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loss associated with the transition between states is offset by a 
gain in energy in the intramolecular vibrations (eq 3). 

On the other hand, if (AGe,,2 + A0,2) > (AG,,l + A,,,) (Figure 
4B) and nuclear tunneling effects in the librational modes are 
unimportant, intramolecular electron transfer can not occur in 
a frozen environment. The situation is the same as in Figure 3A. 
Even direct Re(1) - MQ' excitation (process a in Figure 4B) 
must either lead to the ground state by emission or to the Re- 
(11)-bpy'--based MLCT state by reverse electron transfer: 

[ (bpy)Re"(CO) 3(  MQ')] 2+* -+ (bpy'-)Re"( CO) 3(MQ')] 2'* 

The inversion in the sense of the electron transfer in the frozen 
environment is induced energetically by the greater solvent re- 
organizational energy for the lower excited state, A0,2 > Ao,l - 

In a macroscopic sample, a distribution of solvent dipole en- 
vironments exists around the assembly of ground states. For some 
of the high-energy distributions, vertical Re(1) - bpy excitation 
may lead to or beyond the intersection point of the Re(II)(bpy'-) 
and Re(II)(MQ') potential energy curves shown in Figure 4B. 
For such cases, unusual excitation energy effects may exist for 
chromophores surrounded by solvent dipole distributions of suf- 
ficiently high energy. Such phenomena are difficult to observe 
by emission measurements in [(bpy)Re(CO),(MQ+)I2+. For this 
complex, the energy difference between the two excited states is 
relatively small and the Re"-bpy'--based emission is far more 
intense than Re"-MQ'-based emission. However, excitation 
energy effects are observed for [ (4,4'-(NH2)2-bpy)Re(C0)3- 
(MQf)12'. For the amino derivative, a residual high-energy 
Re11-[4,4'-(NH2)2-bpy'-]-based emission can be observed, but 
only at  relatively high excitation energies (Figure 2C). The 
excitation leading to Re11-[4,4'-(NH2)2-bpy'-] emission is shown 
as process c in Figure 4A. At lower excitation energies, the 
high-energy emission disappears and only the broad, lower energy 
emission from the Re"-MQ'-based excited state is observed. 

( 5 )  

(AGes,2 - AGes,l)* 
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For the Re( MQ+)-based complexes an additional complication 
to intramolecular electron transfer exists arising from a "flattening" 
of the relative orientations of the two rings of the MQ+ ligand 
when it accepts an However, the analysis presented 
here does provide a general explanation for the role of free energy 
change in environments where dipole motions are restricted. For 
a directed, intramolecular electron transfer such as reaction 1, 
the change in electronic distribution between states will, in general, 
lead to a difference between Ao,l and A0,2. This difference creates 
a solvent dipole barrier to intramolecular electron transfer. It 
follows from eq 4 that if light-induced electron transfer is to occur 
in a frozen environment, the difference in solvent reorganizational 
energy, A& = bS2 - A , , ,  must be compensated for by a favorable 
free energy change, A(AG) = - AGes,l, as 

Aces ,~  - AGes.2 > Ao-2 - &,I 

or 
-A(AG) > A& 

Presumably, this condition is met in the reaction center." There 
the free energy change is favorable and the surrounding dipole 
reorganizational energies are small. The low polarity of the 
surrounding environment minimizes the magnitude of Ai,,. 
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The calculation of chemical reaction rate constants is of importance to much of chemistry and biology. Here we present 
our current understanding of the physical principles determining reaction rate constants in gases and liquids. We outline 
useful theoretical methods and numerical techniques for single- and many-dimensional systems, both isolated and in solvent, 
for weak and strong collision models and discuss connections between different theories from a unified point of view. In 
addition, we try to indicate the most important areas for future work in theory and experiment. 

1. Introduction 
The influence of solvents on rate constants of chemical reactions 

has been studied for over a century and has recently received 
renewed attention.'-5 A clear physical picture of how solvents 

influence the rate of chemical reactions is beginning to emerge. 
This feature article presents our personal view of classical, as well 
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Figure 1. Schematic representation of the reaction coordinate potential 
for (a) isomerization, (b) recombination, and (c) atom-transfer reactions. 
The arrow denotes the dividing surface. 

as modern, theories of chemical reaction rate constants. 
It is useful to classify common chemical reactions into three 

types: isomerization reactions, dissociation-recombination re- 
actions, and atom-transfer reactions (see Figure 1). Isomerization 
reactions are unimolecular whereas atom-transfer reactions are 
bimolecular. In dissociation-recombination reactions, the dis- 
sociation step is unimolecular but the recombination step is bi- 
molecular. The potential energy surfaces, as a function of the 
reaction coordinate, have a characteristic structure for each re- 
action type. Isomerization reactions correspond to transitions 
between metastable wells in a double or multiple minima potential 
(Figure 1 a). Dissociation-recombination reactions involve a 
transition between a metastable well and isolated species in a single 
minimum potential (Figure 1 b). In atom-transfer reactions, the 
potential energy surface has a barrier as a function of the reaction 
coordinate but no metastable wells (Figure IC). 

We can distinguish reactants from products by asking whether 
they lie to the left or right of a dividing surface (arrows in Figure 
1) known as the transition state.6 The precise position of this 
surface is unimportant for the exact calculation of the rate constant 
provided the barrier separating the metastable species is high 
enough. Reactants of unimolecular reactions are bound, Le., 
surrounded by potential walls, whereas reactants undergoing 
bimolecular reaction are not. The ratio of the rate constant for 
the forward reaction to the rate constant for the backward reaction 
is related to the equilibrium constant by detailed balance. 

To make this more explicit, let us mention a few prototypical 
examples. Trans-gauche isomerization of butane represents an 
isomerization Here the reaction coordinate is the 
dihedral angle which moves on a periodic tristable potential curve 
and the dividing surface is located at  the trans-gauche barrier. 
In the iodine dissociation-recombination reaction the reaction 
coordinate is the bond lengthlo," which moves on a Morse-like 
potential curve; the dividing surface is located at a distance of 
a few equilibrium bond lengths. Finally, a typical atom-transfer 
reaction is a hydrogen exchange reaction.12 In the simplest case, 
the reaction coordinate is the difference in the bond lengths moving 
on a Porter-Karplus-like surface and the dividing surface is 
characterized by equal bond lengths. 

Important classical theories for calculating rate constants can 
be divided into three groups: transition-state theory: unimolecular 
rate theory in gases,13 and the theory of diffusion-controlled re- 
a c t i o n ~ . ~ * ' ~  Transition-state theory assumes that there is equi- 
librium between the reactant A and an activated transition state 
A* which decomposes with a characteristic vibrational frequency 
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Figure 2. Log-log plot of the transition-state theory normalized rate 
constant as a function of the static friction constant y typical of (a) an 
isomerization or dissociation-recombination reaction and (b) an atom- 
transfer reaction. 

to products. The resulting rate constant, which is an upper bound 
on the true rate constant, depends on the properties of the reactant 
and on the solvent density only through the potential of mean force. 

Transition-state theory (TST) does not explain the behavior 
of unimolecular reactions at  low pressures; Lindemann proposed 
a mechanism for the activation of the reactantI3 which describes 

A + M A* + M activation 

A* - P barrier crossing 

a unimolecular reaction proceeding in two steps. First, a reactant 
A is activated by a collision with a solvent molecule M; i.e., it 
acquires enough energy to cross the barrier. Second, the activated 
reactant A* crosses the barrier region to become product P. 

Assuming that [A*] reaches a steady state, the rate constant 
for the formation of the product is 

kb 

k 

At very low pressures, or very small kb such that k >> kb[M], k(M) 
= k,[M] increases linearly with [MI or collision rate; collisions 
with solvent are infrequent and the activation step is rate limiting. 
At high pressures, such that k << kb[M], k(M) = kkf/kb and the 
rate constant becomes independent of the collision rate. In this 
limit, the theory of unimolecular reactions reduces to TST. The 
theory of unimolecular reactions predicts that a t  low pressures 
the rate constant increases linearly with the solvent density and 
becomes independent of the density a t  high pressures. 

However, it is often noted that as the density of the solvent, 
and the solvent viscosity, increases, the reaction rate constant 
decreases. In this case, the crossing of the barrier is strongly 
hindered by frequent collisions with the solvent and the rate 
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Figure 3. Log-log plot of the transition-state theory normalized rate 
constant as a function of the static friction constant y for a diatomic (-) 
and a polyatomic (--) molecule. 

constant is proportional to the diffusion coefficient which decreases 
with solvent density. 

By continuously increasing the density of the solvent from a 
dilute gas to a dense liquid, the system will pass through the energy 
activation regime to the diffusion-controlled regime. Each process 
can act as the rate-limiting step and the rate constant displays 
a maximum (turnover). This was recognized by Kramers' in his 
seminal attempt to treat all these different models within the same 
theoretical framework and is a topic of active research interest 
today. 

The rate constant of an isomerization or dissociation-recom- 
bination reaction, as a function of the friction constant, will 
therefore behave in the characteristic fashion shown in Figure 2a. 
In a low-density gas, the rate constant will increase in proportion 
to the friction or collision rate due to energy activation. In a dense 
solvent, it will be proportional to the diffusion coefficient, or 
inversely proportional to the friction, and therefore will decrease 
with increasing density. In between, it will go through a maximum 
which will lie below the value given by transition-state theory. 

The physical reason that the recombination rate constant 
vanishes at zero pressure is that an incoming trajectory will always 
rebound from the repulsive potential wall and will therefore always 
be unreactive. For atom-transfer reactions, the situation is dif- 
ferent. No repulsive wall is present in this case (see Figure 1) 
so that such a trajectory will always have a nonvanishing rate 
constant. Therefore, in an atom-transfer reaction the energy 
activation step is missing and the rate constant will be given by 
transition-state theory at low pressures. Again, in dense solvents 
diffusion control will cause the rate constant to decrease (see 
Figure 2b). In summary, rate constants for  atom-transfer re- 
actions simply decrease as a function of density whereas isom- 
erization reactions and dissociation-recombination reactions first 
increase and then decrease, showing a maximum (turnover) as 
a function of the  solvent density. The maximum is sharp for a 
diatomic reaction and very broad for a polyatomic reaction (Figure 
3) .  Of course, nature is often complex and several effects modify 
this simple picture of chemical reactions. The most important 
are equilibrium solvent effects, non-RRKM effects, and non- 
Markovian effects. 

