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We present a computationally efficient molecular dynamics algorithm designed to take advantage of the inherent 
separation of time scales in biomolecular systems. The algorithm is essentially a generalization of the previously 
introduced reversible reference system propagation algorithm (r-RESPA) which employs a Trotter factorization 
of the Liouville propagator to generate numerical integration schemes for molecular dynamics applications. 
The method is compared with thevelocity Verlet integration algorithm in a molecular dynamics (MD) simulation 
of the protein crambin in vucuo. The multiple-time-step algorithm is shown to be able to take a much larger 
time step for a comparable level of accuracy than that of the standard method, leading to a 4-5-fold reduction 
in the CPU time required to calculate the nonbonded forces. 

Introduction 
Computer simulations have become a valuable tool used in the 

theoretical investigation of biomolecular systems. Unfortunately, 
these simulations are often computationally demanding tasks 
owing to the large number of particles, as well as the complex 
nature of their associated interactions. In the method of molecular 
dynamics (MD), this problem is particularly acute due to the 
fact that limitations in accuracy are imposed by the fastest time 
scale considered, such as the vibr'ational periods of bond stretch 
and bend degrees of freedom, even though one may be primarily 
interested in events that occur over a much longer time scale. In 
standard numerical integration methods, such as of the StGrmer- 
Verlet variety,1.2 one is generally required to use a time step on 
the order of a femtosecond in order to maintain an acceptable 
level of accuracy in the integration of the equations of motion. 
Since the CPU time to calculate the interactions scales as W ,  
where N is the number of particles, and typical simulations are 
often for hundreds of picoseconds, the required computational 
effort can indeed be enormous. This often results in the need to 
make approximations, such as truncating the nonbonded interac- 
tions at somecutoff distance, which may in turn affect thequality 
of the cal~ulation.~ 

A variety of techniques have been introduced in order to increase 
the time step in molecular dynamics simulations in an attempt 
to surmount these difficulties. One common approach is to 
constrain bond lengths using either the SHAKE or RATTLE 
algorithms.4.5 Although application of these methods allows for 
a modest increase in the time step, time-dependent quantities 
may be Additionally, the constraint methods have 
not been shown to work well for bond angle degrees of freedom 
when applied to the case of macromolecules.6 

Another approach to increase the time step in MD simulations 
is that of themultiple-time-step (MTS) methods? These methods 
are based upon integration schemes that allow for time steps of 
differing lengths according to how rapidly a given type of 
interaction is evolving in time. Teleman and JGnsson9 introduced 
an algorithm whereby the slower degrees of freedom are held 
constant for a number of smaller time steps which are used to 
integrate the faster degrees of freedom. Thismethod has, however, 
been shown to lead to the accumulation of numerical error in 
calculated quantities.1° Alternatively, Swindoll and Hailell 
introduced a procedure which uses a Taylor series approximation 
for the less rapidly evolving forces. Although this algorithm has 
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been shown to give some improvement in CPU times for simple 
systems, such as alkane chain liquids,11 it is not yet evident as to 
whether it would be computationally advantageous in the case 
of macromolecules. 

In this paper we present a molecular dynamics algorithm 
designed specifically for macromolecular simulation which uses 
a combination of time steps of different lengths to integrate 
interactions which evolve on different time scales. The algorithm 
is essentially a generalization of the previously introduced 
reversible reference system propagation algorithm (r-RESPA),Iz 
which employs a Trotter fact~rizationl~ of the classical Liouville 
operator as a means to derive a numerical propagation scheme 
for the system. This r-RESPA scheme is a time-reversible, 
symplectic (measure conserving in phase space), and highly stable 
integrator. This approach has been shown to be considerably 
more efficient than standard techniques when applied to simple 
systems, such as those containing disparate masses, long- and 
short-range interactions, and stiff and soft forces.12 Additionally, 
this method has recently been applied to the case of small organic 
molecules by Watanabe and Karplus,I4 as well as to that of a 
fullerene crystal.15 

In the case of macromolecules, although the potential is 
substantially more complex than that of a simple Lennard-Jones 
liquid, our approach is very much in the same spirit. Here, also, 
we divide the forces of the system into effective time scales 
according to how rapidly a given force varies with time. By 
factorizing the Liouville propagator, we are then able to generate 
numerical integration algorithms whereby different time steps 
may be chosen for each effective time scale. This avoids having 
to take an unnecessarily small time step for interactions that are 
slowly varying while concomitantly maintaining accuracy for the 
rapidly varying degrees of freedom. 

In this paper we first present a brief description of the formalism, 
followed by an application of the method to a molecular dynamics 
simulation of the protein crambin in vacuo. This was achieved 
by incorporating the algorithm into a modified version of the 
MACROMODEL16 molecular modeling package. It is shown 
that the r-RESPA method is significantly more efficient than 
that of the standard velocity Verlet integrator, leading to an 
approximately 4-5-fold reduction in the (nonbonded) CPU time 
for a system containing 655 particles for a comparable level of 
accuracy. 

