s )  andj(s)  are the Laplace transforms of P ( t )  andj(t), 
respectively. Since j ( t )  = -e,P(t), P ( s )  = (1 - J ( s ) ) / s  and sum- 
mation gives 

( e @ ) ) +  = P ( s )  2 U(s)2]" 
n=O 

To calculate ( e ( t ) ) -  we must recognize that the trajectories start 
out moving toward well A. Thus we must consider the fractions 
of trajectories corresponding to (A - B)" for n = 1 to a. This 
gives 

m ( e @ ) ) -  = P(s) j (s)  c [ j ( s ) Z ] n  
n=O 

From eq 4 it follows that the Laplace transform of the reactive 
flux is given by 

or 

The following model provides some insight. Assume that the 
fraction of particles entering the well at t = 0 which have not 
recrossed the transition state by time t is 

(13) P ( t )  = (1  - To)O(-t) + To&' 

where (1 - To) is the fraction of trajectories which quickly leave 
well B and Toe-k' represents the trajectories which get trapped 
and subsequently leave with rate constant k2 (or equivalent mean 
first passage time kz-'). The Laplace transform of P ( t )  is 

Inserting eq 14 in eq 12 and Laplace inverting gives 

(15) 

The prefactor is the plateau value for the rate constant found 

10 
Qt)  = 2-T, exp(-W,t/(2- To)] 1 

in our previous analysis (cf. eq 2 and ref 8): 

kf + kb TO XPLAT = - = -- 
kTST - TO 

From eq 2 we recognize the argument of the exponential to be 

kf + kb = 2k2/(2 - To) (17) 

~ T S T  = 2 k d T o  ( 1  8) 

Combining eq 16 and 17 we find 

where the transition-state rate constant is given simply in terms 
of the fraction of trajectories trapped quickly, To, and the rate 
for once trapped trajectories to pass out of the well to the transition 
state, k2. 

To and k2 can be found by taking a single well with an absorbing 
barrier a t  the transition state. The trajectories are sampled as 
in the calculation of k(t) (cf. eq 4); however, when a trajectory 
recrosses the transition state we remove it. After a short time 
all the trajectories that leave quickly will have been absorbed and 
the fraction of trapped trajectories will decay as To&'so that 
k2 may be found from this long time exponential decay. 

Equation 12 may easily be extended to the case of the asym- 
metric double-well potential. We find 

where P,(s) and P&) are the Laplace-transformed well popu- 
lation values for particles not having recrossed the transition state 
from wells A and B, respectively. If we calculate the reactive flux 
for the asymmetric double-well potential using eq 19 along with 

we find that 

Again, the prefactor agrees with the plateau value found in our 
previous analysis. If we combine eq 2,3, and 21 the transition-state 
theory rate constant is found to be 
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Figure 1. Barrier crassing rate constants vs. the friction constant, 7. for 
one-dimensional Langevin dynamics (eq 23). The prediction of the 
Kramers theory for the overall rate constant klk, i compared with the 
simulation results by the absorbing barrier methad (eq 16). Error bars 
give the 95% confidence interval. 

Numerical Results 
The reactive flux (cf. eq 1) bas proved useful in simulations 

of reactions in condensed matter. These studies involve the solution 
of the equations of motion of a large number of molecules and 
require considerable CPU time. Even when the solvent is rep- 
resented as a stochastic bath the simulations require much more 
time especially when the friction coefficient is very large or very 
small. The absorbing barrier method leads to a considerable saving 
of computer time in these simulations. We illustrate this by 
applying the method to a simple stochastic simulation of two model 
systems. We are currently applying this method to determine rate 
constants in liquids using full molecular dynamic simulations. 

To test the accuracy of the absorbing barrier method in de- 
termining the transition-state normalized rate constant, APLAT, 
we have simulated a one-dimensional system using Langevin 
dynamics. The potential is piecewise parabolic with barrier height 
E*, reactive well frequency wo, and barrier frequency, os. The 
Langevin equation for this system is 

y - avo +At) 
ax 

whereflr) is a Gaussian random force with covariance Cf(0)flt)) 
= 2kTyB(l - re)/rc and T,  is the correlation time of the force. 
This Langevin equation was integrated by using a fourth-order 
Adam-Moulton Preditor-Corrector algorithm for E'/kT = 10, 
wo/wB = 2, and 1000 trajectories for varying y and 7,. r, was 
adjusted to ensure that the system dynamics were Markovian. 

The results for several different y are shown in Figure 1 along 
with the theoretical predictions from the theory of Kramers. We 
find excellent agreement between theory and simulation in both 
the low and high y limits (Figure I). Thii agreement lends s u p p t  
to the validty of the assumptions underlying this method. 

We now consider a nontrivial dynamical system consisting of 
a particle of mass m and reaction mordinate x, moving in a quartic 
symmetric double-well potential with energy barrier E*, and a 
nonreaction coordinate y moving stochastically with friction f, 
in a harmonic potential with frequency w. The coupling between 
x and y is cxy. The potential, with units such that E*, m,  and 
the well minimum along the reaction coordinate equal I, is 
therefore 

+ cxy + 1 (24) 

The Langevin equations for the system are 

where&@) is a Gaussian random force with mvariance Vy(0)fy(t)) 
= 2kT@(t - rC)/rc, and r, is the correlation time of the force. 