First, equilibrium solvent effects modify the interaction potential 
and thereby the barrier height and frequency, which in turn affects 
the rate constant. At low pressures and high temperatures the 
pressure dependence of the transition-state rate constant is 
characterized by a constant reaction volume-the volume dif- 
ference between the molecule in the transition state and in the 
reactant state.'* In dense or strongly interacting solvents, this 
effect arises from many-body interactions with the s01vent.l~ In 
some cases the bare potential can be replaced by the potential of 

(15) Pratt, L. R.; Hsu, C. S.; Chandler, D. J .  Chem. Phys. 1978, 68, 4202. 
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Figure 4. Log-log plot of the transition-state theory normalized rate 
constant as a function of the static friction y for Markovian (-) and 
non-Markovian (--) friction where the correlation time increases with 
y, which is typical for liquids.'I6 

mean force, the quantity that specifies how the free energy changes 
as the reaction coordinate changes. Strong dependence of the TST 
reaction rate of polar solutes on the dielectric constant of the 
solvent is an example of this effect.16 

Second, non-RRKM effects modify the initial rise of isomer- 
ization and dissociation-recombination reaction rates at low to 
intermediate densities. The strong enhancement of the low- 
pressure rate constant with increasing number of degrees of 
freedom of the molecule is based on the assumption of RRKM 
theory that the vibrational modes are very strongly coupled leading 
to fast energy equipartitioning and intramolecular vibrational 
relaxation (IVR).'3,17 However, as the number of degrees of 
freedom of the molecule increases, the coupling between modes 
will decrease so that the assumption of fast IVR may be violat- 
ed.'**I9 Moreover, correlated recrossings of the transition state 
related to the topology of phase space can lead to profound de- 
viations from statistical theories like RRKM 

Third, non-Markovian effects first discussed by Grote and 
H y n e ~ ~ ~  weaken or even suppress the transition to diffusion control 
in dense solvents for any reaction types4 The physical origin of 
this effect lies in the observation that a realistic solvent takes a 
finite relaxation time to adjust to the motion of the solute. If the 
relaxation time is short, the solvent exerts a very rapidly fluctuating 
force on the reaction coordinate which thus experiences a large, 
Markovian friction.'S2* This leads to a reduction of the rate 
constant due to diffusion control (Figure 4). However, most 
realistic solvents do not relax quickly. When the relaxation time 
is very long, the solvent exerts such a slowly fluctuating force that 
the reaction coordinate moves in an approximately constant force 
field. It then experiences very little friction and will therefore 
be less affected by the solvent. In this limit, transition-state theory 
might be valid at much higher friction than the diffusion-controlled 
model would predict. 

In this feature article we will address these topics in more detail. 
In section 2 we discuss transition-state theory, and section 3 
outlines new numerical methods for the calculation of rate con- 
stants. In section 4 we discuss unimolecular rate theory, and in 
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section 5 we consider diffusion-controlled reactions and Grote- 
Hynes theory. We discuss connection formulas, electronic surface 
crossing, and computer simulations in section 6 while section 7 
reviews experiments. 

Several important topics could not be considered. There are 
some reactions, for example, the gauche+ to gauche- reaction in 
butane, which belong to none of the three types discussed above. 
In such cases, the ideas presented do not necessarily apply although 
their generalization should be possible. We also do not discuss 
reactions where several reaction channels might compete with each 
other. While attempts have been made to include nonequilibrium 
 effect^,^^-^' we focus on chemical reactions near thermal equi- 
librium. While we briefly consider electronic surface crossing, 
quantum e f f e c t ~ , ~ , ~ ~ - ~ ~  which modify the motion of the nuclei, are 
not discussed. 

2. Transition-State Theory 
Transition-state theory is the most frequently used analytic 

theory for calculating rate constants.2q6 The following two sections 
provide a brief review of microcanonical transition-state theory 
for isolated molecules, or RRKM theory, developed mainly by 
Rice, Ramsberger, Kassel, and Marcus,I3 and canonical transition 
state theory for reactions in solvents developed mainly by Wigner34 
and E ~ r i n g . ~ ~  

2. I .  Microcanonical Transition-State Theory. For a constant 
energy ensemble, the forward transition-state theory rate constant 
is given by RRKM t h e ~ r y : ’ ~ . ~ ~  

where 6(x) is the Dirac delta function and B(x) the Heaviside step 
function. The reaction coordinate x is chosen so that it is positive 
for products and negative for reactants; Le., the transition-state 
surface is placed at  x = 0. The microcanonical average denoted 
by (...)€ is an average over phase space restricted to the energy 
shell E. Averaging kRRKM(E) over the canonical energy distri- 
bution results in the canonical transition-state theory rate con- 

RRKM theory assumes that all states with total energy E will 
react with equal probability and that trajectories crossing the 
transition state do not rapidly recross it. A necessary, but not 
sufficient, condition is that motion on the potential energy surface 
be ergodic. DeLeon and Berne20-2’ proposed a statistical theory 
for isomerization reactions in nonergodic systems where one may 
decompose the full phase space into regions of regular and irregular 
motion. The irregular region may be defined as that region 
accessible to a set of trajectories originating at the transition-state 
surface.22 The rate constant was then shown to be20 

where Q ( E )  and Rirr(E) are respectively the full density of states 
and the density of states for the irregular region of the energy 
hypersurface at energy E. It follows from the definition that kgD 
2 kRRKM. In most cases, the phase space.is not metrically de- 
composable into distinct regular and irregular regions and (2.2) 
is only approximate. In a series of papers DeLeon and B e r n e ’ ~ ~ ~ ~ ~  
explored how the presence of vague tori37 in phase space affects 
the validity of RRKM theory. They showed that strong chaos 
is a necessary but not sufficient condition for RRKM theory to 
be valid. Moreover, they found that correlated recrossings give 
dynamic corrections which result in k(E) being lower than pre- 
dicted by (2.2). Berne showed how in a strong collision theory 
these dynamic effects are reflected in the variation of the rate 

kBD(E) = (n(E)/nir,(E))kRRKM(E) (2.2) 
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constant with collision rate a t  low collision rates; that is how these 
dynamic effects modify the unimolecular rate theory.3s 

Recently, more detailed statistical theories describing non- 
RRKM effects have been developed by using the idea of phase- 
space bottlenecks, or Cantori, which form partial barriers between 
irregular regions of phase space.39@ Studies have been completed 
for intramolecular energy transfer in OCS,24 fragmentation of 

and the isomerization model of DeLeon and Berne.26 The 
approach is similar to variational transition-state theory in that 
it attempts to locate the optimal transition state: a bottleneck 
in phase space which forms a barrier to rapid equipartitioning. 
It provides a concrete mechanism for the underlying phase-space 
dynamics and appears to bc the most promising avenue for 
studying the role of chaos in isolated and collisional reaction 
systems. 

2.2. Canonical Transition-State Theory. The forward tran- 
sition-state rate constant is given by6.41 

where (...) is an equilibrium average over the canonical distribution 
function e-”, where H i s  the system Hamiltonian and @ = l / k , T .  
By integrating over the velocities this f ~ r m u l a ~ ~ , ~ ~  can be expressed 
as an average over configurational coordinates only: 

where 

(2.4) 

The square of is the inverse “mass” of the reaction ~ o o r d i n a t e . ~ ~  
Often p(r) depends very weakly on the configurational coor- 

dinates r so that, to an excellent approximation, it can be replaced 
by its value at  the saddle point r. This simplifies the problem 
enormously since now (2.4) can be rewritten in terms of the 
configurational distribution function S ( x )  as 

S(x) may be defined in terms of the potential of mean force W ( X ) ~ ~  
as7,46 

,-SW(xo) 

dx e-@w(x) 
S(x0) = (0 - xo)) = (2.7) 

which is simply the probability distribution function of x in a 
thermal ensemble. Equation 2.6 is the expression for the forward 
rate constant. The backward rate constant is given by the same 
expression except the integration limits in (2.7) are --m and 0. 

For unimolecular reactions (2.4) is simply the transition-state 
theory rate constant in units of inverse time. However, for a 

(38) Berne, B. J. Chem. Phys. Left .  1984, 107, 131. 
(39) MacKay, R. S.; Meiss, J. D.; Percival, I. C. Physica D (Amsterdam) 
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(41) Chandler, D. J. Chem. Phys. 1978, 68, 2959. 
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(46) Berne, B. J. In Multiple Time Scales; Brackbill, J. ti., Cohen, B. I . ,  
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bimolecular reaction (2 .6)  is inversely proportional to the volume 
of the system and will vanish in the thermodynamic limit. In this 
case we are interested in a bimolecular rate constant which has 
units of volume per unit time. This quantity is obtained by 
multiplying (2 .6)  by the volume of the system before taking the 
thermodynamic limit of infinite volume.47 

The central quantity which determines the transition-state rate 
constant in a solvent is the potential of mean force as a function 
of the reaction coordinate.1s,45 It can be evaluated in either Monte 
Carlo4* or molecular dynamics ~ i m u l a t i o n s ~ ~  by determining the 
probability distribution of the reaction coordinate x.46 However, 
regions near a high barrier will be sampled infrequently. To 
sample these portions of phase space more effectively, one employs 
umbrella ~ampling.~*-~O This is done by choosing an umbrella 
potential Uo(x) which roughly approximates the expected W(x).  
One then studies the equilibrium properties of a modified system 
described by the potential energy surface U(r) - Uo(x) using Monte 
Carlo or molecular dynamics. Again, a probability distribution 
of the reaction coordinate x is accumulated, but in this case it 
will be proportional to e-@[w(x)-uo(x)l. Therefore, all regions of 
coordinate space should be sampled with approximately equal 
efficiency. By dividing out the trial function, one obtains the 
potential of mean force W(x) .  

Independent of the dividing surface, the canonical transition- 
state rate constant is always an upper bound to the true rate 
constant. The overall rate constant cannot depend on the choice 
of the dividing surface. However, the transition-state rate constant 
is sensitive to the choice of dividing surface and, for a dividing 
surface which minimizes the transition-state rate constant, might 
give an excellent approximation to the true rate constant. This 
is the spirit of variational transition-state t h e ~ r y . ~ ~ ~ ~  

How do we find such a dividing surface? This can be answered 
at different levels. If the reaction is described by a one-dimensional 
reaction coordinate moving in a potential of mean force arising 
from all remaining degrees of freedom,s2 the best dividing surface 
will be located at  the maximum of the potential of mean force. 
Obviously, for a polyatomic molecule a better choice might be 
some linear combination of all internal coordinates which would 
lead to a smaller rate constant and a better upper bound. Finally, 
one might want to consider a linear combination of all coordinates 
of the solvent and solute which will give the best possible tran- 
sition-state theory. Recently, Pollak has shown that both Kramers 
and Grote-Hynes theory (see section 5 )  follow from such a 
multidimensional transition-state theory which includes all solvent 
degrees of freedom.s3 This gives rise to diffusion-controlled 
behavior and provides an interesting reinterpretation of the Lin- 
demann mechanism (see section 1 )  where the high collision limit 
is treated by the multidimensional TST.s4 

In the simplest case of an isolated single degree of freedom, 
W(x)  = V(x)  and (2 .6)  gives 

kTsT = ( w 0 / 2 7 f ) e - @ ~  (2.8)  

where wo is the frequency in the well. Generalization to many 
degrees of freedom givesSS 

(2 .9)  

(47) Unimolecular reactions have been analyzed carefully within the re- 
active flux formalism!' While an analogous study is lacking for bimolecular 
reactions, we believe all the expressions apply to the bimolecular case.43 

(48) Rosenberg, R. 0.; Mikkilineni, R.; Berne, B. J.  J .  Am. Chem. SOC. 
1982, 104, 7647. 

(49) Rebertus, D. W.; Berne, B. J.; Chandler, D. J .  Chem. Phys. 1979,70, 
3395. 

(50) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics, Part A; 
Berne, B. J. ,  Ed.; Plenum: New York, 1976. 