Method 

Trotter Expansion of the LiouviUe Propagator. Our starting 
point for the numerical integration of Hamilton's equations is 
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based upon the Trotter expansion of the classical Liouville 
propagator. The Liouville operator for a system of N degrees of 
freedom in Cartesian coordinates is defined as 

where [...,...I is the Poisson bracket. The state of the system at 
a time t is then given by 

r(t) = u(t) r(o) (2) 

U(t) = eifL (3) 

where U(t) is the classical time evolution operator 

and where 

r(t) = {q(t),p(t)J = (sl(t),...,qN(r),pl(t),...,pN(r)) (4) 

(44)  are the coordinates and conjugate momenta, and H is the 
Hamiltonian of the system. We may then choose to decompose 
the Liouville operator into two parts, such that 

L = L, + L2 

eif(L1+u = [ei("+Lz)]P 

( 5 )  

This allows us to apply the Trotter theorem,', giving 

= [ei(ar/2)~eidLlei(d/2)L21P + o(At3) (6) 

where At = f / P .  One may then define a discrete time propagator 
as 

G(At) = U2(At/2) U,(Ar) U2(At/2) 

(7) - - ei(ar/2)~eiarLlei(ar/2)Lz 

Having done this, we are now able to take advantage of the form 
of the discrete time propagator, using it to develop multiple- 
time-step integration algorithms. Although there exist numerous 
ways of breaking up the true system into a "reference system" 
propagator and "correction" propagators, a convenient choice 
can be made by noting that the inner propagator in eq 7 can be 
further decomposed as follows 

(8) eiAfL1 eidTLl n 

where n h  = At. This provides us with a means for determining 
the time evolution of a system whoseinteractions evolve according 
to two different time scales. That is, the inner, or reference, 
propagator may be taken to be associated with the rapidly varying 
interactions and is propagated according to a smaller time step 
than that of the outer correction propagators which can be used 
to evolve the less rapidly varying degrees of freedom. The formal 
solution for the discretized equations of motion is then given by 

r(At) = U2(At/2) U,(A?) U2(Ar/2) r(0) + 0(At3) (9) 

(10) 

0 

eWT/2)h [e i W  1 neW~/2)k r(o) + 0(&) 

This approach may also be generalized to cases with more 
than two effective time scales. Suppose for example we choose 
to break the Liouville operator into a sum of three terms, that 
is 

L = L, + L2 + L, (11) 

Let us then define 

LA L, + L2 (12) 

We may apply the following Trotter decomposition to give a 
discretized propagator of the form 

e(&)  ei(~/z)L:e'AfLAe'(d/2)4 (13) 

The middle propagator may then be factorized as 

(14) e i d L A  = [ehh]n2 

where 672 = Atln2. Another Trotter decomposition gives 

(15) 

(16) 

ei6TzL~ = e lh(L~+L1)  

- - ,i(s~z/2)Lz,id~zLi~r(aTl/z)r, + 0(?~3) 

Similarly, 

(17) eidTzLI = [efhL~]n~ 

where8q =67z/nl. Theentirediscretized propagator for asystem 
with three time scales is then given by 

G(At) E el(nln~h/2)~3 )( 

[ei(n~6~~/2)Lz [e ibr1L11n1~i(n1b+1/2)L?1n~~i(n1nldr1/2)L: ( 18) 

This would correspond to a situation where the inner reference 
propagator is evaluated every small time step 6~1, whereas the 
middle and outer correction propagators are evaluated every nl 
and n1n2 small time steps, respktively. The generalization to N 
time scales follows in an analogous manner. 

Multiple-Time-Step Molecular Dynamics Algorithm for Mnc- 
romolecules. As a first attempt to apply the techniques discussed 
above to the simulation of a macromolecule, we take the Liouville 
operator for a macromolecule in vacuo containing Natoms to be 

such that 

where the functional form of the associated potential is given in 
refs 16 and 17. In order to simplify the notation, let us now 
define the bonded/torsion and nonbonded contributions of F(x)  
to be 

Fb(x)  Fstrctch(X) + Fbnd(X) + 
Fdihcdral(x) + Fhydwen (21) 

Fnb(x) E Fvan r k y  Waals (x) + Fektroatatir.(x) (22) 

Since the majority of the CPU time in a molecular dynamics 
simulation of a macromolecule is spent calculating the nonbonded 
forces, we choose to divide the nonbonded forces into both a long- 
and short-range contribution, that is 

Fnb(X) = + 2ny(x) (23) 