.2 t 
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Rgw 2. Normalized well population, P ( t ) ,  as a function of time shown 
with single-exponential (eq 13) fit (parameters given in Table I). Error 
bars are indicated by the shaded region shown to I standard deviation. 
for the calculated P(r)  

TABLE I: Comparison of Rate Constants from Different Methads 
To IO'k, hPLAT IO' kBr 

single exponential' 0.50 1.4 0.33 5.6 
full reactive flux simulationb 0.35 
exact kmr (6Y 5.11 

'As given by eq 16. bAs given by eq 3. cAs given by eq 26 

These Langevin equations were integrated by using a fourth-order 
Adams-Moulton Predictor-Corrector algorithm for E'/kT = 5 ,  
r = 2, r, = 

A computer simulation of the single well with absorbing harrier 
gives the well population P( l )  which allows the calculation of the 
trapping coefficients and the decay rate constants. Figure 2 
compares the simulated P( t )  for 500 trajectories to the single- 
exponential model of eq 15. Table I lists the parameter values 
used. We compare the full reactive flux calculation for the double 
well to the results predicted on the hasis of eq 12 and 14 for the 
singleexponential model. The agreement in plateau value is within 
the experimental error of the calculation. 

The transition-state rate constant was calculated both ana- 
lytically by using 

and e = 1.2. 

where Q is the canonical partition function, Q = 5 d r  exp(- 
@H(I')) ,  and X, and X, are the equilibrium mole fractions for 
wells A and B, respectively, and by the method outlined above 
employing eq 18 for the single-exponential flux model. The results 
of this calculation are displayed in Table I along with the flux 
parameters. The simulation result for krsr agrees within the 
experimental error of the calculations. 

As a further test of how well the absorbing barrier method 
reprodum the full reactive flux we have substituted the numerical 
Laplace transform of the well population P ( t )  into eq 12. This 
givp an approximation to k(s) .  Inverse Laplace transformation 
of k(s)  gives k(r) .  In Figure 3 the resulting approximate time- 
dependent flux is plotted against the full reactive flux determined 
by simulation. The agreement is very good. The absorbing barrier 
method even shows the wiggle in the transient decay regime. 

The tests indicate that the absorbing barrier method is awurate 
and useful for determining reaction rates and fluxes. 

Discussion 
We have shown how the rate constants .kf + kb and krsr and 

even the time dependence of the decay of k( t )  may be found by 
using the parameters for trapping and escape from a single well 
with an absorbing barrier at the transition state. The main as- 
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Figure 3. Normalized reactive flux, @), as a function of time (- - -) 
inverse Laplace transform of eq 12 (e-) by using the simulation results 
for the well population P ( t )  (Figure 2). 

sumption in our model is that the distribution of particles on 
recrossing the TS is given by the distribution P(*)(r). This as- 
sumption is mathematically expressed by the simple product of 
fluxes in eq 7. It is useful to test this assumption before applying 
the absorbing boundary method. We thus analyze the trajectories 
corresponding to eq 23 as they are absorbed for the first time. 
In Figure 4 are displayed velocity distributions for particles re- 
crossing the TS as they are being absorbed. In the high-friction 
regime, y = 10, the velocity distribution agrees with P(*)(I') 
implying that the absorbing barrier method should be an excellent 
approximation for this case. In the low-friction regime, y = 0.01, 
however, the agreement is less satisfactory. This can be understood 
as follows. At low y the momentum relaxation time will be long 
compared to the time spent in the well for those particles recrossing 
quickly. If the trapping probability decreases with initial energy, 
the low energy trajectories will be trapped more frequently than 
others. Since the relaxation time is long, the particles recrossing 
will not relax quickly enough to conform to P(*)(I') and so we 
find deviations. Although these deviations give some indication 
of the accuracy of the absorbing barrier method, even for low 
friction, y = 0.01, the method appears to give XPLAT values in 
agreement with the Kramers result. 

It is useful to make an estimate of the time saved in the ab- 
sorbing barrier method. Let s(rf) and r(ab) denote the integration 
time required to determine XPLAT and kf  + kb by using the reactive 
flux (rf) method and the absorbing barrier (ab) method, re- 
spectively. To determine T(rf), N trajectories are followed for 
a time q necessary to determine X P L A + - ( ~ k b ) r .  Then T(rf) = N T ~ .  
To determine r(ab) each of the N trajectories is followed until 
absorbed. Since P(t )  N Tg-kf is the probability that a trajectory 
has not yet left well B in time t the average time that a trajectory 
is followed is 

1 
( 7 )  = JrA dt  d k 2 '  = -(1 - 

k2 
Since N( 1 - To) trajectories are rapidly absorbed and NTo tra- 
jectories are followed on the average for time ( T ) ,  it follows that 
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Figure 4. Velocity distributions for particles recrossing the TS as they 
are being absorbed. The continuous line shows the exact velocity dis- 
tribution given by fl*)(l') (eq 5 ) .  The histogram displays normalized 
velocity distributions of those trajectories which recross quickly, num- 
bering 1000 (1 - To), for (a, top) y = 0.01, To = 0.706 (b, bottom) y 

s(ab) = NT,(T)  so that s(ab)/r(rf) = To(l - e-k2TX)/k2TX. Since 
To << 1 in either the very high or very low friction regimes, it 
follows that then T(ab)/T(rf) << 1 and the absorbing barrier 
method is greatly to be preferred over the reactive flux method. 
For k2Th > 1 there is a further reduction in the time required for 
this method. It always pays to use this method. For the values 
of the parameters corresponding to Figure 3 we find that T-  

(ab)/T(rf) = 0.50 (1 - e-k2rA)/k2rA = 0.40. In the comparison 
with Kramers' theory the points in the very low (y = 10") and 
very high (y = friction limits correspond to values of T-  

(ab)/T(rf) equal to 0.021 and 0.0225, respectively. In such cases 
a full determination of the reactive flux takes prohibitively long 
times. 
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