(51) Keck, J. C. Adu. Chem. Phys. 1967, 13, 85. 
(52) Miller, W. H. J .  Chem. Phys. 1974, 61, 1923. 
(53) Pollak, E. J .  Chem. Phys. 1986, 85, 865. 
(54) In this case, the connection formula (6.2) follows directly. 
(55) Slater, N .  B. Theory of Unimolecular Reactions; Cornel1 University 

Press: Ithaca, N Y ,  1959. 

where wjo) and up) are the frequencies of the stable normal modes 
of the reactant minimum and saddle, respectively. 

In the simplest realistic case of a diatomic molecule the reaction 
coordinate is x = r - r,, the distribution function is S(x) 0: Pe+w'), 
and p is the reduced mass. For an interaction potential that 
vanishes for r > a and is strongly attractive for r < a the dividing 
surface lies a t  r, = a and the bimolecular transition-state rate 
constant (2 .6)  becomes in the "free molecular limit" 

kTsT = (87r/p/3)1/2a2 (2.10)  

Note that we have dropped a factor of the volume of the system 
which results from the integral S d r  r2. 

which is equivalent 
to e-@"Cdr), where Ve&) is an effective potential consisting of the 
sum of the bare potential U(r) and the centrifugal potential, -2kBT 
log r. In the general case, the effective potential is U,&) = U(r) 
- kBT log J, where J is the Jacobian of the transformation from 
lab frame to internal molecular frame. For example, in a triatomic 
molecule J c: 3s: sin 8, where r a n d  s are the two bond lengths 
and 8 is the angle between themes6 In this case, (2 .9)  will always 
apply using this modified potential. For a bimolecular reaction, 
(2 .9)  will be slightly modified as the potential of mean force will 
give a factor of the volume of the system. 

The foregoing applies only to an isolated molecule. If the 
molecule is inserted into a solvent, S(x) will be modified.I5 Again, 
consider the diatomic as an example. In this case, S(r) r'-g(r), 
where g(r) is the pair distribution function which is conveniently 
written as g(r) = y(r)e-@u(') = e-@[U(r)+w(r)I, where y ( r )  is the cavity 
distribution function and W(r) is the potential of mean force 
induced by the solvent. At zero pressure, y ( r )  = 1 and W(r) = 
0. Neglecting the small variation of the frequencies and the 
dividing surface, the rate constant becomes 

In a diatomic molecule, S(r)  0: 

(2.1 1 )  

which is now density dependent because of the density dependence 

At low pressures, or densities, it is possible to perform a virial 
expansion so that the variation of kTST as a function of density 
is characterized by constant reaction volume 

of Y W .  

(2 .12)  

at low densities. At low densities for hard sphere solvent-solute 
interactions AV,, is the excluded volume difference between the 
molecule confined to the transition state and the reactant. This 
is related to the fact that the second virial coefficient is half the 
excluded volume of the solute for hard sphere  interaction^.^^ In 
this context, the old intuitive concept of the "reaction volume" 
arises as a special case of a microscopic theory. At higher densities 
kTsT will no longer vary linearly with the density and the reaction 
volume will no longer be a constant. Such concepts are easily 
generalized to more complicated molecules. However, the de- 
termination of a multidimensional potential of mean force is 
difficult. The more practical approach is the consideration of a 
one-dimensional reaction coordinate where the potential of mean 
force can be estimated by umbrella sampling techniques. 

As mentioned earlier, in practice the assumptions of transi- 
tion-state theory may not be met. In particular, the first as- 
sumption of a steady-state distribution of reactant states may be 
violated by dynamic effects such as ineffective energy activation. 
Additionally, the manifold of activated states may not be ergodic 
so that less than the full measure of reactant states can access 
the transition-state region. The second assumption, that activated 
reactant states will cross the transition state and be deactivated 
with certainty, may be violated if activated reactants recross the 
transition-state surface before deactivation. In the next section 
we will discuss numerical methods for calculating dynamic, and 
nonergodic, corrections to transition-state theory. 

(56) Rodger, P. M.; Sceats, M. G. J .  Chem. Phys. 1985, 83, 3358. 
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3. Numerical Methods 
For barrier height Q >> kBT, numerical calculation of rate 

constants is difficult because the barrier-crossing events are ex- 
tremely infrequent. This causes a separation of time scales in the 
system, between the time for energy activation and free motion 
in the potential, of order e@. The calculation is so computationally 
intensive that it is virtually impossible to follow numerically a 
reacting system over several reactive events. Nonetheless, methods 
based on the reactive flux formalism41~8~s1~57-sg circumvent this 
difficulty by starting trajectories on the top of the bamer, therefore 
sampling only activated events. They offer simple and practical 
methods for calculating rate constants in complex systems with 
good accuracy.46 

One must first define a physically meaningful reaction coor- 
dinate x which may be a bond length or a bond angle. In general, 
it is a function of the configurational coordinates r ( r ] ,  ..., r3N). 
It is zero at  the transition-state dividing surface which is located 
at  or near the saddle point r,. The actual value of the rate constant 
will be independent of the choice of the reaction coordinate and 
the location of the dividing surface. However, to achieve maximum 
computational efficiency, it should be placed close to the top of 
the barrier. 

The calculation of the true kinetic rate constant k = k f  + kb 
can be conveniently expressed in terms of two separate tasks, 
namely, a calculation of the kinetic transition-state rate constant 
kTsT = kfTST + kksT and a calculation of the transmission coef- 
ficient K 

k = KkTST (3.1) 
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Similar expressions are valid for the forward and backward rate 
constants; 

Berne et al. 

(3.2) 

kb = KkPST (3.3) 

The rate constant given by transition-state theory must be 
evaluated separately for the forward reaction and the backward 
reaction as described in section 2. The transmission coefficient 
K is the same for the forward as well as the backward reaction. 
Note that whereas kTsT and K depend on the choice of reaction 
coordinate x ,  their sum, i.e., the overall rate constant k,  is inde- 
pendent of this choice. Detailed balance relates the ratio of the 
forward rate and backward rate to the equilibrium constant. 

The transmission coefficient K ,  which is a dynamic quantity, 
is related to the normalized reactive flux41946 

(3.4) 

where the quantities without a time variable are taken at  the time 
origin, e.g., x = x(0).  An example of this function, obtained from 
a simulation, is plotted in Figure 5; the normalized reactive flux 
starts at 1 and decays to a plateau value which is the transmission 
coefficient K .  For a unimolecular reaction the plateau decays very 
slowly in time whereas for an atom-transfer reaction it converges 
to a true plateau. In either case, the relevant transmission 
coefficient centering (3.1) can be obtained by extrapolating the 
plateau of k ( t )  to zero time (see Figure:). 

A practical expression for evaluating k ( t )  numerically is ob- 
tained by inserting O(x)  + 0(-x) = 1 in the numerator of (3.4) 
which  yield^^,^,^^ 

(3.5) 

where 

(57) Yamamoto, T. J .  Chem. Phys. 1960, 33, 281. 
(58) Anderson, J. B. J. Chem. Phys. 1973, 58, 4684. 
(59) Bennett, C. H. In Algorithms for Chemical Computation; Christof- 

ferson, R E ,  Ed.; American Chemical Society: Washington, DC, 1977. 
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Figure 5. Typical reactive flux R ( t )  obtained from a numerical simula- 
tion, as a function of time. The oscillations a t  short time are  due to 
transient recrossings, and the long time limit gives the plateau value 
which is the transmission coefficient K .  

is an average over a modified equilibrium distribution of initial 
conditions. These initial conditions are obtained by Monte Carlo 
sampling in position as well as velocity space from the distribution 
xe-oH, with frozen reaction coordinate x = 0, accepting only 
positive x for averaging over (...)+ and negative x for averaging 
over (...)-. In practice, one samples a set of R > 0 to compute 
( e ) ,  and then uses the negative of this set for the computation 
of (e)-. For each set of initial conditions a trajectory is generated 
by using a molecular dynamics60 or stochastic dynamics61s62 
procedure and the average of O[x(t)] is accumulated. Typically 
102-104 independent trajectories are needed and, except for 
symmetric potentials, two calculations are performed to obtain 
(O(x( t ) ) )+  acd (O(x( t ) ) ) - .  Equation 3.5 gives the normalized 
reactive flux k( t )  which will approach a plateau for longer times. 
In practice, it is absolutely essential to observe a plateau for at 
least 1 order of magnitude in time in order to establish that it 
is a true plateau. Shorter “plateaus” are likely to grossly over- 
estimate the rate constant. It is also important that the initial 
conditions generated by the Monte Carlo procedure are uncor- 
related. This is particularly difficult when studying reactions in 
slowly relaxing solvents, e.g., water. 

The full reactiveflux method has been used to calculate dy- 
namic corrections to transition-state theory for thermal desorption 
from rare gas surfaces,63 isomerization reactions in liquids using 
stochastic BGK8s9 and Newtoniad4 dynamics, as well as systems 
of biological interest such as ion pair formation and dissociation 
in water65 and oxygen binding to myoglobin.66 This method is 
practical if the transmission coefficient K is not much smaller than 
unity. Unfortunately, calculations become prohibitively time 
consuming when K is small since one must estimate a small 
difference in two numbers which are approximately unity. An 
essentially equivalent approach was used by Bergsma et al. to 
calculate rate constants for atom-transfer reactions.67@ 

To overcome this serious drawback we have recently developed 
an approximate version of this method-the absorbing boundary 
method-which enormously accelerates the calculation of rate 

(60) Kushick, J.; Berne, B. J. In Statistical Mechanics, Part E ;  Berne, B. 

(61) Turq, P.; Lantelme, F.; Friedman, H. L. J .  Chem. Phys. 1977, 66, 
J., Ed.; Plenum: New York, 1976. 

3039. 
(62) Allen, M. P. Mol. Phys. 1980, 40, 1073. 
(63) Adams, J. E.; Doll, J. D. J .  Chem. Phys. 1984, 80, 1681. 
(64) Rosenberg, R. 0.; Berne, B. J.; Chandler, D. Chem. Phys. Lett. 1980, 

75, 162. 
(65) Karim, 0. A.; McCammon, J. A. Chem. Phys. Lett. 1986,132,219. 
(66) Case, D.; McCammon, J. A. Ann. N.Y. Acad. Sci., in press. 
(67) Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.; Hynes, J. T. J .  Chem. 

(68) Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J .  Chem. 
Phys. 1986, 85, 5625. 

Phys. 1987, 86, 1356. 
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constants and makes accurate calculation of small transmission 
coefficients p o ~ s i b l e . ~ ~ ~ ~ ~  The accuracy of this method rests on 
a single, apparently excellent, assumption: trajectories which 
recross the transition-state conform to the distribution xe-oH. The 
quantities required are two survival probabilities 

P*(t)  = (~ ' ( *xW) ) *  (3.7) 

where P*(t) measures the number of trajectories which have not 
recrossed the transition state. @'(kx(t))  is unity until the trajectory 
crosses the transition state and zero thereafter. The survival 
probabilities P*(t) will start a t  unity ?nd monotonically decrease 
to a slowly decaying plateau as for k ( t ) .  