This may be done through the use of a switching function S such 
that 

q p t ( x )  = S(r)*Fn,(x) (24) 
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P;;"x) [ 1 - S(r)]'Fnb(X) (25) 
The switching function itself is given by12J8 

where R [ r  - (rc - Ar)]/Ar, r is the interatomic distance, rc is 
the short-range cutoff, and Ar is the healing length. Having 
done this, we may express the Liouville operator as a sum of four 
terms 

L = L, + L, + L, + L, (27) 

where 

and 

a iL, = F,(x)- 
aP 

a iL, = F,(x)- 
aP 

a iL, 2 F4(x)- 
aP 

(34) 

In molecular dynamics one typically seeks a numerical solution 
(x(tn),p(tn)j for the atomic positions and momenta in Cartesian 
coordinates as a function of the discretized time tn = nAt, given 
that the system was in an initial state (x(O),p(O)J. Formally, the 
solution is given by 

For the present case, we consider the approximation 

where G(At)  is given by 

G(&) e i ( w ~ n ~ h / 2 ) 4  i (n lnzW2W3 K n i h l W ~  x [e [e 

[eihLl 1 nlef(n4rl/Wz 1 n~~i(n1n~6r1/Z)L11n~~t(n1nzn1(r1/Z)4 (38) 

and LI ,  Lz, L3, and 4 are given by eqs 28-31. In order to 
implement the algorithm numerically, we make use of the property 

e Y a / a x f ( x )  = f ( x  + y) (39) 

where y is taken to be independent of x.12 Given that the outer 
correction propagators e'(*vJz)La, a = 2-4, are of the form 
eVrT./W&P/dp, where 

= (X(671),P(671)1 

P(67'/2) = P ( 0 )  + (67,/2)F(x(O)) 

x(671) = 4 0 )  + (67,/m)b(O) + (67,/2)F(x(0))1 

where 

(45) 

= ~ ( 0 )  + 6~,3(0) + (67,2/2m)F(~(0)) (46) 

m is the atomic mass, and 

P(671) = P(67'/2) + (671/2)F(N7')) 

= P ( 0 )  + (671/2)[F(x(O)) + F(x(67,))l (47) 

Thus, the evolution of the system is determined numerically 
by acting with the propagator in eq 38 to the right on the 
initial state (x(O),p(O)), using eq 41 and eqs 43-47. A 
schematic FORTRAN implementation of the resulting 
algorithm can be found in the Appendix. 

In the following section we apply the method discussed above, 
using the approximate propagator in eq 38 and the reference 
propagator of eq 43, in the MD simulation of the small protein 
crambin in umuo. The results are compared with that of the 
standard velocity Verlet integrator. 

Molecular Dynamics of Crambin in Vacuo 
As a preliminary test of the method, we compare the multiple- 

time-step (r-RESPA) algorithm described in the previous section 
to the standard velocity Verlet algorithm for the simulation of 
crambin (see Figure 1) in uacuo. This was done by implementing 
the algorithm in a modified version of the MACROMODEL16 
molecular modeling package. We choose a completely flexible 
all-atom model (modified version of the AMBER all-atom 
parameters)" using infinitevan der Waals and electrostatic cutoffs 
with a constant dielectric, t = 1. The initial state of the system 
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TABLE 1: Stiff/Soft and Internal/Exteml Force 
Decomposition: Comparison of Energy Conservation and 
Associated CPU Times for Velocity Verlet ( n ~  = IJZ = 4 = 1) 
and r-RESPA. 

At 671 nl n2 n3 log(AE) R TNB TF 
0.25 0.25 1 1 1 -3.7073 0.0022 10085.9 10703.1 
0.50 0.50 1 1 1 -3.0123 0.0087 5073.4 5383.6 
1.00 1.00 1 1 1 -2.2388 0.0398 2579.6 2738.1 
2.00 2.00 1 1 1 -1.0475 0.1981 1326.7 1407.1 
0.50 0.25 1 2 1 -3.6289 0.0026 5041.7 5670.0 
1.00 0.25 1 4 1 -3.3783 0.0046 2463.9 3076.9 
1.50 0.25 1 6 1 -3.0820 0.0092 1662.6 2283.7 
2.00 0.25 1 8 1 -2.7850 0,0163 1252.2 1874.3 
2.50 0.25 1 10 1 -2.4186 0.0315 990.2 1601.5 
1.00 0.25 2 2 1 -3.3313 0.0052 2582.8 2915.2 
1.50 0.25 2 3 1 -3.0732 0.0088 1726.8 2059.4 
2.00 0.25 2 4 1 -2.7804 0.0175 1294.6 1626.7 
3.00 0.25 2 6 1 -2.1184 0.0496 862.1 1194.8 

1.00 0.50 1 2 1 -2.9855 0.0095 2656.5 2981.0 
1.50 0.50 1 3 1 -2.8881 0.0130 1759.9 2080.3 
2.00 0.50 1 4 1 -2.7135 0.0180 1323.1 1644.5 
2.50 0.50 1 5 1 -2.3696 0.0314 1021.1 1332.2 
3.00 0.50 1 6 1 -1.5932 0.1491 843.3 1152.3 
3.50 0.50 1 7 1 -1.3592 0.2553 723.7 1031.6 

4.00 0.25 2 8 1 -0.3355 1.8764 647.3 978.6 

Here log(AE) and Rare given by eq 48 and eq 49. TNB is the CPU 
time spent in the nonbonded force routine, and Tp is the total CPU time 
(s) spent in all force routines. At and bsl are in femtoseconds. 