The Laplace transform of the reactive flux k(s) is_related to 
the Laplace transforms of the survival probabilities P,(s) by70 

F+(s)E(s)  
k(s )  (3.8) F+(s)  + F ( s )  - sP+(s)F-(s) 

If P*(t)  approaches a plateau value T* for long times, these 
quantities can be used to obtain the plateau value of the reactive 
flux, i.e., the transmission coefficient, ~ s i n g ~ ~ ~ ~ '  

T+ T- 
K N  (3.9) T+ + T- - T+T- 

which follows from (3.8). In a symmetric potential, P+(t) = PJt )  
and T+ = T- so that only one survival probability is needed. The 
same formula was proposed in a statistical theory for bimolecular 
reactions which form collisional complexes.72 

To obtain P+( t )  one samples positions and velocities from 
xB(k)e-oH with frozen x = 0 using Monte Carlo as in the full 
reactive flux calculation. For each set of initial conditions a 
trajectory is followed until it recrosses the transition state where 
it is removed. The average fraction of nonabsorbed trajectories 
gives the survival probability P+( t ) .  The same calculation with 
negative x gives P-(t) .  Trajectories will be followed until the true 
plateau of P*(t)  is reached as in the ful l  reactiveflux method. 
The absorbing boundary method has been applied to one-di- 
mensional systems with M a r k o ~ i a n ~ ~ ~ ~ ~  and n ~ n - M a r k o v i a n ~ ~ * ~ ~  
weak collision friction models, and double well systems for both 
weak75 and strong76 collision models. It has proven especially 
useful and accurate in rate constant calculations for aqueous and 
biomolecular systems such as ion pair formation and dissociation 
in water,65 and side-chain rotational isomerization in a solvated 
protein.77 Whereas the absorbing boundary method resolves the 
problem of estimating small transmission coefficients, K, one still 
has to integrate the equations of motion long enough to reach the 
plateau. This is not a problem for single and many degree of 
freedom systems at higher damping where the dynamics resembles 
a single degree of freedom (section 4.4). However, a strongly 
coupled many degree of freedom system which is weakly damped 
will take a very long time to reach the plateau and this can make 
calculations prohibitively expensive. 

Diffusion-controlled reactions14 which involve the relative 
diffusion of reactant pairs, such as ion recombination and enzyme 
substrate reactions, can be studied with reactive flux methods using 
Langevin dynamics at  high damping. However, a more effective 
method for calculating rate constants is the Brownian dynamics 
simulation method of Northrup et a1.78379 Here, the bimolecular 

(69) Straub, J. E.; Berne, B. J. J .  Chem. Phys. 1985,83, 1138. 
(70) Straub, J. E.; Hsu, D. A.; Berne, B. J. J.  Phys. Chem. 1985.89, 5188. 
(71) Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Pro- 

(72) Miller, W. H. J .  Chem. Phys. 1976, 65, 2216. 
(73) Straub, J. E.; Borkovec, M.; Berne, B. J. J .  Chem. Phys. 1985, 83, 

(74) Straub, J. E.; Borkovec, M.; Berne, B. J. J .  Chem. Phys. 1986, 84, 

(75) Straub, J. E.; Berne, B. J. J. Chem. Phys. 1986, 85, 2999. 
(76) Borkovec, M.; Straub, J. E.; Berne, B. J. J .  Chem. Phys. 1986, 85, 

(77) Ghosh, I.; McCammon, J. A. Biophys. J .  1987, 51, 637. 

cesses; McGraw-Hill: New York, 1941. 
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1788. Addendum and Erratum, Ibid. 1986, 86, 1079. 
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rate constant is conveniently expressed as a simple product 

k = k(s)  P(S ,* )  (3.10) 

where k(s)  is the rate a t  which reactants reach a separation r = 
s and p(s ,*)  is the fraction of reactant pairs, initially a t  r = s, 
which will react rather than diffuse to infinite separation. The 
basis of this method involves ideas quite similar to those used in 
the absorbing boundary method.78 This method and extensions 
thereof have shown excellent agreement with analytic models for 
centrosymmetric potentials.80,81 It has also been applied to more 
realistic models of biological interest which include anisotropic 
electrostatic interactions.a0J2 

In this section, we have discussed efficient numerical methods 
for calculating rate constants in complex systems. For reactions 
involving barrier crossing the calculation is conveniently split into 
a calculation of the transition-state rate constant and a calculation 
of the transmission coefficient. The transition-state rate constant 
is an equilibrium average and can be obtained from the potential 
of mean force. The transmission coefficient is a dynamical 
quantity which can be obtained from the plateau value of the 
reactive flux. Two related methods are available for the calculation 
of this quantity: the full  reactive flux method and the absorbing 
boundary method. Whereas the full reactive f lux  method is exact, 
it tends to be costly in computer time; the approximate but ac- 
curate absorbing boundary method is much faster, is easier to 
program, and therefore is the method of choice. For problems 
involving the relative diffusion of two particles where the diffusion 
coefficients are very small, the Brownian dynamics method is most 
effective. 

4. Unimolecular Rate Theory 
The theory of unimolecular reactions in the gas phase has 

received much attention, and excellent r e ~ i e w s ' ~ J ~  and mono- 
g r a p h ~ ' ~ * ~ ~  are available. This approach is based on the observation 
that at zero pressure the total energy of the molecule is a conserved 
variable. In a dilute gas the molecule will suffer infrequent 
collisions with the gas molecules. The energy will be slowly varying 
and will change in a jumpwise fashion. Since subsequent collisions 
are uncorrelated the evolution of the energy can be described by 
a simple rate equation. 

If all other variables relax rapidly, the energy of n strongly 
coupled degrees of freedom, forming the reaction system, will 
equipartition rapidly on the energy shell. This is the assumption 
of rapid energy partitioning inherent in RRKM theory. The 
probability density P(E,t) for finding a dissociating molecule with 
an energy E on the reactant side will then satisfy the master 
equation ' 7,83 

aP(E,t)  -- - 

JdE'  [K(E,E?P(E',t)  - K(E',E)P(E,t)]  - kRRKM(E)P(E,t)  

(4.1) 

The transition probability K(E',E) obeys the detailed balance 
condition 

K(E,E? P,q(E? = K(E',E) Peq(E) (4.2) 

where the thermal distribution of the energy 

Pq(E) 0: Q(E)e-flE (4.3) 

(78) Northrup, S. H.; Allison, S. A.; McCammon, J. A. J .  Chem. Phys. 

(79) McCammon, J .  A.; Northrup, S.  H.; Allison, S. A. J .  Phys. Chem. 

(80) Allison, S .  A.; Northrup, S. H.; McCammon, J. A. J. Chem. Phys. 

(81) Northrup, S .  H.; Curvin, M. S.; Allison, S. A,; McCammon, J. A. J. 

(82) Northrup, S. H.; Smith, J. D.; Boles, J. 0.; Reynolds, J. C. L. J. 

(83) Borkovec, M.; Berne, B. J. J .  Chem. Phys. 1985, 82, 794. 

1984, 80, 1517. 

1986, 90, 3901. 

1985,83, 2894. 

Chem. Phys. 1986, 84, 2196. 

Chem. Phys. 1986, 84, 5536. 
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is the Boltzmann factor times the density of states 

R(E) = S d r  6[E - H ( r ) ]  (4.4) 

The integration over the spatial coordinates has to be restricted 
to the reactant region. For a collection of n harmonic oscillators 
one finds that O(E) a E“’. 

The transition probability density K(E’,E) is a collision rate 
a times the probability density P(E’,E) of the molecule having 
energy E’ after the collision, given it had an energy E prior to 
the collision. Even though the collision rate depends on the energy 
of the molecule in general, it is often taken to be a constant. The 
integral term of (4.1) describes the change in the energy of the 
molecule due to collisions with molecules of the bath gas. The 
last term in (4.1) describes the loss of molecules due to dissociation. 
This process is approximated by RRKM theory (see section 2) 
where kRRKM(E)  is the rate a t  which a molecule of given energy 
above the dissociation threshold dissociates. Note that kRRKM(E) 
vanishes for energies below the energy threshold Q. First we focus 
on dissociation reactions; recombination reaction rate constants 
are obtained by detailed balance. At the end of this section we 
discuss the extension of these ideas to isomerization reactions. 

The calculation of the rate constant k from (4.1) is based on 
the observation that P(E,t) will decay like P,(E)e-&‘ after an initial 
transient period. The steady-state distribution P,,(E) can be 
evaluated by inserting this ansatz into (4.1). Since the rate 
constant is very small, the left-hand side of (4.1) can be neglected 
and the resulting equation can be solved for the steady-state 
distribution P,,(E). The rate constant is then simply given by the 
total flux 

At high collision rate a the rate of energy activation is so rapid 
that P,,(E) = P,(E) above the dissociation threshold. In this case 
the overall rate constant is given by transition-state theory (cf. 
(2.4)), i.e. 

k = kTST for a - m (4.6) 
On the other hand, as the collision rate approaches zero, the 

molecule will certainly dissociate before being deactivated and 
Pss(E) = 0 for E > Q. In this case, (4.5) becomes indefinite and 
a more useful expression for the rate constant is derived from the 
steady-state flux 

k = S m d E ’  S Q d E  0 K(E’,E) P,(E) for a --, 0 (4.7) Q 
The above treatment is entirely equivalent to other methods for 
calculating rate constants such as the mean first passage time 
a p p r o a ~ h , ~ ~ - ~ ~  correlation f u n ~ t i o n s , ~ ~ , ~ ’ , ~ ’  or analysis of the ei- 
genvalue spectrum.88 

An important characteristic of a collision kernel is the energy 
transferred per unit time 

A ( E )  = SdE’K(E’,E)(E’  .- E )  = a (  AE)  (4.8) 

or equivalently the average energy transferred per collision I (  AE)I. 
If the energy transferred per collision is large compared with the 
thermal energy I( aE)I >> kBT, we have a strong collision mod- 
e1.13J7,38,89,90 In this case a single collision can change the energy 
of a molecule by a large amount and one collision is sufficient 
to activate a molecule above the dissociation threshold. On the 
other hand, if the energy change is small I( AE)I << kBT, we have 
a weak collision model.1-13J7,90-91 Here the energy of a molecule 

(84) Montroll, E. W.; Shuler, K. E. Adu. Chem. Phys. 1958, 1, 361. 
(85) Gardiner, C. W. Handbook ofStochastic Methods; Springer: New 

(86) Knessel, C.; Mangel, M.; Matkowsky, B. J.; Schuss, 2.; Tier, C. J. 

(87) Grote, R. F.; Hynes, J. T. J .  Chem. Phys. 1980, 73,  2715. 
(88) Widom, B. J .  Chem. Phys. 1971, 55, 44. 
(89) Troe, J. J .  Chem. Phys. 1977, 66, 4758. 
(90) Skinner, J. L.; Wolynes, P. G. J .  Chem. Phys. 1980, 72, 4913. 
(91) Troe, J .  J. Chem. Phys. 1977, 66, 4745. 

York, 1983. 

Chem. Phys. 1984, 81, 1285. 

can change only by a small amount and many collisions are 
required to activate a molecule to the dissociation threshold. We 
shall discuss these two limiting cases first before we discuss the 
realistic intermediate case between these two limits. 