-1 I I I I I I 9 

velocity Verlet - 
pRESPA ........ 

-1.5 - 
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Figure 1. X-ray structure of crambin (PDB code ICRN) with addition 
of explicit hydrogens. 

was obtained by first performing 4000 iterations of conjugate 
gradient minimization upon the X-ray structure. The system 
was initially heated to 300 K by sampling velocities from a 
Maxwell-Boltzman distribution. This was then followed by 20 
ps of molecular dynamics using the velocity Verlet integration 
algorithmwitha timestepof0.5 fsinordertoequilibrate. During 
the equilibration the velocities were resampled from a Maxwell- 
Boltzman distribution every 100 steps if the average temperature 
over the previous 0.5 ps deviated from 300 K by more than * 5  
K. All simulations were performed on an IBM RISC system 
6000/Model580 computer. Each production run consisted of a 
total of 5 ps of simulation time. 

In order to compare the efficiency of the two methods, it is 
important to compare their respective performances in achieving 
the same level of accuracy. In order to do this, we define an 
energy conservation parameter AE, such that 

where E, is the total energy at step i ,  Einitial is the initial energy, 
and N is the total number of time steps. This quantity has been 
shown to be a reasonable measure of accuracy in previous 
simulations.~*J4 Watanabe et al.14 found that a value of AE I 
0.001-0.003 is a sufficient condition for the numerical accuracy 
of the integration. Alternatively, another common measure of 
the accuracy is the ratio of the rms deviation of the total energy 
to the rms deviation of the kinetic energy,lg 

(49) 

A value of R I 0.01 has been used as a criterion for stability in 
previous ~imulations.1~ 