4.1. Strong Collision Models ( I ( A E ) J  >> kBT). The most 
popular strong collision model is the strong collision approxi- 
mation where13 

Ksc(E’,E) = aPeq(E) (4.9) 

In this case the collisions are very strong so they resample the total 
energy from a thermal ensemble. This collision kernel allows for 
large energy transfer per collision. In the strong collision ap- 
proximation (4.1) can be solved and the rate constant becomes 

For high collision rates, the rate constant becomes 

ksc = L m d E  P,,(E) ~ R R K M ( E )  = kTsT for a --, (4.1 1) 

which is simply transition-state theory. On the other hand at low 
collision rates13J9 

ksc = a L m d E  Pe,(E) = a(O(Q - H ) )  for a - 0 (4.12) 

which is simply the collision rate times the probability that the 
molecule is above the dissociation threshold. Using a harmonic 
density of states for high barriers3s 

(4.13) 
(PQ)“’ 

ksc = a-e-PQ for a - 0 (n - l)! 

a result first derived by H i n s h e l w o ~ d . ~ ~ * ~ ~  Different strong 
collision models, e.g., the BGK mode1,8s93-95 can be devised. 
However, the rate constant is always well approximated by the 
strong collision approximation. 

4.2. Weak Collision Models (I(AE)I << kBT). Let us consider 
the weak collision approximation where the energy changes upon 
collision are assumed to be so small that the motion in the energy 
shell is equivalent to a small step diffusion process. In this case 
we can perform a Kramers-Moyal expansion of (4.1) which gives83 

-- - aP(E,t)  
at 

a a2 
--[A(E)P(EAl + [D(E)P(EJ)l - ~ R R K M ( W ( E J )  

(4.14) 
aE 

where the energy diffusion coefficient 

D(E) = L l d E ’ K ( E ’ , E ) ( E ’  2 - E)* (4.15) 

is related to the energy transferred per unit time by 

(4.16) 

This relation follows from the detailed balance condition (4.2). 
Unfortunately, the complete calculation of the rate constant 

is difficult. An analytic solution is feasible in the low collision 
limit which gives 

(4.17) I kwc = [ iQdE D(E)P,(E) lEdE’P,,(E’) o 

- 
(92) Hinshelwood, C. N. The Kinetics of Chemical Change in Gaseous 

(93) Bhatnagar, P. L.; Gross, E. P.; Krook, R. M. Phys. Rev. 1954, 5 4 ,  

(94) Skinner, J. L.; Wolynes, P. G. J. Chem. Phys. 1978, 65, 2143. 
(95) Berne, B. J.; Skinner, J. L.; Wolynes, P. G. J .  Chem. Phys. 1980, 73, 

Systems; Clarendon Press: Oxford, 1933. 
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a result first derived by Kramers.'vS5 It is convenient to introduce 
a collision efficiency P, which is the rate constant of a given 
collisional model relative to the strong collision approximat i~n .~~ 
For the weak collision model the collision efficiency can be shown 
to besg 

P, - P ( A E )  P2D(Q)/. (4.18) 

which is correct in the high barrier limit. To make contact with 
Kramers' work, consider a collection of strongly coupled damped 
degrees of freedom. In this case the energy diffusion coefficient 
becomes 

D(E)  = E(Ci,/mimj)(uiu,)E (4.19) 

where c,, are the elements of the friction tensor, m, are the masses 
of the particles, and ( . . . ) E  is the microcanonical average. This 
result has been derived by Kramers for n = 1,' and we have 
recently obtained the general result for arbitrary n.83 For a 
collection of n harmonic oscillators with isotropic mass and friction 

IJ 

D ( E )  = ( { /m)kBTE (4.20) 

Inserting this into (4.17) and using (4.3), we obtains3,96,97 

C (PQ)" 
m (n - l)! 

kwc = - -,-Be (4.21) 

which is the low friction Kramers rate constant applicable to an 
arbitrary number of degrees of freedom.98 This argument can 
be extended to a time-dependent friction kernel (non-Markovian). 
Now the energy diffusion coefficient  become^^^^^^^ 

The physical reason for a frequency-dependent friction kernel at 
low collision rate is the finite duration of a soft collision. In- 
stantaneous hard sphere collisions with a heavy reactant give rise 
to a frequency-independent Markovian friction kernel. In general, 
a slowly decaying friction kernel will reduce the energy diffusion 
coefficient and thereby the energy activation rate.27 This is a 
consequence of realistic soft collisions reducing the VT-energy 
transfer rate enormously. On the other hand, an oscillatory friction 
kernel will follow from a VV-transfer process which will increase 
the energy transfer rate and thereby the rate constant. 

Solution of (4.14) for arbitrary {is not feasible except in the 
case of n = 1 lo' and n = 2.Io2 The corrections to the low friction 
weak collision result can be evaluated for general n.IoZ The rate 
constant relative to the transition-state theory result kTST is given 

k/kTST = Z(1 - COnSt Z'/("+') + ...) 
by 

(4.23) 

where z = kwc/kTsT. With increasing n, the correction terms 
become increasingly important and cannot be neglected for most 
appIications for n L 2.Io3 

4.3. Between Weak and Strong Collisions. The transition 
between the strong collision model and the weak collision model 
has been studied in much detail by Troe.'7s89991 One model where 
the rate constant can be evaluated a n a l y t i ~ a l l y ~ ~ ~ ~ ~ ~ ~ ~ ~  is the ex- 

~~ 

(96) Nitzan, A. J .  Chem. Phys. 1985,82, 1614. 
(97) Matkowsky, B. J.; Schuss, 2. SIAM J .  Appl. Math. 1982, 42, 835. 
(98) Nitzan has presented a similar but incorrect result.96 It is based on 

a different choice for the energy threshold. Simulations for a two degree of 
freedom system show clearly that (4.21) is the correct result.'03 

(99) Zawadzki, A. G.; Hynes, J. T. Chem. Phys. Lett. 1985, 113, 476. 
(100) Zwanzig, R. Phys. Fluids 1959, 2, 12. 
(101) Biittiker, M.; Harris, E. P.; Landauer, R. Phys. Rev. B: Condens. 

(102) Borkovec, M.; Berne, B. J .  J. Chem. Phys. 1987, 86, 2444. 
(103) Straub, J. E.; Borkovec, M.; Berne, B. J. J .  Chem. Phys. 1987,86, 

Matter 1983, 28, 1268. 
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Figure 6. Schematic log-log plot of the transition between the weak and 
strong collision limits. The collision efficiency, p ,  is plotted as a function 
of the average energy transfer per collision, ( A E ) .  

ponential model where one assumes the following form for the 
collision kernelg1 

K(E',E) = - a e-lE'-El/a for activation E' > E 
a + b  

a 
K(E',E) = -e-IE'-El/b for deactivation E > E' (4.24) 

The collision efficiency Pc is determined by the implicit relationg1 

a + b  

(4.25) 

from ( A E ) .  This expression gives the strong collision approxi- 
mation PC = 1 for I( AE)I >> kBT and approaches the weak collision 
or energy diffusion limit for I(AE)I << kBT (see Figure 6 ) .  
Different collision kernels have been studied n ~ m e r i c a l l y ~ ~ ~ ~  with 
the result that (4.24) applies approximately for many realistic 
collision kernels. Equivalent results have been obtained using mean 
first passage time  technique^.'^^ 

4.4. Extension to Slow ZVR. All models discussed so far are 
based on the following two assumptions about the internal dy- 
namics of the molecule: first, rapid and complete energy equi- 
partitioning on the energy shell and, second, the validity of mi- 
crocanonical transition-state theory. These assumptions may not 
be Suppose that we have some high-frequency modes 
in our molecule which might be very weakly coupled to the low- 
frequency reactive mode. We have recently presented the solution 
of this problem in the strong collision approximation without 
making any assumptions about the internal dynamics of the 
molecule. The rate constant becomes76 

(4.26) 

where kco)(t) is the normalized reactive flux of the isolated 
molecule.106 

One can easily verify3* that this expression reduces to (4.12) 
if the dynamics of the isolated molecule is described by RRKM 
theory having a reactive flux 

where the thermal average is taken over the whole phase space. 
In general, a t  high collision rates the reactive flux can be 

replaced by unity and the rate constant approaches transition-state 
theory. At low collision rates we have 

(104) Penner, A. P.; Forst, W .  J .  Chem. Phys. 1977, 67, 5296. 
(105) Knessel, C.; Matkowsky, B. J.; Schuss, Z . ;  Tier, C. J .  Stat. Phys. 

(106) This expression is probably entirely general and applies even to 
1985, 42, 169. 

bimolecular atom-transfer  reaction^.^' 
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= a*&-dE P,,(E) for a - 0 (4.28) 
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The characteristic function of phase space 8cross is unity if a tra- 
jectory started at a particular phase point will eventually cross 
the transition state. A? is the measure of irregular phase space 
which is unity in the case of statistical energy partitioning and 
decreases as the surface becomes less ergodic.2w22 If the trajectory 
is trapped on the reactant side, 19,,,,, vanishes. In the case of 
complete statistical energy partitioning B,,,,, = B(Q - m, xt = 
1, and (4.28) reduces to (4.12). 

For intermediate intramolecular mode coupling the following 
physical picture At low collision frequency the 
system behaves like a strongly coupled system obeying RRKM 
theory and the rate constant rises rapidly with collision rate. At 
higher collision rates the system behaves rather like a single degree 
of freedom system and the rate constant rises more slowly with 
collision rate. This can be rationalized in terms of an intrinsic 
IVR rate which is the rate constant for energy exchange between 
the vibrational degrees of freedom. If the collision rate is smaller 
than the IVR rate, the activated molecule has time to explore the 
whole energy shell and can therefore dissociate before the next 
collision can deactivate it. If the collision rate is higher than the 
IVR rate and the activated molecule happened to have most of 
its energy in the nonreactive mode, it will have no time to transfer 
this energy into the reactive mode. The next collision will then 
certainly deactivate the molecule back into the reactant well. Put 
differently, for mean collision times longer than the inverse IVR 
rate (small collision rates) the reaction coordinate can lose its 
activation energy to the intramolecular modes between collisions 
and can thus appear to be multidimensional; whereas, for mean 
collision times shorter than the inverse IVR rate (large collision 
rates) the reaction coordinate will quickly lose its energy of ac- 
tivation to the bath instead of to the intramolecular modes and 
thus appear to be one-dimensional. Such non-RRKM effects are 
more important for larger molecules. Simulation data presented 
in Figure 7a illustrate this behavior. 

If these non-RRKM effects are important in real molecules, 
measurements of the rate constant as a function of pressure should 
show a rapid rise initially which goes through a plateau and then 
rises more slowly as though having reduced dimensionality. Our 
studies on model systems have shown that such transitions from 
a rapid to a slower rise are probably smooth and stretch over 
several orders of magnitude of pressure. In cyclohexane there 
seems to be the expected rapid rise at lower pressures'07 changing 
into a slower rise at higher pressures.los Recent BGK simula- 
tionslw,'10 of cyclohexane are completely consistent with our point 
of view (see section 7) .  

In general kco)(t) can be obtained from a simple trajectory 
calculation on the potential surface of the molecule in question. 
One starts trajectories as in a reactive flux calculation but follows 
the dynamics as in an isolated molecule. This procedure will give 
kco)(t) .76 The absorbing boundary m e t h ~ d ~ ~ ~ ~ ~  will greatly ac- 
celerate the calculation. The ability of the surface to equipartition 
energy can be very easily estimated by comparing J;dt k(O)(t) 
with the RRKM prediction. We have applied this method to 
model problems with success.76 It seems to be a very promising 
way to calculate rate constants in the strong collision upproxi- 
mation incorporating the proper dynamics of the isolated molecule. 
Very similar ideas have been used in chemical activation s t ~ d i e s ; ' ~  
the approach presented here allows us to compare results of such 
calculations with thermal data. Extension of this analysis for more 

(107) ROSS, B. D.;True, N. S.  J .  Am. Chem. SOC. 1983,105, 1382. Ibid. 

(108) Hasha, D. L.: Eguchi, T.; Jonas, J. J .  Am. Chem. SOC. 1982, 104, 
1983, 105, 4871. 

2290. 

Singer, S. J .  J .  Phys. Chem., in press. 

Discirss. C'hem. SOC. 

(109) Kuharski, R. A,; Chandler, D.: Montgomery. J. A,, Jr.: Rabii, F.; 

(1  10) Chandler, D.; Kuharski, R. A., submitted for publication in Faraday 
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Figure 7. Log-log plot of the rate constant as a function of the collision 
frequency a for the BGK model using a two degree of freedom potential 
with both (a) intermediate and (b) strong coupling between degrees of 
freedom. Displayed are the predictions of the one-dimensional energy 
activation theory (--) and the RRKM theory (-), using (4.13) and 
(6.1) for n = 1 and 2, respectively, alongside numerical simulation re- 
SUI ts. ' 6  

general collisional models75s103 would be highly desirable. 
We have presented a numerical study of the transition between 

a strongly coupled system and a weakly coupled system using the 
strong collision approximation and the BGK We have 
also studied a weak collision model in the intermediate coupling 
regime.75 The behavior seems to be quite similar to the strong 
collision model.Io3 It is unclear how important such effects are 
in real molecules. 

4.5. Extension to Slow Angular Momentum Relaxation. 
Another simplification inherent in the present treatment is the 
fact that the total energy is the only slow variable. However, the 
angular momentum is also conserved in the isolated molecule. 
Therefore, a t  low collision rates in addition to the total energy 
the angular momentum will be a slowly relaxing variable which 
should be included in the master equation (4.1),l9q9' The evaluation 
of rate constants is similar to the case of the energy being a slow 
variable. The main difference springs from the fact that the 
dissociation energy threshold will depend on the angular mo- 
mentum of the molecule. In complete analogy with the previous 
analysis, the strong collision result is19 

Again kRRKM(E,J) vanishes below the dissociation threshold. In 
general, the rate constants tend to be larger than for the one- 
dimensional method. 

The study of the weak collision limit is more difficult. Nev- 
ertheless, some progress has been made. We have recently 
evaluated the rate constant using the coupled energy-angular 
momentum diffusion equation.''' This approach takes the full 
coupling between angular momentum and energy relaxation into 
account. Application to a diatomic molecule gives the result 

( I  1 1 )  Borkovec, M.; Berne. B. J. J .  Chem. Phys.  1986. 84. 4327 



:eature Article The Journal of Physical Chemistry, Vol. 92, No. 13. 1988 3721 

damping rate y, the reduced mass of the reaction coordinate p, 
and the temperature by D = pkBT/-y. This is the Smoluchowski 
equation which describes the time evolution of a particle proba- 
b i l i~ t ica l ly .~~ The motion of the particle is assumed to be con- 
tinuous in time as well as Markovian, so that the particle is 
completely described by its present position, independent of its 
history. For a solvated molecule this would demand that all 
collisions with solvent atoms be uncorrelated or that the force due 
to the solvent relax instantaneously. 

We will consider two simple and important examples. First, 
a useful model for recombination reactions and reactions of ligand 
binding with enzymes is that of a particle diffusing in a centrally 
symmetric potential U(r ) ,  where r is the reaction coordinate 
representing the interparticle separation of the reacting species. 
If it is assumed that the particles will react with probability unity 
when they reach a separation r = a, using the steady-state solution 
of (5.1) constant for a spherical potential, U(r ) ,  it follows that 

which reduces to (4.17) when the dissociation threshold is inde- 
pendent of the angular momentum. This result is equivalent to 
the treatment of Matkowsky et a1.869979112 and is also very similar 
to the weak collision limit of Troe’s solution of the exponential 
model in two  dimension^.^^ His solution is not limited to the weak 
collision limit but allows arbitrary ( AE) and ( AJ). 

Recently, Sceats suggested an interesting but somewhat ad hoc 
approach to this problem.113 H e  replaces the rotational effects 
by an effective potential of mean force (cf. section 2). Even though 
it is unclear why the dynamics could be described by such a 
potential a t  low collision rates, where the energy and angular 
momenta relax slowly, some preliminary results on the diatomic 
molecule look encouraging. Similar problems for polyatomic 
molecules should be addressed. Extended computer simulation 
of collision dynamics of a molecule in a low-pressure gas has helped 
to resolve these  question^.^^^^^^^ Actually, we found1I6 that a 
simple molecular dynamics simulation at  low pressure is much 
simpler to carry out than such a scattering calculation which 
requires averaging over a vast number of initial conditions. 

4.6. Isomerization Reactions. Let us briefly discuss how these 
ideas extend to isomerization reactions. In general, (4.1) must 
be replaced with two coupled master equations where we consider 
activation and deactivation of the reactant as well as the product. 
This is rarely studied in detail. Again, in the high collision regime, 
transition-state theory will apply. In the low collision regime 
activation of the reactants will be rate limiting. However, once 
a particle is activated, there will be a finite probability that it will 
be deactivated into the product well. For example, in the case 
of a symmetric double well potential an activated trajectory will 
get trapped in either well with equal probability. Therefore, the 
low collision forward rate constant will be the energy activation 
rate reduced by a factor of In general, the trapping probability 
p can be evaluated from detailed balance. The forward rate 
constant is the rate constant for activation in the reactant well 
times p ,  and the backward rate constant is the rate constant for 
activation in the product well times 1 - p .  The ratio of the forward 
and backward rate constants is the equilibrium constant of the 
reaction. Therefore, the equilibrium constant determines the 
trapping probabilityp. It is interesting to note that in a polyatomic 
molecule the trapping probability in the deeper well can be quite 
substantial. 

5. Diffusion-Controlled Reactions 
If the collision frequency or friction coefficient is high, an 

activated reactant molecule will suffer frequent momentum-re- 
versing collisions and recross the transition-state surface many 
times before being deactivated. In this case, the true rate constant 
will differ substantially from the transition-state theory rate 
constant. These deviations are treated by the theory of diffu- 
sion-controlled reactions. 

The pioneering work in this field was done by S m o l u ~ h o w s k i , ~ ~ ~ ~ ~  
who assumed that the spatial coordinate was slowly varying and 
the motion of the reaction coordinate could be described by 

where p(x , t )  is the probability density for finding the reaction 
coordinate a t  position x at  time t ,  U ( x )  is the potential felt by 
x,  p = l/kBT, and D is the diffusion coefficient which is related 
to the static friction constant per unit mass or equivalently the 

(112) Matkowsky, B. J.; Schuss, Z .  SIAM J. Appl. Math. 1983, 43,673. 
(113) Sceats, M. G. Chem. Phys. Lett. 1986, 128, 5 5 .  
(1 14) Hippler, H.; Schranz, H. W.; Troe, J. J .  Phys. Chem. 1986, 90, 

6158. 
(115) Schranz, H. W.; Troe, J. J. Phys. Chem. 1986, 90, 6168. 
(1 16) Straub, J. E.; Borkovec, M.; Berne, B. J., submitted for publication 

in J. Chem. Phys. 

and taking U(r )  = 0 results inz8 

k = 4nDa (5.3) 

This is the famous Smoluchowski result which was generalized 
by Onsager and then Debye for ionic recombinat ior~’~~J~~ and more 
recently by Northrup and Hynes for position-dependent diffu- 
 ion.^*"^ Corrections to the diffusion equation for moderate 
damping and corresponding corrections to the rate constant have 
been calculated by Skinner and Wolynes.Izo 

Second, for isomerization reactions in a bistable potential the 
rate constant for diffusion from the reactant well a t  xo to the 
product well a t  x1 is given in analogy to (5 .2 )85  

For a single degree of freedom with a high barrier the rate constant 
becomes 

~ S D  N ~ T S T ( ~ B / Y )  ( 5 . 5 )  

This is the high-friction limit of the Kramers result’ 

k = k-rsr[[l + ( Y / ~ W I ) ~ I ~ ’ ~  - Y/2%1 (5 .6 )  

which reduces to transition-state theory at  small friction. Al- 
ternatively, for a cusped barrier, which is common in reactions 
involving electronic curve crossing,’2’J22 (5.4) results in 

~ S D  N ~ T S T ( W O / Y ) ( ~ P Q ) ” ~  (5.7) 

One should note that (5.4) applies equally well to the case of many 
degrees of freedom and to a rotating molecule with the proper 
potential of mean force (section 2). In the case of a diatomic 
recombination reaction the effective potential is Ueff (r )  = U(r )  
- 2kBTlog (r) .  If U(r) vanishes for r > a and is strongly attractive 
for r < a, (5.4) gives (5.3), the bimolecular Smoluchowski re- 
combination rate constant.” 

All of the above results are for Markovian systems. Of course, 
a realistic solvent will have a finite relaxation time and therefore 
the constant zero frequency friction y is unphysical and should 
be replaced by a time-dependent friction kernel ((1). The central 
equation is then the generalized Langevin e q u a t i ~ n ~ . ~ ’  

(117) Onsager, L. Phys. Rev. 1938, 54, 554. 
(118) Debye, P. Trans. Electrochem. SOC. 1942, 82, 265. 
( 1  19) Northrup, S. H.; Hynes, J. T. J .  Chem. Phys. 1979, 71, 871. 
(120) Skinner, J. L.; Wolynes, P. G. Physica A (Amsterdam) 1979, 96A, 

(121) Tully, J. C. In Dynamics of Molecular Collisions, Part B Miller, 

(122) Garg, A.; Onuchic, J. N.; Ambegaokar, V .  J .  Chem. Phys. 1985,83, 

561. 

W. H., Ed.; Plenum: New York, 1976. 

449 1. 



3722 The Journal of Physical Chemistry, Vol. 92, No. 13, I988 Berne et al. 

pLa = -aU(x) /ax  - l t d t t  {(t-t ')x(t? + R(t)  (5.8) 
0 

where x is the reaction coordinate feeling a potential U ( x ) ,  p is 
the reduced mass, and R(t) is a stochastic force which, along with 
the friction kernel { ( t ) ,  must satisfy the fluctuation dissipation 
relation. 