As a first test of the algorithm, we compare the energy 
conservation of the multiple-time-step method, using the reference 
propagator given in eq 43 with that of the velocity Verlet integrator, 
by using an "internal/external" force decomposition. Physically 
this corresponds to separating the interactions into two time scales 
on the basis of whether the force is of an internal (taken to include 
hydrogen bonds) or of a nonbonded nature. Additionally, we 
consider the case here where the bond stretch forces are separated 
from the other "internal" degrees of freedom. We shall refer to 
this as the Ustiff/soft" force separation. The results are shown 
in Table 1. Here it is shown that r-RESPA can take a time step 
approximately 3 times as large as that of velocity Verlet At = 0.5 

~~~ -"." ~ 

0 5  1 1 5  2 2 5  3 3.5 4 4 5  5 

At (f3) 
Figure 2. Short/long-range nonbondtd fore decomposition: dependence 
of energy conservation as defined by eq 48 vs time step for velocity 
Verlet (solid line) and r-RESPA using the propagator in eq 51 (dotted 
line). 
fs for comparable energy conservation, i.e. 871 = 0.25 fs, nl = 2, 
n2 = 3,  n3 = 1. 

Next we investigate the short- and long-range nonbonded force 
separations. Since decomposing the nonbonded forces into both 
long- and short-range contributions introduces some additional 
computational effort through the calculation of the switching 
function, the nonbonded pairs were separated into three "regions". 
This was done according to whether the value of the switching 
function of a given nonbonded pair in eq 26 was 0, 1, or of some 
intermediate value. Additionally, the intermediate pair list, i.e. 
the list of pairs whose switching function value is between 0 and 
1, was modified to include a 'buffer region" so as to take into 
account those nonbonded pairs which may change regions between 
updatings of the pair list. That is, the intermediate pair list is 
defined to be all nonbonded pairs at a given time such that 

rc - Ar - Arbumer I rij I r, + ArbUfln (50) 

where rc is the short-range force cutoff, &is the switching function 
healing length, rij is the pair se aration, and L\rbuflw is the buffer 

between every 10 to 25 fs. 
An exampleof the results for the long/shortforcedecomposition 

is shown in Figure 2. Here 871 = 0.5 fs, nl = 1, n2 = 1, and the 

healing length, taken to be 0.5 K . The pair list itself was updated 
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TABLE 2 Short/Long-Range Nonbonded Force Decomposition: Comparison of Energy Conservation and Associated CPU Times 
for Velocity Verlet (nl = & = @ = 1) and r-RESPA' 

At 671 nl n2 n3 rc Ar log(AE) R TPL TNB TF 
0.25 0.25 1 1 1 
0.50 
1 .oo 
2.00 
1.00 
2.00 
3.00 
4.00 
5.00 
1 .oo 
2.00 
3.00 
4.00 
5.00 
1 .oo 
2.00 
3.00 
4.00 
5.00 
1 .oo 
2.00 
3.00 
4.00 
5.00 
1 .oo 
2.00 
3.00 
4.00 
5.00 

0.50 1 
1 .OO 1 
2.00 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 
0.50 1 

1 1 
1 1 
1 1 
1 2 4.0 2.0 
1 4 4.0 2.0 
1 6 4.0 2.0 
1 8 4.0 2.0 
1 10 4.0 2.0 
1 2 6.0 2.0 
1 4 6.0 2.0 
1 6 6.0 2.0 
1 8 6.0 2.0 
1 10 6.0 2.0 
1 2 8.0 2.0 
1 4 8.0 2.0 
1 6 8.0 2.0 
1 8 8.0 2.0 
1 10 8.0 2.0 
1 2 10.0 2.0 
1 4 10.0 2.0 
1 6 10.0 2.0 
1 8 10.0 2.0 
1 10 10.0 2.0 
1 2 12.0 2.0 
1 4 12.0 2.0 
1 6 12.0 2.0 
1 8 12.0 2.0 
1 10 12.0 2.0 

-3.7073 0.0022 
-3.0123 0.0087 
-2.2388 0.0398 
-1.0475 0.1981 
-3.0645 0.0086 
-3.0158 0.0115 
-2.8114 0.0177 
-2.5564 0.0326 
-0.5789 1.1001 
-3.0605 0.0086 
-2.9756 0.0102 
-2.8706 0.0107 
-2.6622 0.01389 
-1.6791 0.1067 
-3.0278 0.0094 
-3.0155 0.0090 
-2.9851 0.0095 
-2.7526 0.0121 
-1.8296 0.0668 
-3.0272 0.0089 
-3.0075 0.0096 
-2.9984 0.0096 
-3.0006 0.0107 
-2.1594 0.0412 
-3.0397 0.0092 
-3.0542 0.0089 
-3.0138 0.0094 
-2.9935 0.0091 
-2.5333 0.0326 

46.9 
46.6 
46.6 
46.7 
44.9 
46.7 
46.0 
46.0 
45.8 
44.1 
43.6 
43.8 
46.0 
43.7 
42.9 
41.4 
40.9 
43.0 
41.3 
39.3 
37.7 
37.7 
37.8 
37.9 
36.4 

10085.9 
5073.4 
2579.6 
1326.7 
2670.1 
1460.4 
1065.5 
867.1 
747.4 

3023.8 
1871.1 
1321.6 
1321.6 
1211.8 
3338.2 
2373.1 
2150.5 
1883.8 
1812.3 
3743.7 
2937.5 
278 1 .O 
2544.6 
2448.1 
4111.4 
3487.4 
3291.2 
3170.5 
3089.5 

10703.1 
5383.6 
2738.1 
1407.1 
2980.5 
1768.6 
1373.6 
1175.0 
1055.1 
3334.9 
2178.0 
1811.9 
1628.8 
1518.4 
3645.3 
2681.3 
2473.6 
2191.1 
2123.1 
405 1.8 
3245.6 
3103.4 
2853.6 
2755.2 
4418.3 
3794.0 
3598.8 
3477.9 
3397.0 

Here log(AE) and R are given by eq 48 and eq 49. TNB is the CPU time spent in the nonbonded force routine, TPL is the CPU time spent calculating 
the r-RESPA neighbor lists, and Tp is the total CPU time (s) spent in all force routines. r, and Ar are the short-range cutoff and switching function 
healing length, respectively, in angstroms. At and 671 are in femtoseconds. 

-0.5 1 I I I I 1 I I 

,,,,.,....... 
..." ..." 

,," 

-3.5 I 1 , I , I I I 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

At (fs) 
Figure 3. Dependence of energy conservation as defined by eq 48 vs 
long-range time step for velocity Verlet using the constant long-range 
force approximation (solid line) and r-RESPA using the propagator in 
eq 51 (dotted line). 

energy conservation of the r-RESPA method is now a function 
of n3, the propagator given by 

Here we have used a short-range cutoff r, = 6.0 A and a healing 
length Prof 2.OA. The results indicate that for these parameters 
the r-RESPA method is able to take a time step A? = n36q nearly 
6 times larger than that of the velocity Verlet for a similar level 
of accuracy. Table 2 summarizes the CPU times and energy 
conservation results for the short/long-range nonbonded force 
decomposition as a function of cutoff radius and time step. 

It is also interesting to compare r-RESPA with a frequently 
used approximation whereby one treats the long-range force as 
effectively constant over a number of time steps n, while a standard 
integrator such as a velocity Verlet is used. In order to make the 
comparison, we choose to employ the same short/long-range force 

TABLE 3: Combined Stiff/Soft, Internal/External, and 
Short/Long-Range Nonboded Force Decomposition. 
Comparison of Energy Conservation and Associated CPU 
Times Spent in the Various Force Routines for Velocity Verlet 
(a = = nj = 1) and r-RESPA Using the Propagator Given 
by eq 38 and eq 43. 

At 671 nl n2 n3 log(AE) R T s M h  TW Ttonion T m w  
0.25 0.25 1 1 1 -3.7073 0.0022 30.7 186.0 399.7 10085.9 
0.50 0.50 1 1 1 -3.0123 0.0087 15.5 93.3 201.2 5073.4 
1.00 1.00 1 1 1 -2.2388 0.0398 7.7 47.9 102.8 2579.6 
2.00 2.00 1 1 1 -1.0475 0.1981 4.2 23.6 52.5 1326.7 
3.00 0.25 1 6 2 -2.9880 0.0102 31.9 189.1 407.6 1090.0 
3.00 0.25 2 3 2 -2.9995 0.0102 32.1 92.3 198.7 1062.9 
3.00 0.50 1 3 2 -2.7944 0.0127 15.6 93.6 201.0 1078.2 

Olog(AE) and R are given by eq 48 and 49. At and 671 are in 
fentoseconds. Here r, = 6.0 A and Ar = 2 . 0 1  for all r-RESPA cases 
considered. T"hr T w ,  T w a ,  and T m ~ d  are the CPU times in 
scconds spent in the stretch, bend, torsion, and nonbonded force routines, 
respectively. CPU time spent calculating r-RESPA neighbor lists is 
included in Twa&&. 
breakup discussed above, using the switching function for each 
of the two cases. We mention, however, that other long/short 
breakups have been used in the case of constant long-range force 
approaches, such as those based upon the use of neighbor lists.16 
Here, we choose to use the switching function based decomposition 
for both r-RESPA and the velocity Verlet with the constant long- 
range force approach, so that any differences can be attributed 
to the integrators themselves. Identical parameters were used in 
each of the two cases, that is, r, = 6.0 A and Ar = 2.0 A. In 
Figure 3 we compare the energy conservation obtained by using 
this constant long-range force approximation in conjunction with 
the velocity Verlet integrator with that of r-RESPA as a function 
of the long-range time step, i.e. the number of small time steps 
between long-range nonbonded force evaluation. The results 
indicate that the constant long-range approximation leads to very 
poor energy conservation for this case, whereas r-RESPA remains 
quite stable to significantly larger time steps for the same amount 
of CPU time. 
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Next, we compare the velocity Verlet algorithm with that of 
r-RESPA using a combination of the stiff/soft, internal/external, 
and the short/long-range nonbonded force separations. The 
results for the energy conservation and CPU times are given in 
Table 3. Here it is clear that r-RESPA allows for a reduction 
in the nonbonded derivative CPU time by a factor of almost 5 
as compared to the velocity Verlet case with AZ = 0.5 fs for a 
comparable level of energy conservation. Additionally, in order 
to explore the question as to whether the r-RESPA method does 
indeed generate the correct dynamics of the system, we compare 