While attempts have been made to formulate a non-Markovian 
version of (5.4), nothing so general has been f o ~ n d . ~ J ~ ~  However, 
the problem was approximately solved by expanding the potential 
in the barrier region as an inverted parabola with frequency uB 
and assuming a steady-state distribution outside the barrier region. 
Grote and Hynes first obtained the rate c o n ~ t a n t ~ ~ J ~ ~  which has 
since been derived in a number of different f o r m u l a t i o n ~ ~ ~ J ~ ~  and 

It is given by 

(5.9) 

where it can be shown'27 that, unless the bath contains unstable 
modes, X is the only positive root of the Grote-Hynes relation 

(5.10) 

where t(s) is the Laplace transform of the friction kernel on the 
reaction coordinate per unit mass. kTST is the transition-state result 
applied to the one-dimensional reaction coordinate (section 2). 
Recently, Bergsma et al. calculated rate constants numerically 
for an atom-transfer reaction in water and found non-Markovian 
effects to be quite important!* The Grote-Hynes theory has been 
used to give a reliable prediction of the numerical data.1z8 

If the friction kernel is frequency independent, Le., {(O) = 7, 
then the GroteHynes relation reduces to the Kramers result, (5.6). 
This result has been applied to a wealth of chemical systems; there 
exist reviews summarizing this ~ o r k . ~ , ~  

To successfully apply these theories to real systems, one must 
have knowledge of the dynamic friction coefficient, { ( t ) ,  acting 
on the reaction coordinate. Unfortunately, even the static friction 
coefficient is not known, nor are there practical theoretical models 
for it for realistic systems. 

The generalized Langevin equation, (5.8), cannot be derived 
in general from classical or quantum dynamics. It is usually 
assumed to apply without questioning its validity. For nonlinear 
systems it is not at all clear when this equation will be valid even 
in simple cases. It has been derived for an anharmonic oscillator 
coupled to a harmonic bath.lZ9 In this case, the dynamical friction 
has the simple form, for an infinite bath 

and for a discrete bath 

(5.1 1)  

(5.12) 
a 

Here, ga is the coupling constant of the reaction coordinate to the 
bath, m, and w, are the masses and frequencies of the harmonic 
bath mode CY, and ga2/m,wa2 is independent of the bath masses, 
ma, because maw,' is a mass-independent force constant. The 
only mass dependence arises from the frequency factors, w,, in 
the cosines, which are proportional to m;'/2. Thus if the solvent 
mass is changed relative to the solute mass, only the t i m e  scale 
will change; that is, there should be no change in the overall 
functional form of { ( t ) .  Clearly there is no dependence of { ( t )  
on the reaction coordinate itself. 

Recently, we have developed a method for computing { ( t )  on 
a reaction coordinate using molecular dynamics  simulation^.'^^ 

(123) Hinggi, P.; Mojtabai, F. Phys. Rev. A 1982, 26, 1168. 
(124) Grote, R. F.; Hynes, J. T. J .  Chem. Phys. 1981, 74, 4465. 
(125) Wolynes, P. G. Phys. Rev. Lett. 1981, 47, 968. 
(126) Hanggi, P.; Grabert, H.; Ingold, G. L.; Weiss, U .  Phys. Reti. Lett. 

(127) Grabert, H., private communication. 
(128) Gertner, B. J.; Bergsma, J. P.; Wilson, K .  R.; Lee, S.; Hynes, J. T. 

(129) Zwanzig, R. J .  Star. Phys. 1973, 9,  215. 

1985, 55, 761. 

J .  Chem. Phys. 1987, 86, 1377. 

v i 
1 6 2 Z  

1 0 - ~  10-3 10-2 10-1 1 10 

Y / W B  

Figure 8. Log-log plot of the rate constant as a function of the static 
friction y in units of the barrier frequency wB for the Kramers model for 
a two degree of freedom potential. Displayed are the predictions of (6.1) 
(--) and ( 6 . 2 )  (-) alongside numerical simulation results.'03 

This method allows one to test the range of validity of the above 
equations. We have applied it to a simple bistable system dissolved 
in Lennard-Jonesium. It was found that { ( t )  depends on the 
reaction coordinate in contradiction to the above generalized 
Langevin equation. Moreover, the time dependence does not scale 
simply as the square root of the solvent mass. 

Clearly, one must be cognizant of the limitations of these 
theories when comparing them to experiment. It may well be 
necessary to derive a generalized Langevin equation that is 
nonlocal in space as well as time for applications to some problems. 

6. Connection Formulas 
Until now we have discussed theories which correct for devi- 

ations from transition-state theory in the form of rate constants 
for energy activation at low collision rates (section 4) and spatial 
diffusion at high collision rates (section 5). Any of these theories 
are only correct in certain limits. Obviously, one is interested in 
predicting the rate constant at arbitrary collision rate, or friction 
constant. One useful approximation, first proposed by Hynes and 
c o - ~ o r k e r s , ~ ~ ~ ~  is 

where klow is the rate for energy activation (eq 4.7) and kGH is 
the Grote-Hynes theory rate for barrier crossing, (eq 5.9). We 
may also use17J31 

kunikGH/kTST (6.2) 

The latter is highly preferable in systems with many intramolecular 
degrees of freedom when a good approximation to the unimolecular 
rate theory expression k,,, (4.5), is a t  hand. Differences between 
the stable-states formula (6.1) and the product approximation (6.2) 
can be substantial in the low to intermediate friction regimes for 
many degrees of freedom and the latter should always be pre- 
ferred.Io3 

For atom-transfer reactions the activation step is missing and 
a useful approximation is 

k k G H  (6.3) 
Some justification for these formulas can be given by analyzing 
the steady state of the Lindemann mechanism (see section l ) ,  
asymptotic t e c h n i q u e ~ , ' ~ ~ J ~ ~  or stable-states arguments.)' These 
formulas can give accurate predictions; nevertheless, they are 
approximate. For example, in Figure 7 we compare the prediction 
of (6.1) for the BGK model for a bistable mode coupled to a 
nonreactive mode. On the other hand, (6.1) fails badly for the 
Kramers model on the same surface whereas (6.2) is a good 

(130) Straub, J. E.; Borkovec, M.; Berne, 8. J.  J .  Phys. Chem. 1987, 91, 

(131) Troe, J. J .  Phys. Chem. 1986, 90, 357. 
(132) Matkowsky, B. J.; Schuss, Z.; Tier, C. J .  Stat. Phys. 1984, 35,443. 
(133) Dygas, M .  M.; Matkowsky, B. J. J .  Chem. Phys. 1986, 84, 3731. 
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appro~imat ion!~~ (see Figure 8). 
6.1. Simulations. For Markovian models and strongly coupled 

degrees of freedom we expect that an interpolation formula which 
approximately includes the uhimolecular RRKM-theory result, 
(4.5), and the diffusion-controlled theory should be able to predict 
the overall rate constant quite accurately. Certainly, such formulas 
are much simpler to use than alternative methods such as Pad& 
a p p r o x i m a n t ~ ~ ~ ~  or matching solutions134 and they give essentially 
identical results. On the other hand, when strongly non-Markovian 
baths or weakly coupled degrees of freedom are included, such 
formulas are expected to be much less reliable. It is known that 
in some cases no existing analytic theories will describe such 
situations. Let us briefly discuss two examples. 

We have studied a single reactive degree of freedom experi- 
encing exponential f r i ~ t i o n . ~ ~ , ~ ~  We found that in the high-friction, 
long correlation time regime the interpolation formula (6.1) can 
severely overestimate the rate constant. Deviations from (6.1) 
arise from the breakdown of the assumption that trajectories, after 
leaving the barrier region, will be deactivated before recrossing 
the transition state. Physically, the recrossings are due to the long 
relaxation time of the solvent which cages the activated particle 
in an effective double well potential.74 We can think of this cage 
arising from a frozen solvent configuration. The rigid solvent 
causes the particle to rebound and recross the transition state. 
Therefore, the particle's dynamics is affected by anharmonic 
regions of the potential not included in the Grot-Hynes or energy 
activation theories. We feel that while the particle is caged, the 
slow variable is the energy, not the position, and therefore energy 
activation in the dynamic potential must be included. 

One attempt to correct (6.1) has treated only the position as 
a slow variable'35 and therefore has not, as has been suggested,'36 
accounted for these deviations. Zwanzig has recently used ideas 
from singular perturbation theory to arrive at  limits on the range 
of friction where Grote-Hynes theory can be expected to work.137 
Similar limits have been suggested by H i i ~ ~ g g i . ~  In this range of 
friction, the probability that the trajectory samples the anharmonic 
regions of the potential is negligible. Also, he showed that in the 
limit where Grote-Hynes theory is not appropriate there is, in 
addition to the energy, a second conserved quantity corresponding 
to the relaxation of the dynamic potential, which must be treated 
if the rate constant is to be calculated accurately. A recent study 
has included the continued relaxation of these two conserved 
quantities in the calculation of rate c o n ~ t a n t s . ' ~ ~  

In another study of a non-Markovian system, an oscillatory 
friction kernel was used which corresponded exactly to a linearly 
coupled damped harmonic o s ~ i l l a t o r . ~ ~  Rate constants were 
correctly predicted by energy diffusion theories using (4.17) and 
(4.22) for n = 1 as long as the friction kernel decayed rapidly, 
i.e., a t  large damping. On the other hand, if the friction kernel 
becomes oscillatory, Le., a t  low damping, this prediction and 
therefore also the stable-states formula, (6. l ) ,  severely underes- 
timates the rate constant. In this case, the bath, Le., the linearly 
coupled harmonic oscillator, becomes strongly coupled to the 
reaction coordinate and the rate constant is better described by 
(4.21) for n = 2. Therefore, for a given collision kernel, it is not 
trivial to decide whether the coupling can be regarded as weak 
enough that (4.22) can be applied. We have presented sufficient 
conditions for resolving this q u e ~ t i o n ~ ~ ~ ~ ~ ~  which have been further 
sharpened by N i t ~ a n . ' ~ ~  

These two examples illustrate that many features of non- 
Markovian activation rate processes are still not well understood 
and deserve much effort in future research. 

6.2. Electronic Surface Crossing. In our previous discussion, 
we have assumed that the electronic state of the reacting molecule 
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Brownian Particle in a Double Well Potential. 

I I 1 

5 
Figure 9. Log-log plot of the transition-state-theory normalized rate 
constant as a function of the collision frequency { in units of the well 
frequency w for the adiabatic theory (-) and the nonadiabatic theory 
(--) of (6.4). The simulation results of Cline and WolynesI4' are shown 
for the adiabatic (0) and nonadiabatic (a) systems. The maximum 
nonadiabatic transmission coefficient, predicted by (6.4), is indicated by 
an arrow. 

follows the motion of the nuclei adiabatically. However, when 
the splitting between the excited- and ground-state adiabatic 
potential energy surfaces is small compared to kBT, the assumption 
of adiabatic curve crossing may be violated. For isolated systems, 
nonadiabatic curve crossing effects have been incorporated sta- 
tistically by using Landau-Zener theory in semiclassical trajectory 
calculations by Tully and Preston139 and Miller and George;140 
this and additional work have been reviewed by Tully.lZ1 Recently, 
Cline and Wolynes employed similar numerical techniques to study 
nonadiabatic effects on activate$ barrier crossing. 14' 

Extending the absorbing boundary formalism (section 3), we 
have combined surface crossing, using the Landau-Zener 
curve-crossing probability,lZ1 with our model of adiabatic reaction 
dynamics.70 The resulting transmission coefficient for the non- 
adiabatic rate process is142 

(6.4) 

where KA is the transmission coefficient for the adiabatic reaction, 
(3.9), and PLz is the Landau-Zener curve crossing probability121 
averaged over the distribution of (3.6). 

= 1 and K = KA. If K A  << G, then 
K - K A  which is the asymptotic adiabatic r e s ~ l t . ~ ~ ~ , ~ ~ ~  Equation 
6.4 predicts a maximum transmission coefficient of K = 2 c / (  1 
+ PLz) which, for G << 1, reduces to K = 2 G ( 1  
Physically, a small Landau-Zener curve-crossing probability can 
be understood as a density-independent rate-limiting step below 
TST. This behavior is illustrated in Figure 9. 

It should be noted that (6.4) only requires a knowledge of the 
Landau-Zener probability and the adiabatic rate constant, which 
may be determined by computer simulation or analytic theory. 
We have compared (6.4) with the numerical simulation results 
of Cline and Wolynes, which included curve crossing with BGK 
collisional dynamics. Using the analytic theory of Skinner and 
Wolynesg4 for KA, we found good agreement.14z 

7. Experimental Results 
There have been a vast number of experimental studies of how 

rate constants depend on the m e d i ~ m . ~ , ' ~  With the limited space 

- 

In the adiabatic limit, 

- 
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Figure 10. Troe and co-workers' experimental data'50 for the recombi- 
nation of iodine as a function of the diffusion coefficient for a single 
iodine atom compared with the impulsive BGK model without adjustable 
parameters (-).Ii 

available it is not possible to review this field appropriately. 
Instead, we would like to make some specific comments and focus 
on three examples which we consider particularly relevant. The 
most severe problem when one tries to compare theory and ex- 
periment is that, because of experimental difficulties, data are 
usually collected over a very limited range of pressure or viscosity. 
In such cases, there is usually a small variation in the rate constant 
and virtually any theory showing the same qualitative behavior 
can be used to fit the data. Avoiding this difficulty, we restrict 
our discussion to a few relevant experiments where rate constants 
have been measured over a wide density range. 

Another important aspect which must be carefully addressed 
when comparing experiments and theories is the effects of the 
potential of mean force. The experimentally observed rate con- 
stants contain not only dynamic effects, in the form of diffusion 
control and energy activation, but also equilibrium solvent effects 
(solvent shifts) manifest in variations of the barrier height, due 
to the potential of mean force. Very often these effects are not 
properly disentangled and can lead to erroneous conclusions. A 
particularly nice example was discussed by Hicks et a1.I6 where 
a rate constant showed a phenomenological inverse dependence 
on the solvent viscosity. The immediate conclusion-diffusion- 
controlled reaction-is wrong! Careful study of the temperature 
dependence of the rate constant in isoviscous solvents of different 
polarity shows clearly16 that this variation of the rate constant 
is caused by a polar equilibrium effect. 

Additionally, it is crucial to estimate correctly the friction on 
the reaction coordinate. It should be noted that the often-used 
Stokes-Einstein relation, where the friction is { = 67qa, has a 
limited range of ~ a l i d i t y . l ~ ~ - ' ~ ~  

7.1.  Halogen Recombination. The first and simplest experi- 
mental rate studies involved halogen recombination reactions. The 
recombination rate constant can be measured over a wide range 
of densities and in different bath g a ~ e s . ' ~ * ' ~ '  Such studies on 
chlorine'49 were the first to show a certain turnover of the rate 
constant as a function of density.ls2 Ironically, these results 
remained unnoted for a decade until the studies were extended 
to other h a l ~ g e n s . ' ~ ~ J ~ '  The typical picture for iodine (Figure 
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(145) Pollack, G. L.; Enyeart, J. J. Phys. Reu. A 1985, 31, 980. 
(146) Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworths: 

(147) Zwanzig, R.; Harrison, A. K. J .  Chem. Phys. 1986, 83, 5861. 
(148) Hippler. H.; Troe, J. Eer. Bunsen-Ges. Phys. Chem. 1985, 89, 760. 
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probably due to a second competing reaction channel.Is6 

10) clearly displays the turnover as a function of density.Is0 The 
theoretical prediction using the BGK model gives very good 
agreement." This agreement is somewhat fortuitous in the low- 
pressure regime since this model as well the Kramers 
does not predict the correct temperature dependence of the rate 
constant which is dominated again by a complex reaction 
mechanism not included in the model." 

At high pressures the rate constant seems to fall off more slowly 
than the inverse viscosity which is probably due to the failure of 
the Stokes-Einstein r e l a t i ~ n . I ~ ~ - ' ~ ~  A similar situation is en- 
countered in polyatomic radical recombination where the rate 
constant is well described by a diffusion-controlled model but the 
predictions of the Stokes-Einstein relation are not very accurate.ls4 
Equilibrium solvent effects are small in this particular case." 
Studies of such secondary recombination should not be confused 
with primary recombination reactions where the iodine relaxes 
from an electronically excited state.Is5 In the latter case there 
is no separation of time scales and the ideas presented here do 
not apply except in a strongly modified form. 

7.2.  Stilbene Isomerization. Another well-studied system is 
stilbene isomerization on an excited electronic surface.'s6159 This 
reaction shows a clear turnover as a function of density. Equi- 
librium solvent effects due to the potential of mean force are very 
important in this case. This is to be expected since the elec- 
tronically excited stilbene is probably highly polar and is therefore 
interacting strongly with the solvent. Studies of the temperature 
dependence of the rate constant,160i161 and the fact that the 
maximum rate constant exceeds the transition-state rate constant 
calculation for the isolated molecule, using (4.1 l),  by 2 orders 
of magnitude,156 show clearly that the barrier is substantially 
modified as the density of the solvent is changed. Therefore, any 
extensive comparison with dynamic theories which does not assess 
the equilibrium solvent effects is obsolete114s115,162- a fact re- 
peatedly emphasized by Troe. 

Similarly, Pollak has considered the very different high-density 
viscosity dependence of two harmonic Hamiltonians. Using a 
hybrid of these Hamiltonians, he found that an increase in the 
viscosity corresponds to a lower barrier to isomerization which 
fits well the high density falloff in ~ t i 1 b e n e . I ~ ~  Pollak's inter- 
polation is similar to an equilibrium solvent effect since his effective 
potential varies with the damping. Unfortunately, since the in- 
teraction of an excited solute with the solvent is hard to establish, 
it is very difficult to make any quantitative prediction of the 
equilibrium solvent effect. For example, a recent study has shown 
that a high-density fractional viscosity dependence can result from 
strongly anisotropic diffusion.]@ In our view, there is no conclusive 
evidence for the importance of non-Markovian effects in the 
stilbene isomerization. 

7.3.  Cyclohexane Isomerization. A system where estimation 
of equilibrium solvent effects is more tractable is the cyclohexane 
isomerization. This system was initially studied by Jonas and 
co-workers at high pressure where, for the first time, Kramers' 
ideas were applied to a realistic chemical reaction.Io8 Subsequent 
work extended the pressure range studied to lower p r e ~ s u r e s . ' ~ ~  
Garrity and Skinner165 discuss the possible importance of a 
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two-dimensional surface for this system, and Carmeli and Nit- 
zan166 have interpreted this in terms of a non-Markovian gen- 
eralized Langevin equation. 

Recently, Singer, Kuharski, and Chandler'67 estimated the 
equilibrium solvent effect to be AVTsT 0.6 cm3/mol. This 
estimate is just the opposite of Jonas's estimate AVTsT -1.5 
cm3/mol which is based on the approximation of hard sphere 
interactions. It seems that the interactions present in this nonpolar 
system, which are comparable with thermal energies, cannot be 
approximated by using the intuitive concept of reactant volume 
changes. Therefore, the data on cyclohexane imply that the 
transmission coefficient K increases with pressure over the whole 
density range in contrast to the widely accepted interpretation 
by Jonas which predicts a decreasing K going through a maximum. 

A slowly increasing K could be caused by two effects and possibly 
a combination thereof. First, it is know that RRKM weak collision 
models show a very smooth transition between their low-pressure 
limit and transition-state t h e ~ r y l ~ ~ ~ l J ~ *  (section 4). Second, the 
presence of weakly coupled modes in the molecule could cause 
a transition to a quasi few degree of freedom system at  higher 

(165) Garrity, D. K.; Skinner, J. L. Chem. Phys. Lett. 1983, 95, 46. 
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ARTICLES 

pressures.19,75~76~103 As mentioned in section 4.4, recent work 
confirms this prediction.'Og*l10 As the calculation of the potential 
of mean force is hard but feasible, it would be extremely helpful 
to collect more extensive data on this system covering a wide 
density and temperature range. In conclusion, the data on cy- 
clohexane still await a definitive interpretation. 

Our three examples show that, while these are the systems best 
understood, having been in the focus of study for many years, there 
exist many uncertainties. In our view, the weak points on the 
experimental side are that systems are not studied over a wide 
enough range of densities, temperatures, and solvents. It is also 
desirable to extend such studies to atom-transfer and polyatomic 
recombination reactions. On the theoretical side, a small 
knowledge of the true intramolecular solute potential and the 
solvent-solute potential makes application of existing theories 
difficult. Practical procedures for calculating rate constants in 
polyatomics a t  low pressures beyond the strong collision ap- 
proximation, which would take the proper collisional dynamics 
into account, are still lacking. Finally, ways of incorporating 
different reaction channels, quantum effects, and all electronic 
surfaces participating are in their infancy. 
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Rotational Effects on Intramolecular Radiationless Transitions. The Story of Pyrazine 
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The experimental rotational effects on the Sl('B3J excited-state dynamics of pyrazine are briefly summarized. These experiments 
impose severe constraints on the validity of the general radiationless transitions theory in the limit of intermediate level structure. 
A model is presented to account for all the problems confronted by the theory in terms of rotationally induced intratriplet 
vibrational energy redistribution. This new type of intramolecular radiationless transition called vibrational crossing is an 
interstate process with intrastate vibronic coupling features. From this model two major predictions emerge, which are shown 
to be fulfilled. We demonstrate that Coriolis coupling is an important and dominant mechanism leading into intramolecular 
vibrational energy redistribution. The absorption spectrum, fluorescence excitation spectrum, and the resulting emission 
quantum yield of pyrazine were studied by using dye laser with 2-GHz resolution as a light source. The emission quantum 
yield decreased with the rotational state. The absorption contour of a single rotational state was broader than the excitation 
contour, and absorption with a low emission quantum yield is shown between adjacent rotational transitions. The ratio of 
short time to long time emission (A+/A-)  is shown to depend on the rotational temperature following excitation of a single 
rotational transition. These experimental results combined with the quantitative fit of the inverse emission quantum yield 
and A+/A- were predicted by the vibrational crossing model and thus strongly support its validity. 

Introduction 
The S1(lB3J state of the pyrazine molecule serves as a 

touchstone for critical scrutiny of >he theory of radiationless 
Following the pioneering work of Tramer and 

co-~orkers,~*' conventional wisdom has attributed intramolecular 
~ 
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dynamics in this system to the intermediate level structure (ILS) 
limit in the As detailed experimental results have 
become available, this picture became less clear and under- 
standable as the conventional theory in the ILS limit was con- 
fronted with a large volume of conflicting pieces of experimental 
results. These puzzling self-inconsistencies are described in detail 
elsewhere.* 
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