the spectral density I(;) as a function of the frequency i in 
wavenumbers, obtained from the two methods, where 

I(;) = s” C,(t) cos(2~ci2) dt 27rc 0 

and C.(Z) is the normalized velocity autocorrelation function of 
the system, 

N 

wherecis the speedoflight,v,(t) = (ux(t), u,.(r), u,(z)), thevelocity 
of atom i at time Z ,  and Nis the total number of atoms. In Figure 
4 we compare the r-RESPA (case 1) 67, = 0.25 fs, nl = 1, n2 = 
6, and n3 = 2 to velocity Verlet with A1 = 0.25 fs. The results 
for r-RESPA (case 2) 6 q  = 0.25 fs, nl = 2, n2 = 3, and n3 = 2 
and those for velocity Verlet with At = 0.5 fs are shown in Figure 
5. In order to establish a quantitative estimate of the accuracy 
of the resulting spectral densities, we consider15JO 

(54) 

where 

s = (SI, ..., s,) ( 5 5 )  

and the st are the spectral components at frequency i. If the two 
spectra are identical, then D = 0, whereas, if they are uncorrelated, 
D = */2. We take as a reference, the “exactn spectral density 
to be defined as that obtained from a MD simulation using the 
velocity Verlet integrator with a time step of 0.25 fs. We then 
calculate D with respect to this reference spectral density for the 
two r-RESPA cases considered above and compare them to the 
velocity Verlet case with Ar = 0.5 fs. For r-RESPA (case 1) we 
obtain D = 0.250, for r-RESPA (case 2) D = 0.299, and D = 
0.662 for that of velocity Verlet using a time step of 0.5 fs. Thus, 
in each case, the r-RESPA method allows for a reduction in the 
nonbonded CPU time of almost a factor of 5 with a spectral 
accuracy better than that of the velocity Verlet integrator using 
a time step of 0.5 fs. The poor D value for the velocity Verlet 
with Ar = 0.5 fs can be attributed to a numerically induced “blue 
shift” evident at the higher frequencies of the spectral density. 
This can be seen more clearly if, for example, we examine a 
detailed comparison of the spectral densities for the two velocity 
Verlet cases (see Figure6) in thevicinity of thesmall 0-H stretch 
peak near 3722.5 cm-l. The r-RESPA (case 1) is included for 
comparison. 

Conclusion 

In molecular dynamics simulations of macromolecules, one is 
often limited by the high computational expense associated with 
calculating quantities of physical interest to a reliable degree of 

numpnreys et 81. 

I I 9 I 1 I I 

velocity Verlet ‘‘Ex&” 

0 0.5 1 1.5 2 2.5 3 3.5 4 

I I I I 8 I I 

r-RESPA 

0 0.5 1 1.5 2 2.5 3 3.5 4 

x 1000 m-1 

Figure 4. Comparison of spectral density I(;)  of eq 52 as a function of 
wavenumber for velocity Verlet Ar = 0.25 fs (top) and r-RESPA using 
the propagator given by eq 38 and eq 43 with nl = 1, nz = 6, n3 = 2, and 
brl = 0.25 fs (bottom). Intensities are in arbitrary units. 

I I I I I I 

velocity Verlet 1 
t 

0 0.5 1 1.5 2 2.5 3 3.5 4 

r-RESPA 
I 

, 
0 0.5 1 1.5 2 2.5 3 3.5 4 

XlOOO em-’ 
Figure 5. Comparison of spectral density I(;)  of eq 52 as a function of 
wavenumber for velocity Verlet Ar = 0.50 fs (top) and r-RESPA using 
the propagator given by eq 38 and eq 43 with nl = 2, n2 = 3, n3 = 2, and 
brl = 0.25 fs (bottom). Intensitits are in arbitrary units. 

accuracy. This is primarily due to the cost of calculating the 
nonbonded interactions which scales as P, where Nis the number 
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I I I I I Appendix 

The following is a schematic FORTRAN implementation of 
the molecular dynamics algorithm discussed in the text using the 
propagator as defined in eq 38 and the inner reference system 
propagator in eq 43. The Cartesian positions and velocities of 
an atom I, with mass AMASS(I), are given byX(I), Y(I), Z(I), 
and VX(I), VY(I), VZ(1). The atomic forces are contained in 
the arrays Fl-X(I)-F4-Z(1). Here DELTAT corresponds to 
671. 

3.7 3.71 3.72 3.73 3.74 3.75 3.76 

XlOOO cm-’ 
Figure 6. Detail of spectral density I(;)  of q 52 as a function of 
wavenumber for “Exact” (Le. velocity Verlet A? = 0.25 fs) (solid line), 
velocity Verlet At = 0.5 fs (dashed line), and r-RESPA using the 
propagator given by q 38 and q 43 with nl = 1, n2 = 6, n3 = 2, and 
611 = 0.25 fs (dotted line). Intensities are in arbitrary units. 

of particles of the system. Because the size of the time step is 
limited by the most rapidly varying degrees of freedom, standard 
numerical integration techniques become inefficient because such 
a very large number of nonbonded interactions must be calculated 
during a typical simulation of a macromolecule. Here we have 
presented a more efficient alternative which is based upon using 
a multiple-time-step integration scheme, whereby interactions 
evolving according to different time scales may be integrated 
with different time steps. The method, which is based upon a 
Trotter factorization of the classical Liouville operator, is shown 
to achieve a comparable level of accuracy at a fraction of the 
computational cost of the standard velocity Verlet integrator. 
For a molecular dynamics simulation of the small protein crambin 
in vacuo, this corresponds to a savings of approximately 4-5 times 
the CPU time spent calculating nonbonded interactions. Since 
the computational cost scales as N2 with system size, it is expected 
that the method will be even more efficient for larger macro- 
molecules. For example, when the method was applied to solid 
fullerene containing 32 C a  molecules,l5 or a total of N = 2880 
interaction sites, one obtains a 20-40-fold speedup. Similar 
speedups might be expected for protein molecules with a 
comparable number of sites. Furthermore, we note that one need 
not simply limit decomposition of the nonbonded forces into that 
of short- and long-range contributions. The method is easily 
generalized to the case where the nonbonded forces are subdivided 
into a number of regions, or multiple “shells”, each associated 
with a different time step. This approach may be advantageous 
for systems significantly larger than the one studied here. It is 
also possible that other subdivisions of the forces may lead to 
further reduction in CPU times for comparable accuracy, e.g. 
separating torsion interactions into “stiff“ and “soft” contributions 
and perhaps separating interactions between light and heavy 
atoms. Additionally, the r-RESPA approach should be com- 
plimentary to other efficient numerical techniques such as the 
fast multipole 

Future applications of the method will include testing its use 
as a structure refinement tool in connection with the protein folding 
studies being conducted in our laboratory.22.23 

Acknowledgment. We would like to thank Professor W. C. 
Still for providing us with the source code for the MACRO- 
MODEL/Batchmin molecular modeling program and for many 
helpful discussions. This work was supported by grants from the 
National Institutes of Health (NIH GM43340-01-A1) and from 
the NIH Division of Research Resources (SP41RR06892). 

CALL FORCES-F1 
CALL FORCES-F2 
CALL FORCES-F3 
CALL FORCES-F4 
00 N=l,NSTEPS 

DO M=l,NATOWS 
VX (M) =VX (M) 

W(M)=VY (M) 
$ +O . S*OBLE(Nl*N2*N3) *DELTAT*F4_X(M)/AMASS(M) 

$ +O. S*DBLE(Nl*N?*N3)*D€LTAT*F4_Y(M)/AMASS(M) 
vz (MI =vz (M) 

$ +O. S*DBLE(Nl*NZ*N3)*DELTAT*F4_Z(H)/AMSS(M) 
ENDDO 
DO I=1,N3 

DO M=l,NATOMS 
VX (MI =VX (M) 

+O .S*OBLE(Nl*N2)*OELTAT*F3_X(M)/AMASS(M) 

+O.S*DBLE(Nl*N2)*DELTAT*F3-Y(M)/AMASS(M) 

+O , S*DBLE(Nl*NZ) *DELTAT*FJ_Z (M) /AMASS (MI 

W(H) =W(M) 

vz (MI =vz (M) 
ENDDO 
DO J=1 ,N2 
00 M=l,NATOMS 

VX (M) =VX (M) 

VY (M)=VY (M) 

VZ(M)-VZ(M) 

+O .S*DBL€(Nl)*DELTAT*F2_X(M)/AMASS(M) 

+O , S*DBLE(Nl) *DELTAT*F2-Y (H)/AMASS(M) 

+O . S*DBLE(Nl) *DELTAT*F2_Z(M)/~SS(H) 
ENDDD 
DO K=l,Nl 

DO M*l,NATDMS 
VX(M)=VX(M) 

VY(M)=VY(M) 
+O , S*DELTAT*Fl_X(M)/AMASS(M) 

+O . S*DELTAT*Fl-Y (MI /AMASS (M) 
+O. 5tDELTAT*Fl_Z(M)/AMASS(M) 

VZ(H)=VZ(M) 

END00 
DO M-1,NATOMS 

X(M)=X(M) 

Y (M)=Y (M) 

Z (M)=Z(M) 

+OELTAT*VX (M) 

+DELTAT*W (M) 

+DELTAT*VZ(H) 
ENDDO 
CALL FORCES-Fl 
DO M=l,NATOMS 

VX(M)=VX(M) 

W (H) =VY (M) 

VZ (M) =VZ (H) 

+o. S*DELTAT*F~-X(M)/AMASS (M) 

+o . S*DELTAT*F~-Y 01) /AMASS(M) 
+O .S*DELTAT*Fl_Z(M)/AMASS(M) 

ENDDO 
ENDDO 
CALL FORCES_F2 
DO M=l,NATOMS 

VX(M)=VX(M) 

VY (M)=VY (H) 
+O. S*DBLE(Nl) *DELTAT*F2_X(n)/AHASS (M) 

+O, SsDBLE(N1) *DELTAT*F2_Y(H)/AMSS(M) 
vz (M) =vz (M) 
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$ +O. S*DBLE(Nl) *DELTAT*FZ_Z(M) /AHASS(M) 
END00 

ENDDO 
CALL FORCES-F3 
DO M=l,NATOMS 

VX(M)=VX(M) 

W (MI =W (MI 

VZ(M)=VZ(M) 

$ +O .S*DBLE(NI*NZ)*DELTAT*F3_X(M)/AMASS(M) 

$ +O . S*DBLE(Nl*NZ) *DELTAT*FJ-Y (M) /AMASS (MI 
$ +O . S*DBLE(Nl*N2) *OELTAT*FB-Z (MI /AMASS (M) 

ENDDO 
ENDDO 
CALL FORCES-F4 
DO M=l,NATOMS 

VX(M)=VX(M) 

VY (M)=VY (H) 
$ +O. S*DBLE(Nl*NZ*N3) *DELTAT*F4_X(M)/AHASs(M) 

$ +O. S*DBLE(Nl*NZ*N3) rDELTAT*F4_Y(M)/AMASS(M) 

$ +O ,S*DBLE(Nl*NZ*N3) *DELTAT*B4_Z(M) /AHASS (M) 
VZ(M)=VZ(M) 

ENDDO 
ENDDO 
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